
3526 AU VIL, B RE HM, AND P RASAD

Levy 0 model, &=1.
Finally we should mention that the effects of

symmetry breaking upon higher-. order terms such

as o, a'@', . . . have not yet been investigated.
These higher-order terms contribute to mN-SwN
and other processes of high multiplicity.
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The methods of an earlier work are modified so that the unitarity constraints on the xz
amplitude are better satisfied. The modification permits us to examine the extent to which
7tx scattering affects the determination of the 0 term in xN scattering.

Some renewal of interest has developed in the
venerable problem of calculating mm scattering
from the general principles of analyticity, unitar-
ity, and crossing symmetry. The impetus has
come from current algebra. What the local-opera-
tor methods mean to an S-matrix approach is two-
fold. First, the Ward identities obtained from the
current commutation relations provide equations
relating matrix elements which are analytic in the
invariant variables. As such they offer a vehicle
for invoking unitarity. For a low-energy treatment
this represents a distinct advantage over the use
of partial-wave dispersion relations because only

local analyticity needs to be employed. Secondly,
the low-energy theorems' of current algebra are
incorporated and effectively normalize the results
of the analytic approach.

Schnitzer' has proposed methods for such a
scheme, and an analysis of what can be predicted
has been carried out. ' The purpose of the present
investigation is to show how a slight modification
of what was done in Ref. 3 leads to considerable
improvement on the extent to which unitarity is
satisfied. This is achieved by making a minor al-
teration in the parametrization. Qf course a more
general treatment of the wz problem admits other
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parametrizations so that the results we obtain are
not unique beyond the context of the methods of
Bef. 3. The same modification also allows us to
inquire how w7) scattering affects the determination
of the o term in mN scattering at the Cheng-Dashen
point. ' The latter question has recently been
raised by Schnitzer. '

In what follows we shall pursue the consequences
of our alteration in the development of Bef. 3. We
shall generally transmit only those equations which
are necessary to indicate this modification. The
notation and development is otherwise identical to
Ref. 3. The new results for the low-energy wm

phase shifts will be given. Finally we shall dis-
cuss the question of the mNa term.

The s- and p-wave amplitudes are given by the
following hard-pion formulas:

T,r = (Hrfr +4,)/E. ', T=0 and 2

E —Er =H,hv/E„

where Fr= 1 —Cv/2E, '; hr and h„are the propa-
gators. The 4"s are as given in Eqs. (16) of Ref.
3. The constraint of elastic unitarity is imposed
by requiring (i) that each 4 vanish in a neighbor-
hood above threshold, and (ii) that

T„=(H,F+4,)/F
where Hr = rr(s —nr) and H, = 2(1+ I's). In (1), fr
and E are the form factors of the o commutator
and the vector current, respectively. They satisfy
the following on-shell Ward identities:

fr+ lz, =Hrbr/F, ',

Eq. (A17) of Ref. 3]. We also, somewhat arbi-
trarily, set8

r=0
so that

j'q= 0,
l.e.)

C~= 2I'
7f (5)

each 4 = 0 through O(v') . (6)

It is apparent that when this is done we shall sat-
isfy (3) to an improved level of accuracy.

As in Ref. 3 we again introduce slope parameters
fr' and E' to describe the t dependence of fr(t) and

F(t) for small negative t [see Eqs. (29) of Ref. 3].
An immediate consequence of (6) is that (5) must
be satisfied. Thus, expression (5), which was
input in Ref. 3, is obtained as a result of applying
unitarity in the present work. The remaining
eight constraints implied by (6) are used to elim-
inate all but two of the remaining 10 parameters:
ao, n2, l2, fo', f, ', E', I'o, r~, g„and g3. The
relations among them are as follows:

In the present investigation we shall take F~ and

o,~ to be independent parameters. With these free
to be varied along with F, II~ and H, become the
most general linear coupling polynomials. It was
noted in Ref. 3 that condition (4) effectively con-
strained our mn construction not to modify the o-
term contribution to wN scattering at the Cheng-
Dashen point. Once (4) is relinquished, this ques-
tion can be broached; we shall turn to this below.
When we give up (4) and (5) we gain three additional
free parameters. This permits us to impose con-
dition (i) above as

li+z I'=1

where

zr =@r(Hrfr) '

and

T =0 and 2

(3)
I, = n2 —2m„——„C[sn2m„(1 —I')

