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We systematically investigate the properties of general chiral-symmetry breaking in a
o0 model. We obtain not only the conventional results of nonlinear pion models, but also the
effects of the symmetry breaking upon ¢ terms. We show that the o terms depend upon the
fraction of the pion mass coming from the chirally symmetric part of the model, as well as
upon the representation of the symmetry-breaking part of the model.

I. INTRODUCTION

A study of the linear o model is unavoidable if
one wishes to study the effects of the o particle in
pion processes. Although the nonlinear pion La-
grangian model is an easier tool to use in the anal-
ysis of multiple-pion processes,’ it provides no in-
sight into the effects of a finite-mass o particle
upon these processes.

We shall generalize the Gell-Mann-Lévy o model?
in order to treat systematically the symmetry-
breaking term £, that transforms according to the
representation (3m,3m); i.e., like a traceless
symmetric tensor of rank m. We shall note that
the symmetry-breaking term is an elementary so-
lution of the ordinary hypergeometric equation and
is a homogeneous binomial. Since *+®?2 is chiral-
ly invariant, we can multiply any symmetry-break-
ing term by an arbitrary power of G2 +&2 without
affecting the chiral transformation properties of
the term. We shall see that the physics is similar-
ly unaffected by the multiplication and is solely a
function of m.

The terms of zero order in pu,?/u,® in the scatter-
ing amplitudes for 77— 77 and 7N - 7N reproduce
the results previously obtained from the nonlinear
chiral model. The size of the contribution of the
so-called “c term” (the term proportional to u,2/

u,?) to the scattering amplitudes will be seen to be
arbitrary unless further constraints are imposed
on the model. For example, if one imposes the
condition that the sole contribution to the pion-
mass term -3y, %%% comes from the symmetry-
breaking portion of the Lagrangian (unlike the con-
tribution in the original Gell-Mann-Lévy model),
one finds a specific m -independent value for the o
term.

II. PROPERTIES OF SYMMETRY BREAKING

We shall first write down a general homogeneous
binomial P, of &% and 5%, then perform the trans-
formation & =0 + f, ® and then demand that the linear
relations that exist among the coefficients of 0®?,
®2, 0%, and ¢ and among the coefficients of ($2)?,
&%, 02, and o be independent of M when we multi-
ply P, by (®2+G%)". These coefficients are all
that are needed to calculate the 7N — 7N, 77— 77,
and 7N - 27N amplitudes.

Let
Py= 3 Ay;00)(g2)i, (1)
j=0,1,...
Then
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Py(®@® +5°M = A, {20V + M)o + N +M)[2(N +M) =110 2} +(Ay -, +MA,)[@2 +2(N + M- 1)0?]

+[Ayoy +MAy_, +M(M = 1)4, )&% +-

where for convenience we are choosing f=1.
We can now isolate the coefficients, ¢(i), of the
vertices, i:
c(0)=2(N+M)A, ,
c(0®) = (N +M)[2(N +M) -1]4,,,
c(®®)=Ay-, +MA,, (3)
c(0®?)=2(N+M -1)(Ay-, +MA,),
c(@*)=Ay_ g +MAy_, +3M(M -1)A,, .

The linear relationship among the 0®%, o, 0%, and
&2 coefficients is then

c(0®2)=k,c(0) +kyc(0?) +Ryc(d2) . (4)

The k;’s are to be independent of M. Isolating the
terms quadratic in M, linear in M, and indepen-
dent of M leads to three equations that may be
solved for %,, k,, and k,. If we now let f equal its
actual value, then

_(1=2N)Ay+2AN-1
24517 ®)
1 2
k2=f , Ry= —f— .
We may similarly relate the (®2)?, o, 0%, and &2
coefficients:
c(@*) =h,c(0) +hyc(0?) +hyc(d?). (6)

Requiring that thé h;’s are independent of M, we
obtain

ky

= "(Iv""%)AN +AN-1 "hsAN

hy

ZANfs ’
1
h2=m ) (7)
o= ~3N(1 +N)Ay +NAy-1 —Ay-;
3 (NAN _AN-l)fz ’

The constraint that the %,’s and the 7,’s are inde-
pendent of M is sufficient to guarantee that the
physics is unaffected when £, is multiplied by an
arbitrary function of the chiral-invariant &2 +®32.

The result that the values of %, and %, are inde-
pendent of the choice of binomial is crucial for the
extraction of the nonlinear pion Lagrangian ampli-
tudes from the linear o model amplitudes.

