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Transverse-momentum distributions in the pionization region of the single- and the two-
particle inclusive reactions are studied using multiperipheral models. We find that the
slope of the diffraction peak for the elastic scattering can be used to set the scale of trans-
verse momenta. The same reasonings also lead to a "broadening" of (q~2) for the single-
particle distribution and to a positive correlation, peaking at cosp = -1, for the two-particle
distribution. The latter effect is due to the existence of a lower J-plane singularity (a branch
point for a multi-Regge model), thus having a correlation length (u„—u, ) . These general
results are then verified by calculations based on an explicit multi-Regge model. We suggest
that our predictions are applicable to a+ b n++ ~++ anything, and a+ b 7} + 7t + anything,
where the two detected final particles have exotic quantum numbers.

I. INTRODUCTION f(q, ') ~ exp(--,'nq, ') . (1.2)

The basic ingredient of the multiperipheral mod-
el' (MPM) is the neglect of "long-range" correla-
tion effects in particle production at high energies.
By incorporating direct-channel unitarity, the in-
tegral-equation approach to the MP dynamics al-
lows us to demonstrate explicitly as its conse-
quences the Regge behavior of exclusive process-
es' and the scaling properties of inclusive pro-
cesses." These general properties are indepen-
dent of the detailed nature of the short-range cor-
relations.

Experimentally, it is known that the distribution
for the transverse momentum q, ' is roughly ex-
ponential. We concentrate in this paper on the con-
sequences of this experimental input under the MP
considerations. The "central" parameter of our
discussion is the average q, ' for elastic scatter-
ing, Q ', ' defined by

The same analysis is then used to obtain the large
transverse-momentum cutoff for the two-particle
production. We find that the deviation from the un-
correlated distribution in the taboo-particle pioniza-
tion region,

nf» =fi. fifa-
always contains a positive component, which favors
the configuration cos(t) = q, ~ q,

' = -1. Arguments
are given that this phenomenon is peculiar to MPM
only.

The above qualitative results, obtained by gen-
eral arguments, are then verified by an explicit
calculation using an exponentially damped multi-
Regge model (MRM). We find, in particular, that
the "correlation function" nf» is controlled by the
branch cut at n„and has a large Ky K2 behavior

In order to avoid the unnecessary complications of
solving MP integral equations, we simply assume
that the solution has a reasonable spectrum in the
Z plane —a leading pole at n„(0), and a branch point
at n, (0}, n, (n„.

We suggest that the MP "chain" structure in gen-
eral leads to a "broadening" of (q, ') for the sin-
gle-particle distribution in the pionization region.
We first demonstrate that, for all MPM describ-
able by a Chew-Goldberger-Low (CGL) equation,
our experimental input implies a large transverse-
momentum cutoff of the form

xexp{-Q[pKi+ gK2+ (e "+—', cosg)(li'p, )'"]]',

where y= y, —y, )0 is the relative rapidity, and

As y- ~, nf» vanishes as exp[-(n„—n, )y], Z»- 2(li,x,)"'coshy, thus corresponding to a correla-
tion length (n„—n, ) '. We point out that this posi-
tive correlation in the pionization region can best
be observed in reactions where two detected par-
ticles have exotic quantum numbers.

The concept of a limiting distribution (or scaling)

35i
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Pg+qz+qz+Pa-P +qy+q2+Pa (1 4)

and the discontinuity is always taken in the crossed
variable

M'= (p, +p, —q, —q, )' . (1.5)

The discontinuity (2i)X„ in the forward limit, i.e.,

P. =P,', q, =q,', etc., is schematically represented
by Fig. 1(a), and it is related to the two-particle
distribution f,", for the process

for inclusive processes can best be described by

using Mueller's Regge hypothesis. ' With the real-
ization that inclusive distributions are directly re-
lated to discontinuities of elastic multiparticle
scattering amplitudes, ' it is believed that Mueller's
Regge hypothesis is probably on the same footing
as the multi-Regge hypothesis" for the exclusive
processes. In the case of the two-particle distri-
bution, "the relevant multiparticle reaction is 4

to 4,

distribution for the region in question, and is con-
trolled by the leading vacuum singularity a„.The
shape of the distribution is determined by "cou-
pling functions" associated with vertices, which

can only be obtained in models. The contributions
from the lower singularities in the complex J
plane provide the corrections to the limiting dis-
tributions at "nonasymptotic" regions. In particu-
lar, these corrections in general do not possess
factorization properties of the limiting distribu-
tions, thus leading to "short-range" correlation
effects.

In the CGL model the discontinuity X, is given
by a sum of eight terms, A, 8, . . . , H, correspond-
ing to different topologies where the two detected
particles are emitted in the MP chain (Figs. 2, 2).
From the discussion of Sec. II, it is evident that
not all eight MP diagrams contribute to the limit-
ing distributions. By comparing Figs. 1 and 3, we
find that the correspondence between the leading
Mueller diagrams and the MP diagrams is

by

~a +pa - qi + q2 + anything

f"=(o"')-'n-'"(s m ' m '}X

(1 8)
Single fragmentation of a: C, E, G, H

Single fragmentation of b: D, F, G, H

The Mueller multi-Regge expansions for X, in
various kinematic regions" are illustrated by Figs.
1(b)-1(e). Each diagram corresponds to a limiting

Double fragmentation:

Correlated pionization:

A, B, E, F, H (1.8)

G, H

a I 2 b o I 2 b

Uncorrelated pionization: H .

o I 2 b

(o)

a I 2 b

(b)

a I 2 b

a I 2 b

(c)

l

I 2 b

I 2 b

(4)

a I 2 b

o I 2 b

(e)

FIG. 1. (a) Mueller diagrmn for a two-particle in-
clusive cross section, (b) the limiting distribution for
the fragmentation region of particle a, (c) the double-
fragmentation limit, (d) the pionization limit, and (e)
the uncorrelated pionization limit.