+ (oo —2m~ )(5oo+7n, —12m~ }],

r, =
—, [l. —,'C(sn. sm-„' —m„—'I )],1

cyz = 2 m~ + Fz3 -1

as a consequence of adopting a form for the AAcr

vertex which was smoothest in the momenta [see

(4)

z, =e,(H,F)-'.
Equation (3) is to be satisfied over 4m, ' & s &16m, '
to the maximum accuracy by varying the param-
eters which remain after condition (i) has been
imposed. In Ref. 3 we were able to make each
4' =0 through O(v), where v= s —4m~2, and to sat-
isfy (3} to within a departure which reached about

20%%u~ at s = 16m, '.
In Ref. 3 we used

r = ——[1+C(o —2m + 2m y')],2

0

C A0 —A~

2 +2 —2m

0, =-~2, C(is —5sr),

q, = —,
' c(s —23 I'),

f,'= c/r, ,

f,'= syc/r„
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FIG. 1. Besults of the parameter search to fit Eq. (3):
(a) (no, E'); (b) (no, o.2). Improvement is indicated by
the direction of the arrow.

FIG. 2. (1+Zz,
~

vs s for determinations A, B, and C.
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Recall that 2' —51,=6m '.
Two of the parameters remain free to be varied

in order to optimize the fit to the unitarity rela-
tion (3). It is most convenient if we choose these
two to be zp and I'. The results of the search
over this two-parameter space is shown in Fig. 1.
The path indicated in Fig. 1(a) starts at the point
A: (o.,/m, ', F'm, ') = (1.01,0.036), where the fit
to (3) begins to improve upon the results of Ref.
3. The path terminates at the point C: (1.19,
0.018), where the fit cea.ses to improve. The in-
termediate point, 8: (1.10, 0.027), is also indi-
cated; its relevance is that no= 1.10m„' resulted
from the search conducted in Ref. 3. The corre-
sponding path in the (n„n,) space is shown in Fig
l(b). Figure 2 shows the extent to which Eq. (3)
is satisfied as we proceed along the path to in-
creased improvement. The 20% departures ob-
tained in Ref. 3 are reduced to 10% or better in
this analysis. The arrow appearing in this figure
and in the succeeding ones is correlated with the
direction of the path in Fig. 1. We shall present
results for each of the three points &, B, and C
cited above.

In Fig. 3 we have plotted the s- and P-wave phase
shifts which correspond to the determinations P,
B, and C. The low-energy results exhibit a note-
worthy stability to variation of the parameters.
We can conclude that the method yields a set of
low-energy phase shifts whose determination is
virtually unique. Phenomenological-phase-shift
results from pion-production data do not exist
below 500 MeV; that which is available' has been
indicated on the figures. The phase shift, 5pp, is
almost certain to be strongly influenced in the
500-1000-MeV region by the opening of the KT7

channel. ' Qur calculation ignores this effect so
that no conclusion should be drawn from Fig. 3(a)
about the occurrence of a o. resonance. A p reso-
nance is clearly in evidence but a decisive state-
ment about its predicted position should also await
a calculation with more firm higher-energy valid-
ity. Observe that the p of the real world appears
in Fig. 3(b) near determination A.

In Table I we have listed the values determined
for all the parameters by imposing the constraint
of elastic unitarity. The last four columns list
very stable values for the items of interest in low-
energy pion scattering. The quantities a» and a»
are related to the scattering lengths a»..

a = P~ and atlat a a
32~x, ' 24wm. Z, ' '

The tabulated quantities are to be compared with
the Weinberg values' for app ap2 and any viz. ,
7, -2, and 1. It has already been noted in Ref. 3
that we can attribute the agreement we get to the
relatively small value obtained for the parameter
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I,: Because l, = ——,'m, ' (and so 1,= 4 m, , we can
conclude that the cr commutator is dominantly iso-
scalar. The tabulation in the last column pertains
to the wN 0 term, to which we now address our-
selves.

