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A hadron model is proposed in which nonasymptotic quarks interact with a coherent and
long-range vector-gluon field, with a resulting linearly rising spectrum. Solutions for
L, = 0 pseudoscalar and vector mesons in this model exhibit an SU6-type structure. The pion
decay constant and the p-y coupling constant for the unperturbed ground states satisfy the
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation and have the right order of magnitude.
The ratio cr(e++ e vector mesons)/o(e++ e p++ p ) decreases like s ~ in the present
model, whereas it is shown that the ratio approaches a constant in the three-dimensional
oscillator-potential model.

I. INTRODUCTION

X &(()e-" =(e„T(q,(x')q„(x))c ~)

with

X=-', (x+x'), ( =x'-x.

(2)

Under the assumption that the gluon field is so
strong in the hadron that it can be replaced by a
c-number field f„(x), we obtain from (1) and (2)
our basic equation

(-'W+ iA —gg'(t) —M.]x(()= o. (3)

Here f„($) is the total field including the self-field
of the quarks. Although we may write down an
equation to determine f„, providing a self-con-
sistent scheme together with (3), such a scheme
yields no simple solution. In the present paper
we will not take this difficult route, but instead
postulate a certain form for f„and investigate its
consequences. The form we assume is

fq Pp V(r), ——

where

In this section, the basic ideas introduced in the
previous paper' will be briefly described. We con-
sider a dynamical model in which infinitely (or
almost infinitely) heavy quarks interact via the
neutral-vector-gluon field y„(x). The equation
for the quark field q(x) is

(iP —M,)q(x) =gg(x)q(x),

where M, is the unrenormalized mass. Since the
quark is a nonasymptotic field, the physical mass
has no meaning. We define a 4&&4 wave function

X($) for a q-q system of total momentum P„by

v = (c'+ a/r)'" . (7)

As we see in Eq. (46) below, v' represents a ker
nel of a Bethe-Salpeter-type equation, so that (7)
may not be totally unreasonable.

With (4) and (6), Eq. (3) can be written as

proper configuration of a hadron is three-dimen-
sional. However, this assumption is not an abso-
lute necessity, because we may assume instead
that V is a function of R' = -$', and can obtain es-
sentially the same results. For V(r) we take

g v(r) = ,' v(r-),—

n (r) = e + a/2~r .

The constant term —,
' —~ in gV represents a self-

mass effect, and we will see that e =0 corresponds
to the infinite physical mass for the quark. The
I/r part may be justified in two aspects. As the
singularity at the origin it is certainly field-theo-
retical. For large ~ we find that the quarks do
not propagate outside a certain definite range,
and within this bound a Yukawa potential with a
larger range may be approximated by 1/r. In
any event (6) is the basic ingredient of our model,
and we may call it a long-range-potential model.
It is an extreme opposite of the oscillator-poten-
tial model both in the singularity at the origin and
in the behavior at larger x. In the following, we
will neglect consistently the 1/x' term in v' and
v'/M, compared to v. The approximations may be
justified for large ~ but only for high orbital
states near the origin. This asymptotic nature of
our approximation and the resulting spectrum
should be kept in mind. With this approximation,
(6) is equivalent to

y =-$ +(P $) /P', (6) (P'~+if-M. )X(()=O, (6)

which reduces to the radial distance in the rest
frame. In other words, we are assuming that the

which can be rationalized immediately if we ne-
glect v' to give
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[P2(e 2+a/r) —O' —M,']X(r) = 0.
It gives a spectrum

I' =en
n

2M, 'n (n=1 2 . . .~2 + (24 2+M 2a2)1/2 (n & &
' ' ) &

which converges to
1

m =M2 /e

(10)

-M2(, +P'v)2+(2'+2r '11/2=0,

v11/1™2/2—$4' —2r '$4 = 0,

g, '. ™2r/r2+Pv/I/4 = 0,
rjr2-'+ v/2 —M,$4 = 0.

From (16) we obtain

p, "+2r 'g, ' —(M2 -P2v')g, =-P2v'g4,

g2" +2r 'p2' —(M,' -P'v')p 2=v'g2

(16)

(17)

This ionization point defines the physical quark
mass as

=M2/2e .

M&&(,
' -P vti/2'

42 —
M ~ P2„2

0

(16)

For ~ -0, we have a linear trajectory,

m„'=(2M, /a)n (n=1, 2, . . . ),
with a level spacing in squared mass,

6 = 2M2/a .
The normalized wave function for e =0 is

(12)

4 ~2 —~2V0

If we set v' = 0, (17) is equal to (9) for S wave, so
that 1ji, and g2 are given by X, of (13). By requir-
ing that g2 and p4 have no singularity at M, =v(P')"',
we arrive at the relative ratio /ji, /g2 = (P')'". Thus,
we obtain an approximate solution

I 3 ) 1 ) I/2

x (.)=2(-1)--
n(n+ l)!

x(2M r)'e "2"L„'"'(2M2r)Y, (g, /p). (13)

X ~($) =&. 1+—X.,(r)
Y

(19)
Contrary to the case of a hydrogen atom, the Bohr
radius here is 1/M„ independent of the principal
quantum number n. The effect of this on the tran-
sition form factors was discussed in Ref. 1. The
wave function for the case e w0 can be obtained
from (12) by replacing M, by

where

C„(r)= [M, + (m„'ar-')'"]-'

m „'= (2M,/a)n (n = 1, 2, . ..) .