This correspondence can be established explicit-
ly' "by a repeated use of the multiperipheral as-
sumptions and by assuming the existence of an iso-
lated leading vacuum singularity a„.This, in
turn, proves the scaling of the two-particle distri-
bution. In particular, it allows us to calculate the
"coupling functions" in Mueller expansions in
terms of parameters of the MPM.

Diagrams not listed in (1.8) correspond to non-
asymptotic corrections. Particular attention is
directed to the transition between the correlated
and the uncor related pionization regions. Under
our approximation the diagram H will be factor-
izable, so that the entire correlation effect in the
pionization region is due to the diagram G. This
short-range correlation can be shown to corre-
spond to the existence of a J-plane branch point
at n, ."

Our program is to first calculate the gross
transverse-momenta behavior of the Mueller cou-
pling functions by a general MP consideration. To
avoid discussing the details of the MP bootstrap,
we shall assume the knowledge of the J-plane sin-
gularities at the forward limit and shall ignore the
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FIG. 2. (a)-(h) Eight inequivalent production configura-
tions in a MP chain. FIG. 3. (a) —(h) Contributions to the Mueller expansion

corresponding to the eight MP configurations depicted in
Figs. 2(a)-2(h).

effects of Regge slopes. Under these conditions,
we find from (1.1) that the elastic amplitude is
parametrized by

nally, we examine the generality of our results in
Sec. V.

T (s, t) =fy(t)(s) "y(&),

where

(t ) ge( n /4) t

(1.9)

(1.10)

II. KINEMATICS OF THE CGL MODEL AND

SCALING

A. Single-Particle Distribution in the CGL Model

The single-particle distribution function f,', is
defined by

so that the total cross section is asymptotically
given by

o"'(s) =g's " ' .

—
( tot) —z(2g)

= (o.",') -'a-r" (s, m. ', m, ')X„ (2.1)

The cutoff behavior (1.2) and (1.3) can then be
shown to follow from the "chain" structure of the
CGL model. In order to make our discussions
self-contained, we review briefly the structure of
the CGL model and the scaling property of the two-
particle distribution in Sec. II. Transverse-mo-
mentum cutoffs for the single- and the two-particle
distributions are derived in Sec. III. In Sec. IV,
we obtain explicit representations for X„using an
exponentially damped MRM, which not only verify
results of Sec. III, but also provide us with distri-
bution functions for other kinematic regions. Fi-

where X, is the discontinuity of a 3-to-3 amplitude
in M'= (p, +p, —q)', and d, is the usual triangle
function. By making a multi-Regge expansion for
production amplitudes, X, is calculated by integrat-
ing over the final-state phase space and summing
over the number of produced particles. It is then
given by a sum of three terms, corresponding to
inequivalent production configurations in a MP
chain. Each term involves one or two ladder sums,
which can always be related to the solution of a
MP integral equation (the CGL equation in the pres-
ent case). In the pionization region, we find [Fig.
4(a)]
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x(P.; ap~)=, ~'Q, d'Q~ 5'(Q, +Q. +q)If'(p. ;+Q„-Q)IP(4,~ f )I'R(-Q„+Q2;P~).
2w 4

(2 2)

The derivation of (2.2) can be found in I and II, and we follow closely notations introduced there: Z's al-
ways refer to subenergies between neighboring particles, t' s are momentum transfers squared inside a
MP chain, &u's are Toiler angles, y(t) and P(t, m, t') are the single- and the double-Regge couplings, re-
spectively. B, and B„,the auxiliary absorptive parts, are solutions of the CGL equation. The Regge fac-
tor H(Z, t), which enters in the buildup of B's, is parametrized by (Z/p') '", where a(t) is the input

Regge pole. I See Fig. 4(b).j

B. Two-Particle Distribution in the CGL Model

Similarly, the two-particle distribution for the process (1.4) is related to the invariant cross section by

f,'p= (o,'s') '(2&,)(2~.) d.d

= (8"'} 'n '"(s m ' m ')x .

In the MPM, X, is given by a sum of eight terms,

X2=A. +B+ . +H

(2.3)

(2.4)

corresponding to the MP configurations illustrated in Fig. 2. Again, using the MR expansion and perform-
ing the ladder sums, we find that each diagram in Fig. 2 can be expressed in terms of B's. For example,
the diagram G is given by

G=(2,)&0 )t ~'Qid'Q~'Q25'(Q, +Q+a)5'(Q, —Q+q, )&&(p,; Q„-Q)2

x
I P(&„~„&)I

'I &(&, z„)I ' I 0(&, ~„&,) I'a„(Q,Q, ;p.), (2.5)

where t=Q', t, =Q,', t, =Q,'. The derivation of
(2.5) and the representations for the rest of Fig.
2 are given in Appendix A.
f,"„in general, depends on six independent vari-

ables, "which can be chosen to be s = (p, +p, }',
I. A J sJ

y» y„q,, q, , and cosP=q, q, . (y s are the
rapidities. Our convention is y, & y, & y, & y~. )
However, for our subsequent discussions, it is
often convenient to use invariants. They include

Energy variables:

s, Z„=(q, + q,)', M' = ( P. +P~ qi —q~)'—
M, '= (p, +p, —q,}', M, '= (p, +p, —q, )', (2.6)

Kz =P, +gz ~ Kg =P. +

Momentum transfers:

u, = (p, —q,)', u, =(p, —q,)',
(2.7}

vi=(pb —qi) ~ v, =(p, —q,)'.

gether with the assumption of the Pomeranchukon
dominance of the B's, are sufficient to demon-
strate the scaling of f,", in a manner completely
analogous to the treatment of f,', in II. The MP as-
sumption allows us to show that phase-space inte-
grations for A, . . . , H scale, and the dominant con-
tributions of the integrands always come from re-
gions where either B's already have the correct
variable dependences or their behavior is known.
Because of the "scaling" property' ' of the kernel
of the CGL equation, it generally follows that B

Pb

Pb

One useful relation among these variables is

Z» = 2g'+2(z, e,)'"coshy —2q,'q,'cosP

(3 -=xl - ya) (2 6)

sg ( P, ; o„-o, ) = ~ z f d C'

(b)

Pp

C. Scaling of the Two-Particle Distribution

The general multiperipheral assumption of
strong dampings for all momentum transfers, to-

FIG. 4. (a) The pionization limit of a single-particle
inclusive cross section, and (b) the multiperipheral
summation for the CGL auxiliary function.
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cle case, where explicit results are known for
special cases. We next treat the two-particle dis-
tribution in the pionization region.