III. STRUCTURE OF SYMMETRY BREAKING

We shall now derive the general structure of
£,.(@,®%). Remember that in the o model we have
the following commutation relations of the fields

" 2

with the axial charge:
[@F,®,]=15,,0, [Q,0]=-i®,. (8)

We define £, by the condition that it transform ac-
cording to the representation (37, 3m) (Ref. 4);
i.e.,

Q[Q?’ @3, £, ]]=m(m +2)&,,. 9
We set
¥ =1=m(m +2), v=+(?)"2, (10)

and rewrite Eq. (9) in the form
3
‘E[Qi’, [QF £,]]=(v*-1)g,. (11)
=1

To solve Eq. (11) we shall switch from the vari-
ables & and &2 to the variables y and z defined by

~2 2 ‘bz
y=0°+8~, Z=GT;§—2 . (12)
Using Eq. (8), we find that
2i$ .G
(@3 v]=0, [Q?’z]:—_i_ . (13)

y

If we write Eq. (11) in terms of the variables y and
Z, we obtain an ordinary hypergeometric equation,

2
21 -2)5 2 +3(3 42220 1302 - 1)g, =0,
(14)

Equation (14) has two well-known solutions.® The
one of physical interest is the one regular at z =0:

‘su(z) =2F1(%(1 +V)7 %(1 - V); %;z)

sinv o
~sing ’ (15)
where
z =sin%g
QZ

Since the result of multiplying £,(z) [given by
Eq. (15)] by an arbitrary function of 52 +&2 still
satisfies Eq. (11), we choose to multiply £,(z) by
(62 +@2) /2, thereby obtaining a homogeneous
binomial P,_,y,, of degree $(v —1) in 5% and 2.
We shall write down the first five binomials that
transform according to the representations
sm,sm); m=0,1,2,3,4;
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m=0: Py=1,

m=1: P,,,=0C,

m=2: P,=0%-382%, (16)
m=3: P,,=0° -08%,

m=4: P,=0%-25%®%+5(d%)?.

For arbitrary v we have

P(u-n/z:j_ozl) A(u-1)/2-j(ﬁz)(y-l)/z-j(q’z)j
; (17)
where
. T'(v)
Ay -1 /25 = €Xp(eT)) TG+ =)
_8XpEM) poyig: g
2)(21 +1 (2.7, 14 2]) (18)

and B7Y(2j, v - 2j) is the inverse of the beta func-
tion defined by

_L(p)T(g)
" T(p+q) (19)

In particular, we have

B(p,q)

A(I/-l)/2 =1 ’

A(v—S)/Zz—(V-I:;(!V_Z) ’ (20)

Aty sy o= v-1)(v- 25)(!1/ -3)(v - 4)

We can now explicitly write down as functions of

J

|

1? the coefficients of the linear relations for the
0®? and ($2)? vertices discussed above. Plugging
Eq. (20) into Egs. (5) and (7) and noting that N is to

be everywhere replaced by (v —1), we obtain
472 1
ky(v)= 672 ’ kz(V)ij ’
9 (21a)
ky(v)=— 7
and
hl(V) 20f oy vl (V) (V) 4f2 ’
(21b)

w252

Equations (21a) and (21b) contain information that
depends solely upon the transformation properties
of the nonderivative portion of the m-0 Lagrangian.

IV. MASS TERMS AND THE LAGRANGIAN

We can now construct our pion and 0 mass terms
as well as the 02 and (#2)? interactions for arbi-
trary 2.

Let us assume that the nonderivative part of the
Lagrangian has two components: One transforms
as a scalar (v*=1) under commutation with the
axial charge and the other transforms according
to Eq. (11) with an arbitrary value of 2, which we
shall call the transformation parameter.

From Egs. (4), (6), and (21), we may write

ci(0®?) =k, (1)c,(0) +k,(v)c,(0) +E,(1)c,(0%) +k,(v)c, (07) +R5(1)c, (82) +k4(v)c, (@P)
=é—f1—2—cl(o)+ - =V, (o)+} [e,0% +c, (02)1-7[ 0 (@) +c,(@Y)], (222)

and similarly

7
cr(@)= 40f3 €2(0) + gz (4 -

where c, refers to the contribution from the por-
tion of the Lagrangian with transformation parame-
ter »». The total coefficients, c’, of the 0&* and
(®®)? vertices are given by Egs. (22a) and (22b).

We shall impose three constraints upon Eq. (22):

co)=c,(0) +c,(0)
=0, (23a)

= =3l (23b)

2+11

,,(0) +4f2 [61(02) +cv(02)] 5f2 01(4)2) zofz cu(éz) ’ (22b)

and

cp(0?) = ¢,(0%) +¢,(0?)
= =3t (23c)

Equation (23a) guarantees that ¢ mesons do not cou-
ple to the vacuum. Equations (23b) and (23c) give
the pions and 0 mesons their masses.

We then find that

2 2
1 ¢, (o) o M (24a)

C;(O"I’z)=_“")26;2 2f T ’



6
V(nd 7
i@ )=W(V2_I)C‘(G)
Tt SIS § (24b)

_W'F 2072 C 40 2

Since we demand that in the limit p,%~0 the total
Lagrangian becomes chirally symmetric, we re-
quire that

lim ¢,(®%)=0.
2

20
Using Eq. (23b), we set
cl(q’z = "%auwz ) (25)

where o must not have any singularities at y,?=0.°
The constant of proportionality « is the fraction of
pion mass contributed by the chirally symmetric
nonderivative portion of the Lagrangian. We shall
assume that @ and p,® are free and independent pa-
rameters of our model.