(20)

(21)

(M 2 ~2m 2)1/2

II. SOLUTIONS FOR 0 AND 1 STATES

Equation (9) suggests a spin-independent spec-
trum. We will obtain the spin structure of X for
v and p (and their sisters) in this section. Both
are I- =0 states in the nonrelativistic limit, and
we may try to solve (3) with x given by

X'(&) = [0,(r)+P'0, (r)+2!/'.r '(.( )r
+. i26 'i, (r)] ') i./i 2,

with

l„=2«'/~5"

The upper line is for 0 and the lower one is for
1 with polarization ~„. The unitary spin is in-
corporated by the last factor. The SU, structure
of the first two amplitudes is apparent. Introduc-
ing (16) into (3), we find a set of equations for g's,
which are common for both 0 and 1 cases:

C X($)C =+X (-g), (22)

where C is the ordinary charge-conjugation ma-
trix and ~ refers to the C parity of the states.
Thus, g2 for 0 has an opposite charge-conjuga-
tion parity and g3 and g4 for 1 have no definite C
parity However, .for large n, we find

34 d x j d r=01 n

so that the charge-conjugation property is re-
stored for the asymptotic states.

For application of the wave function (19) to phys-
ical problems, we need to determine its normal-

We have taken c =0 and (7) for v for definiteness.
We see that g, and g2 are large components and
they are the boosted SU, wave functions. ' Unfor-
tunately, the solution is not completely satisfac-
tory because some of the small components do
not satisfy the proper charge-conjugation condi-
tion. From the defining equation for x, Eq. (2),
we find



ization. We normalize by

(e „)(0) o), =(e „)„(0')fj (-,)*a. (~) o)

0 (2

Here j'„(x)=q(')(x)y„q('(x) are currents for the
quark and the antiquark, respectively Jd. o is a
spacelike surface integral. Using (2), we find
that (23) is equal to

tr ~ $ @~X~ ( y), do~ ( =2J'p» (24)

X ='VOX 'Yo ~

Introducing {19)into {24), we find

$=4A dm 2 x+C x X
' r P. d(z»

(25)

where d is unity for the Gell-Mann-Zweig model, '
and three for three-triplet models, either the
Han Nambu or the parastatlstlcs quark of rank
3. In the rest frame, the surface integral re-
duces to a space integral. Since X, is normal-
ized, we have

which also determines

m 2=2m 2
P ~ (30)

MM0
II (1+C, )m,

For the value of m, as given by (30), and M,
=300 MeV, for instance, we obtain

The fact that the ground-state energy m, is unique-
ly determined from the level spacing, with no
space for an additive constant, is a unique feature
of our model. We will see shortly that the value
(30), together with the SU, -type symmetry of our
wave functions, leads to the Kawarabayashi-
Suzuki-Riazuddin-Fayyazuddin (KSRF) relation, '
which has never been derived in a proper sense. '
We are of course assuming here that the values of
f, and f„or at least the product f,f~ will not change
appreciably by perturbation. The pion decay con-
stant f„ is defined by

&f.&„=( @o,i;„(0)@1)
=trh, ~~(4&s) Xp (o)] .

From (19), (13), and (26) we have

f, =(4d A/W2 m)1y 1(00)

A = —'(m /d)'"{1+C ) "

As stated before, C„decreases like 1/n. For
n = 1, we have from (13) and (21),

(26) (32)

to be compared with the experimental value of 94
MeV. In view of the crude nature of our evalua-
tion both values 6 = 3 j. are permissible. Simi-
larly, p —y coupling constant is defined by

4 = 2M0/a = 2m p, (29)

OO e P

0 1+2)) p

Although our solutions are expected to be valid
only for large n because of the approximations to
neglect higher-order terms in 1/r and also be-
cause of the charge-conjugation problem as stated
above, it is nevertheless extremely interesting to
apply the ground-state wave functions to evaluate
the pion decay constant f, and p-y coupling con-
stant f~. We should stress that we are here cal-
culating these parameters for the unperturbed
ground states, with perturbative interaction
switched off» which breaks our SU6-type degen-
eracy to bring down energy levels to the observed
values. This means that we should use m„given
by (21) as the I( and p mass, instead of the actual
masses. We assume, however, that the level
spacing 4 is not perturbed appreciably, so that
we may use the physical value 2m& for it. Thus
from (21), we have

Here on the left-hand side the actual p mass must
be used as it is the definition of f~. Again from
(19), (13), and (26) we have

fp
I =(4dA/W2mp')F10(0)

MmiMO
mp' II(1+C, )

(33)