A. Single-Particle Distribution

I IG. 5. Schematic representation of the Regge behavior
of the CGL B function.

has Regge behavior (Fig. 5), i.e., as s'„s„s,', s,
7

Separating d'Q„d'Q,' from d'Q„d'Q„wefind

that X, in (2.2) can be written as I
also use (2.9)

and (2.10)j

) nv )atu

& (p.; -Q-q„-Q)=(s', ) "5,(s,/s', , t,),
&,(Q, Q —q2, pb) = '(s.') "&,(s./s,', t,),

(2.9)

(2.10)

where

x 5, (x, t, )I P(t„~, t.)I'5,(z, t,),
(3.1)

s,' = (-Q - q, +p.)', s, = (-Q+ p.)',

s2 =(Q q2+ p~)'-, s, = (Q+p~)',

t=Q', t, =(Q.q,)', t. =(Q-q.)'.

(2.11) and

x~P, ~ Q,/P. ' q z=Pa' Q./Pn' q~

pa'q pn q 2 a

P. ' Ps
(3.2)

It can then be shown that the terms listed in (1.8)
always have asymptotic behavior, s &, with coef-
ficients which are functions of scaled variables
only. Next we assume that n, is the same vacuum
singularity which controls the total cross section,
(1.111; the scaling property of f,", then follows.
Since the demonstration of the above arguments is
straightforward, we shall not present it here.
However, certain technical details are given in
Appendix B. To summarize: We replace each lad-
der sum by a vacuum Regge pole n„,"thus arriv-
ing at Figs. 3(a) through 3(h), representing contri-
butions A through H, respectively.

III. TRANSVERSE-MOMENTUM CUTOFF IN THE
PIONIZATION REGION

The scaling property" of the single-particle dis-
tribution for the general MPM has been demon-
strated in II, and an explicit form of the distribu-
tion has also been obtained in I for a MRM with
exponential damping in momentum transfers. By
combining the approaches of I and II, we next ob-
tain qualitative features of transverse-momentum
cutoffs and correlations for the single- and the two-
particle distributions that follow from the general
"chain" structure MPM. However, to make our
discussion precise, we shall restrict ourselves to
those MPM describable by CGL equations. As we
have already noted in Ref. 1, with proper interpre-
tation, all MPM studied so far can be considered
as special cases of CGL models. Therefore, we
believe that the conclusions of this section are of
general validity.

We first apply our procedure to the single-parti-

Using the MP hypothesis of strong damping in t,
and t„wefind (see II),

t, = -Q,"—«(z+1)x+O(1/s),

t, =-Q,"-«(x+1)z+O(I/s),

(3.3a)

(3.3b)

and

B,(s„s,', t,)- (s,') b, (x)y'(t, )

5,(x) ~x'
(3.5)

where n is taken to be the average o.(t,), n= n(0).
Independent of this specific assumption, we find

X', -s " t dxdzd'Q, 'd'Q,'5'(Q;+Q;+q, )

(ztoy+t )
(2Izx) (3.5)

where I(x, z, . . . ) is a smooth function.
The important observation to be made is that in

and the dominant contribution in (3.1) comes from
0&x ~ O(1), 0& y& 0(1). Any Q,

"and Q,
"depen-

dence in (3.1) will only come from t, and t, via
(3.3).

We first generalize the t cutoff for the single-
Regge coupling, (1.10), to the MP chain. By fac-
torization, we expect a similar factor associated
with each internal momentum-transfer variable.
For definiteness, we approximate

P(t, ~, t,) =r(t, )Pr(t, ), (3 4)

where P is assumed to be smooth, "and later will
be set to be y(p') '. This rapid damping in t's can
be shown to survive the ladder summation (see I),
e.g. ,
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order for q~' to be large, either Q,
' or Q,

' (or
both} has to increase, which then forces

~ t, ~, ~ t, ~

to grow. However, because of the presence of
exp[A(t, + t,)], and the conditions (3.3a) and (3.3b),
we find that the large q~' behavior gets most of its
contribution from 0&x, z«1. (That is, 0&s,'/s,
«1 and 0 & s,'/s, «1, yet s,' and s,' are still allowed
to be large. ) We are then left with

Qyd Q2 & (Qp + 2 +q.

tion can be written as

G- dx dz d'Q exp 0 ty+t+t, I' x z, . . .

where I' is a smooth function, and

(3.13)

q", = t, --[K, +K2+2(K, K2) coshy](z+1}x,

(3.14a)

x exp[-ti(q,"+ Q,")].
For q~'- ~, an asymptotic estimate yields

(3.7)
Q~' = t —(x-,x,)'"e "[x(1+e') + 1][z(1+e') +1],

(3.14b)

q 2= t, - [Ic-+K2+ 2(K K )'"coshy](x+1)z,

X, ~ exp[-tl
~ Q,"+Q,

"~,„]= exp(- —,'Qq '), (3.8) (3.14c)

corresponding to the configuration

Q,
' =Q; = -q, /2. (3 8)

Our crude calculation above agrees with the ex-
plicit calculation in I,"and a similar result has
also been obtained by Bali, Pignotti, and Steele of
Ref 6. W.e believe that this "broadening" of (q, ')
is a general consequence of any MPM with rapid
damping in t's. The origin of the broadening effect
is the "sharing" of q~ by two adjacent t's in a MP
chain. It is interesting to note that experimentally'
II ranges from 6 to 10 (GeV/c) ', whereas the sin-
gle-particle distribution has an observed pioniza-
tion cutoff" [in (GeV/c) ']

x; =—q,
"+ p, ', i = 1, 2 and Q; = -(Q, + q,

' }, Q; = Q, —q, .
In the limit K„K2large,

~ t, + t+ t, ~,„occursat
0 =y, z«1, so that we are l.eft with

G ~exp{-Q[x, +x, +( ,xx)'"e "]}

exp(-3. 5q, ') . (3.10)