One may easily verify by use of Egs. (3) and (20)
that for any chirally invariant function of & and &2,
we get

c,(0)=2fc,(®?). (26)
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Equations (23a), (25), and (26) imply that the pion
mass must vanish in any Lagrangian model in
which the total nonderivative portion of the La-
grangian is chirally invariant.

We use Egs. (24) through (26) to produce the
final results for the coupling coefficients of the
o®? and (®2)? vertices:

cHo®?)= [H-rle ;f(iju,f — ) (27a)
vghy= (L=Pa P11 p®  u’
CT(‘I’)‘( 12 40 )7‘1’1*"87“E (27)

Therefore, our total nucleon, pion, and o La-
grangian £, is given by

£,=F[iy 0 =M, = Glo T3y, ¥
+3[(0,®)* - 1, °®?]
+3[(9,0)% = 1, 0] +c(0®%)0@? + c Y2 4)(@)?,
(28)

where we have kept only those terms necessary
for the calculation of the amplitudes for 7N - 7N,
77— mm, and TN - 27N.

V. DISCUSSION

Calculating 7-7 scattering in the tree approximation and keeping terms to order p,?/u 2%, we find

s =3[(1 =)o +6]u,’

Wabcd(s’ t)u) = l:."fl—z [%(9 - Vz)uﬂz - S] - (

One may similarly calculate the o-exchange con-
tribution to nN scattering. This scalar exchange
contributes only to A®);

4= =S [t - ve) () o (5)]

(30)

The isospin-even 7N scattering length is there-
fore?

a(*)(ﬂN)=—-———G—2——[(1—V2)a +6]-li“i. (31)
127(M,,+ 1) Ho®

Using Eq. (29), one may relate v* to £, the pa-
rameter’ that measures the departure from the
Weinberg and Gell-Mann-Lévy form of chiral
symmetry breaking:

=24 -17). (32)

For the Weinberg” and Gell-Mann-Lévy® models,
v=2 and thus £=0. For the Schwinger form of
symmetry breaking,® we have shown in an earlier

Sty

2
> J 84,0, +Ccrossing-symmetric permutations.

(29)

work that £=1." This second value of ¢ corre-
sponds to a noninteger and irrational value of v:
v=(3)"2. Note that for real v, Eq. (32) implies
E<i.
By analyzing pion production using a nonlinear
pion Lagrangian, we have shown that -1< £<0.°
If one requires the chiral symmetry-breaking por-
tion of the Lagrangian to have integer values of v,
then the restriction upon the effective value of ¢
suggests that there is a symmetry-breaking y=3
component in addition to the customary »=2 com-
ponent. The nonlinear Lagrangian model which
has only a =3 symmetry-breaking component is

3(0,@)+3[2,8(@*) ] - 3p,°®",

where &= (f,% -®2)/2%°

One should note from Egs. (29) and (30) that the
form of the symmetry breaking will affect the o
terms except when o =0, i.e., when the pion mass
comes entirely from the chiral-symmetry-break-
ing portion of the Lagrangian. In the Gell-Mann-
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Lévy o0 model, a=1.
Finally we should mention that the effects of
symmetry breaking upon higher-order terms such

AUVIL, BREHM,

AND PRASAD 6

as 0%,0%p2, ... have not yet been investigated.
These higher -order terms contribute to 7N - 37N
and other processes of high multiplicity.
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The methods of an earlier work are modified so that the unitarity constraints on the 7w
amplitude are better satisfied. The modification permits us to examine the extent to which
7w scattering affects the determination of the o term in 7N scattering.

Some renewal of interest has developed in the
venerable problem of calculating 77 scattering
from the general principles of analyticity, unitar-
ity, and crossing symmetry. The impetus has
come from current algebra. What the local-opera-
tor methods mean to an S-matrix approach is two-
fold. First, the Ward identities obtained from the
current commutation relations provide equations
relating matrix elements which are analytic in the
invariant variables. As such they offer a vehicle
for invoking unitarity. For a low-energy treatment
this represents a distinct advantage over the use
of partial-wave dispersion relations because only

local analyticity needs to be employed. Secondly,
the low-energy theorems’ of current algebra are
incorporated and effectively normalize the results
of the analytic approach.

Schnitzer? has proposed methods for such a
scheme, and an analysis of what can be predicted
has been carried out.® The purpose of the present
investigation is to show how a slight modification
of what was done in Ref. 3 leads to considerable
improvement on the extent to which unitarity is
satisfied. This is achieved by making a minor al-
teration in the parametrization. Of course a more
general treatment of the n7 problem admits other