The nucleon-to-nucleon matrix element of the
isoscalar part of the cr commutator is of great
significance because, through it, mNdata can be
brought to bear on the question of chiral symmetry
breaking. Cheng and Dashen have proposed a
means of isolating the 0 term; Brown, Pardee,
and Peccei' have confirmed their method in an
-analysis which keeps the pions on the mass shell.
Schnitzer' has indicated how the Cheng-Dashen
result should be modified by t-channel mm scatter-
ing. The Vizard identity expansion of the isospin-
even part of the on-shell mN amplitude has the
form (cf. Ref. 5)

I + =E
I f (t)+ l ]A '(t)E~(t)+ ~ ~ ~,

where the three dots denote terms which vanish
when we approach the nucleon pole along the line
f = 2m, ' (the Cheng-Dashen point) and Ez(t ) is the
nucleon matrix element of the 0 commutator. The
desired modification factor can be extracted from
our analysis; it is just
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FIG. 3. The phase shifts: (a) s waves; (b) P wave.
The phenomenological data of Ref. 7 are indicated.

2(in our notation), evaluated at t=2m„. The value
of this factor, tabulated in the last column of
Table I, is very stable and departs very little from
-1 the value which corresponds to the Cheng-
Dashen analysis.

%'e can understand this last result by means of
some estimates based on Eqs. (7). Our vm analysis
can be characterized by the result that unitarity
demands that the slope parameters F' and fr' be

2small. Thus we have C=O so that l, =a, —2m,
and 4n +5n =12m, '. As a result l, =2(2m, ' —n, ),
thus I;= —2/I, = (n, —2m, ) . Therefore,
F,(2m, ' —n, ) = -1, independently of n, and I;.
Our conclusion, based both on the estimates and
on the detailed calculations, is that there is no
appreciable modification of the Cheng-Dashen re-
sult due to t-channel mw scattering. %'e note that

TABLE I. Parameters determined by imposing unitarity.

2 l2 lp I'p I2
(~ 2) (~ 2) (~ 2) (~ 2) (~ 2) (~ -2) (~ -2)

ni n2
2f ' (m ) (m„) app a+ a&& I'p (2m„-ep)

1.01
8 1.10
C 1.19

0.036 1.557 -0.432 1.919 -1.036 -2.390
0.027 1.493 -0.500 1.749 -1.128 -2.063
0.018 1.430 -0.568 1.579 -1.240 -1.814

-0.056 -0.022 0.083 -0.085 6.85 -2.18 1.18
-0.062 -0.024 0.054 -0.072 6.67 —2.24 1.13
—0.069 -0.027 0.024 -0.060 6.51 -2.29 1.09

-1.026
-1.016
—1,005
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Schnitzer has used essentially equivalent estimates
and finds the correction factor to be -3. We can
see no possibility for such a result in our work. "

Finally we may use our calculations to estimate
E„(0). If we assume that

E„(0)= ', E„(2m, '),f.(o)
0

then we get

E„(0)= O.SE„(2m,') .
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We analyze the circumstance in which the cJ commutator, o'~, has isospin T =2 as well as
T =0 components. We assign these along with 8&A &

to a mixture of (~, ~) and (1,1) repre-
sentations, and we use a recent theoretical result to make the assignment quantitative. We
add to the Gell-Mann-Oakes-Renner Hamiltonian in order to account for the T =2 effect. The
modification we present as an example is (8, 8) transforming, constructed to provide the (1,1)
structure in 8&A~& and o'~.

—giiI
y (2)

An operator of central importance in the study of
chiral symmetry breaking is the 0 commutator,
defined by

.
[q

'

Dk]

We use O' = B„A„. The Q', together with Q' denote
the generators of SU(2)xSU(2) transformations.
Isospin invariance implies that o' is symmetric
in jk so that the cr commutator has isospin T=O
and T =2 components':

+ $g~n&
yA p

&&SU(3) symmetry' ' is one in which the o do not
occur. That there is no a Priori reason for the g ~

to be absent does not mean that the GOR (Gell-
Mann, Oakes, and Renner) model should be aban-
doned. Instead we believe that accommodation of
v is a compelling reason for adding to it appro-
priately. The purpose of this paper is to offer a
model which permits a quantitative interpretation
of the T = 2 components in the o commutator.

A quantitative measure of the extent to which cr

occurs in (2) is not readily available experimen-
tally. As an alternative we shall refer to a mea-
sure which has recently been determined theoreti-
cally. To be precise we define

o:t'pic o ( cl: I 'to 5),

Expectations are that the 0. are small. ' The only
widely adopted model for the breaking of SU(3)

+ i/A [q f jk]

so that we may introduce a parameter l., appearing
in