It foll. ows from (1.8) that, for the pionization re-
gion, we only need to consider diagrams G and H.
Under our approximation" (2.9) and (2.10}, tf is
factorized (Appendix D), so that the cutoff in q,

'
and q ls

H ~exp(--,' tiq,")exp(--,'Qq,"}
= exp[--', &(q,"+q,")], (3 11)

and the correlation effect is entirely contained in
G. Foll.owing the procedure of Sec. IIIA, we first
introduce

P. Qg Pf, '
Q2

P. (q, +q.)
' P. . (q, +q.)

' (3.12)

and find from (2.5) that the large q„q,contribu-

We would also like to point out that calculations"
based on the dual-resonance model have yielded a
cutoff behavior, exp(-4n'q, '), n'=1 (GeV/c) ',
whereas the elastic Large angle (e.g. , e, = v/2)
cutoff is exp(-8Ln2n'q~'). However, we do not see
any obvious connections between these two results.

B. Two-Particle Distribution

x Jt d'Q exp(-Q[3Q '+2@ ~ (q,
' —q,'}]}.

(3.16)

A saddle-point calculation indicates that the least
damping occurs at Q, = --', (q, —q, ), and

G~exp(-0[-,'q,"+-',q,"+(e '+-,'cos(gq,'q,']}.
(3.i6)

Since contributions from both G and II are posi-
tive, we find from (3.11) and (3.16}that the distri-
bution f»(q,', q,', cosP, y) is monotonic in cosp and
has a maximum at p=~, for y, q„q,fixed. Fur-
thermore, consider the case e '&-'„and say q', is
large, it follows from (3.16) that the most probable
distribution from nf» is q, = z(l ——,'e ') q, and
(II) = m. That is, whenever a particle with a large
transverse momentum is detected, it is most like-
ly to find another particle also with large trans-
verse momentum, but pointing in the opposite di-
rection (of course, we need to first subtract the
uncorrelated distribution).

C. Discussion

Equations (3.8) and (3.16) are admittedly conse-
quences of our specific approximations leading to
Eqs. (3.6) and (3.13). However, we do not really
need to require either Toiler-angle independence
or factorization of internal couplings, but rather
assume that the dominant damping factors be given
by (3.7} and (3.15). Since these dependences arise
naturally through the chain structure of MPM, we
thus believe the qualitative features derived above
are general. Therefore, we suggest that the pres-
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ence of a positive correlation in the pionization re-
gion favoring cosset) = -1 indicates the presence of
"multiperipheralism. "

It is clear that this effect, if present, is not a
consequence of the over-all energy momentum con-
servation, but rather indicates a local effect that
is dynamical. This is also to be contrasted with

the "independent emission model" where one ex-

pects isotropy in ft}. In both cases, there will be
no long-range correlation so that hft2 will diminish
as we increase the relative rapidity y in the cen-
tral region. From Mueller's Regge expansion, we

expect that the rate of decrease of n ft2 will be con-
trolled by the "gap" between n„and the next domi-
nant J-plane singularity. In the CGL model, this
will be a branch point at a, =2m, —l.

IV. RESULTS OF AN EXPONENTIALLY DAMPED MULTI-REGGE MODEL

The two-particle distribution is obtained usia a concrete model which assumes Regge behavior in clus-
ter energies and exponential damping in the MP momentum transfers. The model is basically the same as
that first considered by Caneschi and Pignotti, "and as explained in I, we have been able to carry out ana-
lytic calculations without having to approximate phase-space factors. Under the assumption of a rapid ex-
ponential damping in t: y(t)=gexp(2Qt), p(t, &o, t')=y(p') 'y(t, }y(t'), the CGL integral equation can be ap-
proximated by a separable kernel; and we obtain

(q q .p ) g2 (q+Ptt)' "'"' Iy{ 2 I [(q +p )2]r t 2t tt, (q +f )2
I ( 2}I2 2 2 (4.1)

in terms of which diagrams A, . . . , Ff can be calculated. For instance, it follows from (4.1) and {2.6) that

G g8e-202
J

tf Sqec(tt +t+t )(S ')o"(S,/S&} St(E, /122) SO (S /S&) S2 (S&)o" (4 2)

(4.3)

where 4 (c,a„a„lt) is given by Eq. (C19).
Equation (4.1) also allows us to write down diagrams C and D directly and to show that ff is precisely a

product of two single-particle distributions derived in I (Appendix D). Explicit expressions for E and F
can be obtained similarly, whereas A is simply the nonforward elastic scattering cross section. In what

follows, we first describe the properties of the diagram G in various kinematic regions and then comment
on the features of other diagrams.

A. Correlation in the Pionization Region

In this limit, we have M'/s —1 and

where we have replaced t2; by an average value t2; = a;(0). This integral can actually be integrated to yield
(Appendix C)

G=g'e '"" (M') "(Z 2/p ) o ' "4t~, ,(c, a„a„b),

c —a, = -Q(2v2+v, ) —~, c —a, = -Q(2u, +u,)-~,

a, + a, = 30M' = 2b = 2c —~,
ft —c ——2Q [6(«t«2)'"e '+ 3(«t«2)'"e'+ 2(«, + «2) —2(2q,'q,' cos hatt + 2u')],

=—[«, +«, +2(«t«2)tt2(e '+ ,'e')]. -(c —a,}(c—a, ) 2Q

1 2

(4 4)

We can demonstrate that (a) 4, , reaches a limiting distribution, i.e., 4, „,—C„„,(y, «„«„cosP);
(b) as y- ~, 4 „,(~, «„«„cosIft}&0 and finite, so that

af"~ G/s""~{Z„)'"" ' -exp[-(t2„—t2, )y], (4.5)

where a, =—2t2o —1 is the leading vacuum branch point. Equation (4.5) indicates that the branch cut contri-
butes a short-range correlation with a correlation length (a„—t2t}