With m, = &2m~ and Mo = 300 MeV we obtain

f,=5/vV .
Experimentally fp 5.6 alld tile value has tile 1'1ghi

order of magnitude. Now taking the ratio of (31)
and (33) we have, from (30),

f.f, =m,'/m, =m, /V 2, (34)

which is the KSRF relation. This ratio is indepen-
dent of the value of y»(0), but the value of m, as
given by (30) is crucial in deriving the KSRF rela-
tion. This is one positive result of our model.
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III. VECTOR-MESON PRODUCTION BY
VIRTUAL PHOTONS

a(e'+e -vector mesons)
o(e'+e - p. '+p )

(36)

is still given by conventional prediction'R = g Q,.
'

(Q,. =charges of quarks making up the vector me-
son), since the effect of binding a quark and an
antiquark into a vector meson would decrease
as the squared energy s increases. It turns out
that this is not the case in the present model.
This is in sharp contrast to the oscillator poten-
tial model, where the statement is essentially
true. In order to evaluate the ratio R, we calcu-
late the decay width of a virtual photon y~ of mass
Ws. For p, '+ p, decay we have

r(y+- p, '+ p, -) =v s/12m (36)

As an application of the vector wave function de-
rived in Sec. II, we shall consider vector-meson
production by e'+ e collisions. In our resonance
model, hadron production by a virtual photon y*
would proceed via the conversion of y* into a vec-
tor meson of equal mass, and its subsequent de-
cay into other hadrons. Therefore, the rate of
e'+e -all hadrons is equal to the rate of e'+e-vector mesons. One might expect that the ratio

o(e'+e -vector mesons} 2„48vM,' 1
e(e'+e -g'+p ) b vs

(41)

x e "~""r,"-(-,'M~r'}. (42)

The nonrelativistic energy levels are related to
the mass spectrum by

Here —,'d is just QQ, ' for the Gell-Mann-Zweig
model (d = 1}and rank-8 parastatistics for quarks
(d=3). In the Han-Nambu model, as long as we
exclude charmed vector mesons, there is no dis-
tinction from the case of the parastatistics. The
remaining factor was expected to give unity. Tak-
ing 6=2nzp Mo 300 MeV, we have

48 Mvan, 's '"=(3.3 GeV)s '".
The s ' decrease of the ratio R may be due to
the singularity of the potential at r = 0, and pro-
vide a decisive test of our model.

It is interesting to evaluate the ratio for the
case of the three-dimensional oscillator poten-
tial. We replace (13) by the nonrelativistic oscil-
lator wave function for reduced mass —,'M.

I'(n)y, (r) (2v)'i' '™}I'(n+ —,
'

for spatially polarized y*.
For y*-vector mesons, we have

~ 5(Ws —m„) 1I'(y*- vector mesons) =2m 7 2m„2v' s

x
l (oI ' j-(o)l n ) l

'.
(37)

m„' = (2M+E)'

-4M~(2n ——', )+4M'.

The level spacing ~ is given by 6 =8M'.
We extrapolate (43) to large n and find

y„(0)=—(—'M&@)'~ (—'M'en)~~

(43)

(ol jp(0)l p'}=tr [ y„(x,/2)x&'(0)]

= 4(1/W2 }dA„y,(0}&q,

(ol j™(0)l~, ) = tr[y„(&./2~3) x,"'(0)]

=4(1/W6)dA„X, (0)e„' .
Also

(38a)

(38b)

+6(v s -m„)/2m„=+6(s —m„') =n ',
where b is the level spacing in nz2. Introducing
Eqs. (38) and (39) into (37), we obtain

(39)

Here we do not have to consider L =2 vector me-
sons, whose wave function vanishes at x =0. The
summation Q„ involves the third and eighth mem-
bers (p' and cv,') of the vector octet of mass Ws.
From (19), (13), and (26) we have

gl/2 1/2
4&2'

Using this value in Eqs. (38), we find

I'(y*-vector mesons}=(3d)
Ws

8m'

which gives

(44)

(45)

IV. SUPPLEMENTARY REMARKS

R = —,'(QQ, ') .
This enhancement factor of & is quite interesting.
Bohm, Joos, and Krammer have found a similar
factor ~9 using a relativistic oscillator-potential
model. However, there is some reason to believe
that this factor & is fictitious, arising from the
not completely relativistic treatment of spin in
the vector -meson production.

I'(y*-vector mesons) =(&d)4M, 'n '.
Combining with (36) we have

(40) In order to avoid the charge-conjugation diffi-
culty of Eq. (8), we may take Bethe-Salpeter-type
equations in the following way. The charge-con-
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jugate relation to (8) is

X($)(-Pv+iP-M, ) =0, (46)

where we used (22). Combining (8) and (46), and
symmetrizing, we obtain

(4V)

There is no guarantee, however, that the solutions
of (47) and (48) are the same, because the charge-
conjugate sets of Eqs. (8) and (46) are not compat-
ible to start with, as we saw in Sec. II. Only for
a large n or l, we may expect the solutions of all
these equations to converge. We have not yet solved
either of the charge-conjugate Eqs. (4V) and (48).

which is manifestly charge-conjugation-invariant,
so that its solution will automatically satisfy the
charge-conjugation condition. Similarly we may
also consider the equation
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