The analytic form of 4 can be given in terms of elementary functions in the physically interesting
cases of ty„t22=0 or —, through the use of Eq. (Cll). However, since we are primarily interested in the
gross correlation effect, e.g. , the large transverse-momentum cutoff, we allow n„n,to be arbitrary and
consider the limit
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$ » K y
» py y g » K2

(More precisely, the limit K;/s, p'/«, -0, i =1, 2.) In this case,

1 K, +K, +2(KP,)'"(e "+—,'e")
QZ» 3 (Kp, )'"(coshy —cosp}

(4.6)

M 2 1
0 (4 I)

and

r,(c —a, ) = Q[2(K,K,)'"e '+K,],
r, (c —a, ) = Q [2(K,K,)'"e " + «,],

5+ c+-Q(Z„—2g') = -Q [-', (q,"+q,")+(e "+-', cosp)(K, K,)"'] . (4 6)

Using o„,=g's " ', we obtain from (C21) and (1.7) that

2(K,K,)'"(coshy —cos@) t'"0nf"-,„r(o„-(2S, -1))r(n„—(2u, -1))
12 2v 'Q

I

x{2Q'[K,+K, +2(K,K,)'"e "+2(K,K,)'"e']j " '{Q[2(K,K,)"'e '+K,]j' ~

x{Q[2(K,K,}"'e '+K,]j' 2exp{-Q[—',(q, '+q, '+q, q, cosp)+e '(K,K,)'"]j. (4.9)

Comparing (4.9) with (3.16), we find that the large
KI, K2 behavior is precisely that given by the gen-
eral MP arguments. Our explicit calculation has
furnished us with further information on the cor-
relation length, as well as a detailed correlation
function.

B. Single Fragmentation of a

This region can best be described by Feynman's
scaled variables x, =q,'/q, „,x, =q,'/q, „&0,in
the c.m. system of a, b. With our convention q,
& q„for q,', q2 finite, energy conservation re-
quires xy&X2 and 1 ~x ~0 1 —x ~x ~0. In this
case, we find that

1 1
exP

2 — K +2 — K
X$ X2

(4.15)

Zy2 —2J + Kj. + K2 —2qy q2 cos(j) ~

1 2

(4.14)

Equation (4.12) indicates that cf» reaches a limit-
ing distribution, and it vanishes when x,/x, »1,
Z/p'- ~. Equation (4.13) indicates that an ex-
ponential cutoff in Ky and K2 also exists where co-
efficients depend on x„x,and cos(IJ). This is to be
contrasted with the contribution from the diagram
H [Eq. (4.10) of I],

c —a2 f(xy, x2, Ky, K2)—

is finite, and

(4.10)
Together we find that the damping is again most
effective at $ = 0, and the angle (II)

= m is preferred.
In the limit x„x,-0, and

c —a, = Qs(2x, + x,),
a, +a, = 3Qs(1 —x, —x,),

(4.11)

gf» (g /g2) ~av-av)

so that G contributes to the distribution f,"an
amount

x,/x, —(K,/K, )'"e '. (4.16)

Equation (4.12) reduces to Eq. (4.19), i.e., the
fragmentation region smoothly approaches the
pionization region. It also follows from (4.12)
that the correlation length coming from G is
again (n„—o, ) '.

where

Xe ""Ca, „,(x„x„q„q,, @),

2Xx+ 3X2 X 2 xg
K2x,(3 —2x, —x,) ' 3-2x, -x,

2(1+x,)
3 —2x —x qz q2 COS

1 2

(4.12)

(4.13)

C. Deep-Inelastic Region

This region is characterized by
~ q, ~

= O(v s),
~ q, ~

= O(Ws) in the c.m. system. It has been shown
in the case of the single-particle production that
the distribution has an exponential cutoff [Eq. (4.5)
of I]
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f,', e-xp (-sQ{(1—z r) —[(1—z r)' —,' r—'sin8]'"))

(8 ~0), (4.17)

where r=q, /q, q,„=vs/2, sin8=q'/q, . A sim-
ilar cutoff has also recently been obtained by Hu-
ang and Segrh using the dual-resonance model
(DRM)." Strictly speaking, neither model is real-
ly applicable in this region where cross sections
are extremely small. However, it is interesting
to note that in both the DRM and the MPM, the be-
havior in this region and the cutoff in the pioniza-
tion region are smoothly connected.

r, =q', /q .„,r, =q,'/q, „,
Z1 COS61 Q'1 Z Z2 = COS~2 = Q2

Z12 =&1' &2

(4.18)

(4.19)

we find that the dominant cutoff is of the form

nf»o-exp[-sQZ(r„r„z„z~,z»)], (4.20)

It can easily be shown that Eq. (C21) is still ap-
plicable in this case. Introducing, in the c.rn. sys-
tem (q,„=Ws/2),

where

= z[3 —z(r, +r, ) —z(r, z, —r,z,)+ zr,r, (1 —z»)],

—[2r,(1 —z, ) +r, (1 —z,)][2r,(1+z, ) +r,(1+z, )]
c b

(4 21)

—4r,r, (1 —z»)[1 —r, —r, + ~z r,r, (1 —z»)]

(1 —z ).Z rr2
s 2 12

Together with the fact that H is a product of two factors of the form. (4.17), we see that f" scales in the
same manner as in the single-particle case.

D. Other Diagrams

As we have already mentioned, the diagram H can be decomposed into a product of two single-particle
distributions, which, according to Eq. (1.8), contributes to all kinematic regions except at the boundary of
the phase space. Near the boundary, end diagrams A, B, C, D, E, and F are important, leading to vari-
ous types of triple-Regge behavior. For instance, at x, +x, = 1, x, &x„wefind

2A
C-g'e'"" s —, 1 —x, —x, " ' 1 —x, '

exp —Q (x,)
1 2 —x2 1 —K,+(x,) ' +2q, q, cosy-m (2 —2x, —x,)2

2r X1 X2

(4.22)

(4.23)

(4.24)

Diagram D has a similar behavior at x, +x, = -1. In the di-triple-Regge limit where x1 1 x2 1 the
diagram B gives a contribution

a-g'e-" s "(1-x)" -"~(1+x)"-' 2h',

k'= (2x) 'exp(-Q[x, /z, —g'-m'(1 —x,)]j exp[-Q[x, /z, —p' —m'(1+z, )]] . (4.26)

In this limit, the rest of the diagrams can all be shown to vanish relative to B, so that the distribution is
independent of the angle (t) —another reflection of the short-range correlation of the MPM. "" Diagrams
E and F are factorizable, and they are given respectively by

8E=, exp(Qp'/2) exp(-Q[x, /x, -m'(1 —x,)]](1 —x,) ~ ' X,(P„q„P,),
8

F =( ), exp(Qp. '/2) exp]-Q[-x, /x, —m2(1+x, )]}(1+x,) ~ ' X,(p„q„p~),
where X, is given by Eq. (2.2).

(4.26)
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V. REMARKS

We have emphasized in this paper two important
features of two-particle correlation effects in the
pionization region: (i) The transverse momenta
are shown to be restricted to values of the order
~ ', and their distributions are in general corre-
lated, reflecting the MP nature of the high-energy
production mechanism; (ii) these correlation ef-
fects are shown to diminish as the relative rapidi-
ty increases, with the correlation length given by
the inverse of the separation between the location
of the leading vacuum pole and that of the leading
vacuum branch point. Although we have only dem-
onstrated these features explicitly by using a sim-
ple and somewhat unrealistic MR model, we are
confident of their generality because, as we have
shown in Sec. III, they depend only on the chain
structure of MPM and the structure of the J plane.

There are two sources of uncertainties which
could possibly invalidate our conclusions. First,
there is the complication of the secondary trajec-
tories, some of which can lead to longer correla-
tion lengths than the one we have considered. The
generalization to include these singularities is a
straightforward procedure; we associate a "corre-
lation length" with each lower J-plane singularity
contribution. However, since each "parent" tra-
jectory yields a factorizable contribution to af»,
it will not lead to a cos (II) dependence that is char-
acteristic of a MP mechanism: A term of the
form g(~, )(Z») ~ ""'g(~,), „obei ngthe secondary
trajectory, has a smooth cosQ dependence and
actually favors cosP= 1. The peaking effect at
cosf= -1 can only come from nonfactorizable sin-
gularities such as branch points and daughter tra-
jectories. Our result represents a typical branch-
point contribution; and the effect of a daughter tra-
jectory has already been studied in the context of
the dual-resonance model. " Remarkably, both re-
sults are qualitatively similar.

A more serious objection can be raised concern-
ing the relative sign of the branch-point contribu-
tion. Under our present approximation, the dia-
gram G always contributes a positive term; and,
as we shall see shortly, this is not expected to
change within a MPM even if better approximations
are made. Independent of this observation, we
would like to argue that the physics of short-range
correlations dictates this contribution to be posi-
tive. Since secondary trajectories cannot produce
the cosfI) = -1 peaking phenomenon, and since our
arguments leading to the cosP dependence of G is
independent of its over-all sign, a negative branch-
cut contribution will lead to a peaking at cosQ = 1.

If this were the case, we would no longer have
"local" transverse-momentum conservation; and
it would, in turn, run the danger of leading to a
long-range transverse-momentum correlation, if
the cut is strong enough. This is clearly unaccept-
able.

Coming back to the question of the branch cut in
MPM, we remark that the factorization assump-
tion for the diagram H is, strictly speaking, incor-
rect. This is because a ladder sum, aside from
generating a Regge pole, also contains a branch-
point contribution itself. As we explain in Ref. 13,
this additional contribution is not included in our
calculation because we have avoided the question
of how the CGL equation can be solved. The term
G roughly corresponds to the usual elastic Amati-
Fubini-Stanghellini (AFS) contribution, and the
complete branch-cut effect is the sum of G and H.
For instance, it can be shown that nf» coming
from G alone, when n' 40, has also an additional
(lnZ») ' factor, whereas the sum "softens" the
branch cut, leading to a dependence

(Z ) '(lnZ } ''
with c &0. However, this &vill not change the sign
of the net contribution. " In view of the simple
physical arguments presented in Sec. III, we be-
lieve that the qualitative features of our trans-
verse-momentum correlation obtained earlier will
survive the modification from II.

Of course, all our present discussions depend on
the assumption that 1 & Q.„&n, . If n, = 2 n„—1 = n„
=1, we find that the correlation length is infinite,
so that the correlation function only vanishes log-
arithmically: Af» - (lnZ») "' . It is generally
believed that the Pomeranchon contribution has a
small coefficient so that the double-Pomeranchon
cut effect can probably be left out at our present
experimental accuracy. Therefore, our results
could represent the situation having a Pomeran-
chon e„,and an effective branch cut a„n„&n, .

We would like to suggest that the above results
can be used realistically to describe two-particle
inclusive cross sections in the central region if
they carry exotic quantum numbers. Our experi-
ence with the dual-resonance model suggests that,
under such conditions, secondary trajectories will
not contribute to the two-particle pionization re-
gion. " Therefore, our predictions can be tested
for (w'w') or (v v ) cross sections. Of course,
care has to be taken in the actual experimental
analysis so that we only consider events in the
pionization region. To summarize: We predict
that (w'v') and (v v ) distributions have a positive
correlation in the central region with a correla-
tion length (n„—o,) ', which also exhibit the ten-
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dency to favor cos))) = -1. For the (v'v ) distribu-
tion, on the other hand, one would expect an addi-
tional positive contribution with a correlation
length (o —n„}'= 2, which is nearly cosP inde-
pendent.

If (o'„—a~} ' & (o' —o.,) ',"it then follows that
"unlike" particles will tend to have a bigger open-
ing angle than "like" particles, in the sense de-
fined by GGLP." However, this is quite different
from GGLP's original explanation since our cal-

culation of branch cuts corresponds to a "cross
section, " not "wave function, " symmetrization.
We urge experimental tests of these speculations.
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APPENDIX A: TWO-PARTICLE DISTRIBUTION AND MULTIPERIPHERAL CHAIN

We shall first derive Eq. (2.5) following essentially the same steps of the Appendix in I. Consider a par-
ticular MP chain with N+2 final particles. Let the detected particle pair have momenta q, and q„and let
us specify the MR amplitude T„„bya set of four-momentum transfers to the left {P;},1 ~i & n, and to
the right {k;}, 1 ~j ~m, and in between q, and q„Q.Whereas the contribution to the total cross section
due to this N+2-particle state is

1
(Pa~PS) =2++2(s m 2 m 2q I N+219)m~ y my )

the two-particle cross section from this same configuration is

(A1)

«""(q q. j p)= ' ' " ' ' " ~ Q de"de )v2a'"( m'm') Z (2)' M+2
n=g

(m= X-n)

(A2)

d4 "", dC ", dC are Lorentz-invariant phase-space factors given by Eq. (A2), Eq. (A5) of I. The summa-
tion over n is due to the freedom of the location of this pair (q„q,) within the MP chain. Making a MP ex-
pansion for T~„,we find

Q, 2

I &~"(P. P~ {P;},{k }q'i q2) I
= i 2) IP((Q+q)), ~„Q)I'H(Q', &,.)

2

+
~

fl(Q2 (Q q )2)~ 2 m+1(Q) Pbt {1})
yk '

The two-particle distribution is obtained by summing Eq. (A2) over fq. Together with the restricted sum
n, they can be converted into two unrestricted sums for n and m and performed because of the factorizable
nature of T„„andd4"". Recalling the definition of the CGL & function,

n =1

(A4)

&,(Q, Q-q„P,)=2 g "' k," ' ~@ (Q q„P„{k;}),-
Y m

(A5)

Eq. (2.5) then follows.
The contributions from all other diagrams can be obtained in a similar manner. First, A is simply the

nonforward 2-to-2 scattering cross section

j.
&=(2)(2,).&'(P. P. -q, -q.}ly(~)l'( &u')

Diagram B is given by what is essentially a CGL B function, but with both external lines being Regge
poles. " Let it be B, and we find

(A6)
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8 lr(t, ) I'B(p„p.—qi~ pa —qa& p~) lr(t2) I' ~ (AV)

Diagrams C and D can both be expressed in terms of B„andB„
c=

2 },l&(t)H(t, z„}p(t„~„t,) I'B,(p. —q„p, q, —-q„p,), (AS}

D=
2 }.B (P.;P& —q, —q„P&—q, )I P(t„~„t)If(t, &„)y(t)I'.

Diagrams E, I', and 0 involve both B„B„,and B. They are respectively given by

4

8 ly(t, ) I' }.B(p. , p. —q„Q,Q+q, ) I t)(t, ~., t,) I'B,(-Q, -Q —q.; pb),

(A9)

(A10)

and

d QF=
)

.B(p.; -q, —Q, -Q)
I P(t„~„t) I'B(Q+q„Q;pb-q. , pb) lr( 2) I',2x)' 2e ' (A11)

H=, d Q,d Q, B,(p„'Q„-Q3)I p(t„(u„t3) I B(-Q„Q~;Q», -Q, )2' N

x
I p(t„~„t2)1'B,( Q„Q;,p,). (A12)

APPENDIX B

For simplicity, we present here only the result for the diagram G in the correlated pionization region.
We demonstrate that G- (s) "f(y, q,",q,", cosP) in the limit s- ~. We make use of the technique intro-
duced in 0: Changing P'-P„P-p„q'-Q —q„q"--Q —q„k-q, +q„the Jacobian of the transforma-
tion is

d'Q, d'Qd'Q, ~' Q, +Q+q, ~' Q, -Q-q.

dsydsgd&ydtg &

~(-&((tl", +g)', (4'+i;)', (4'-i;)'))

where

p, ~ (Q+q, ) -s,' —t, -m, '
p, ~ (q, +q, ) -u, —u, +2(m, '+p') '

p, ~ (q, —Q) -s,' —t, -m, '
p, ~ (q, +q, ) -v, —v, +2(m, '+g') '

(4' —q2 )' = t, —[Kg K+p + (2lcgxg-) coshy] (x+ 1)z,

(Q' q+,
')'= t, -[K +K +2(K-K ) coshy](z+1)x.

The assumption of Pomeranchuk-pole dominance for 8, and B„willlead to an over-all factor s ~ and leave
the integrand with factors which are functions of integration variables x, z, t„t, as well as scaling vari-
ables y, q„q,', cosp. The only nontrivial step involved is to demonstrate that Q' =-t is an implicit function
of these variables. This can be proved by noting that, because of the MP assumption, we can show that

t=-Q '+(xp, )"'e "[x(1+e')+1][z(1+e')+1]+O(1/s). (B4)
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However, conservation of transverse momenta indicates that Q, ' is determined by (f„t„q,', q,', x, z, p),
which are scaled variables. The distribution can easily be shown to scale also in the single fragmentation
region. We shall omit the proof since the calculation is lengthy though straightforward.

APPENDIX C: EVALUATION OF THE DIAGRAM G

The technique required to evaluate (4.2) is very similar to that used in I for the single-particle distribu-
tion. We first approximate s„s,by s, = sl ul s2 s2 v2, and change integration variables to sl s2
and r, where r =—I", P=-Q-02+A, :

0

(2v)" (C1)

1 s,'-u ' l S,' —V

l 2
(C2)

I( I)
) g( g )eau «nvdt dr

ly 2 y ~ 4
4

(C3)

4« is the Gram determinant of vectors P, q, —q„p,—q„andp, —q„and I(s,', s,') is again an integral of
the form performed in I [Eq. (3.12) of I]. The identification is completed with the substitution p - -P,
q - q, —q„p-p, —q„and k -p, —q„sothat 1(s,', s,') is given by

f(s,', s,') = 4v exp[-b] exp[a, (s,'/M') + a,(s,'/M')] ' ' ' ' ' ' e(b "'(M', s,', s,') ),
sinh [ch'"(I, s,'/M', s,'/M')]

(C4)

with

b= Q(M'- v, —u, )+ —,'Q(M' —u, —v, ),
u, = Q(M'+ v, —u, ) + —,

' Q(M' —u, + v,),
a, = Q(M' —v, + u, )+—', Q(M'+u, —v, ),
c =Q(6(M', v» u, )+ «a(M', u„v,) + {M'[M —u, —u, —v, —v, + 2(q, —q, )2] —(u, —v, )(v, —u, )j)'" .

In arriving at (C4) and (C5), we have substituted into Eqs. (3.15) and (3.18) of I with

(C5)

Q, -2Q, Q, —Q, g'-(q, —q, )'=4p' M -M,
t, - t, s,'- s,', m, 2-u„
t„-r, S„'-S,', m2 Vl

u)~u2y

uy V2 ~

(Ce)

As in I, the s', and s,' integrations can next be performed by changing variables to

z(1 —x) = s,'/M', x(1- z) = s,'/M',

and Eq. (C4) becomes

(M2)2+2av 1 1
G„',„=— exp(-b+ c)

i
dxdz 8(1 —x —z)(1 —x —z)8

&0 O

(c&)

where

xexp{-[(c—a,)z+ (c —a,)x+ (a, + a,)xz]j, (C8)

I 2 l8 (x, z) =[z(1 —x)]" [x(1 —z)] " 1+ ' 1+
z(1 —x) x(1 —z)

2Q(2

(C&)

with

r, =—-u, /M', r1 =-v,/M'. (C10)
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For the restricted case of e„n2=0,—,
' and n„=1,we have

a. . =(M')'[z(1 —x)+ Tb„„,][ x(1 —z)+ r, b. „,],
and these terms can be removed by formal differentiation. The result is

v (M')'"" d d IGI
cx1, R2 1 R1, 1b2 da 2 a2, li2 a +a+T 5 +7 5

1 2 1 2

x [exp(- b+ c)[exp(X,)E,(X,)] + exp(- b —c)[exp(X,)E,(X,)]

—exp(-b+ a, )[exp(A, )E,(X,)] —exp(-b+ a,)[exp(X,)E,(A.,)]}, (C 11)

z, (x)= f e**e (C12)

(c —a, )(c —a, )
a1+a2

(c + a, )(c +a, ) (c —a, )(c + a, ) (c +a, )(c —a, )

a, +a, ' a, +a, ' a, +a, (C13)

The main feature of Eq. (Cll) is the exponential decrease of the terms as given by the exponents

b+ a, = Q(2v-, + v,}, b+ a, =-Q(2u, +u, ),
-b ~ c = (-b}(1+(1—(Q'/4b')[4(2u, +u, )(2v, + v, ) +Sbf'(q, —q,)']}"').

In the regions of interest to us, we always have

0&b —c« b —a„b—a„b+c
together with the fact that

1 ~ 1
x+1 ' x'&e'E (x)&— x)0

7

(C14)

(C15)

(C16)

it follows that the first term in (Cll) always dominates over others
More generally, we can scale z, x in (C8) by (c —a, ) and (c —a,),

x' -=(c —a,}x, z'= (c —a,)z, (Cl'f)

and we find

G b -20$ (bf2} (g / 2)2 b-I- 4 ( b) (C18)

1 M
—-(~ +1)

4' n Tff
=

9 (3QQ) 0 b+n+(bEyb-2-P j
(8}(2z)' c Z„

x dx'dz ' 8 1 — — 1 — — [(c —a, )(c —a, )]
x' z' xf z I

0 c —a, c —a, c —a, c —a,

x' z'x8, ex —x'+z'+x'z' A.

2 1
(C19)

In the limit

&2

Eq. (C19) yields

(C20)

1 M' 30x ' -' .'"~-, . —,= (8)(2,)b, E
"

I r,(c —a,}]'"(~.(c —a.}]"b

xf'(n„—(2n, —1))I'(n„—(2n, —1))exp[-b+ c+ Q(Z„—2ib')] . (C21)
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APPENDIX D: FACTORIZATION OF DIAGRAM H

By solving a generalized CGL equation, "one can show that B has Regge behavior

(q Q )2 2a(t~) (q q )2 2&( (~ )

B( Qgi Q-3t Qzi Q2) —
(Q Q )z A(Q31 Q4)

(Q Q )2 (D1)

where

, Ir(t.) I' .„(.) Ir(&,) I'
(qs q~) &

I ( ')I2I: s+ 41 "
I (

'2)l. . (D2)

In the strong-ordering approximation, we have

(q. - q,)' (p. - Q,)' (Q, - q.)' (p.- q.)'
(Q, + Q,)' — (pe+ Q, )' '

(Q, + Q4)' - (p.+ Q, )' (D3)

so that

(p. +p.)' (D4)

(p.-q, )' "'" lr(&,)l'
(p.+ Q,)' Ir(v') I'

Substituting (D5) into (A12) and using (4.1) and (2.2), we obtain

H=g'(s„) &,(p„q„p,)&,(p„q„p,).

(D5)

(De)

It then follows from (1.11), (2.1), and (2.3) that the contribution to f (, due to the diagram H is precisely
(in the central region)

f"(H) =f'(q', )f '(q,') .

*Work supported in part by the U. S. Atomic Energy
Commission.

~ "Multiperipheralism" refers to a class of dynamical
approximations used in handling multiparticle produc-
tion at high energies. Many different versions of MPM
are listed in Refs. 2-4. For definiteness, we adopt
here the interpretation of multiperipheralism given by
M. L. Goldberger [Erice Summer School, 1969 (unpub-
lished)] . The common ingredients of all these models
are (i) a linear chain structure with each "cell" function
describing the details of the short-range correlation,
and (ii) transverse-momentum cutoffs provided by
dampings in momentum transfers defined by the linear
chain. Our analysis here mainly depends on these two
properties, together with an experimental input setting
the scale of the transverse-momentum distribution.
However, in order to make our discussion precise, we
shall adopt the Chew-Goldberger-Low model as the
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