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A self-consistent method is used to find an approximate ground state in the case of charged
scalar and isovector scalar static source theories. In both cases there is a spectrum of
stable excited states. In the case of a point source, the physical states are grouped into or-
thogonal uncoupled subspaces.

I. INTRODUCTION

In a recent paper, ' a self-consistent method for
treating interactions mediated by mesons was de-
scribed. It is also possible to apply such a meth-
od to the self-interaction of a source that can emit
and absorb mesons. In particular, the simplest
such system is that in which the source is static. '
This paper deals with the self-consistent approxi-
mation for the cases of charged and isovector me-
sons interacting with a static isospin--, source.
The meson fieM is taken to be scalar under space
rotations. Thus the Hamiltonian to be considered
ls

T p 7 3

u) (k) = (k'+ m')'"
(2)

The source function W(k) is taken to have the form

W(k)=Au(k)( )
where y replaces g'/4v and v(k) is unity for a point
source.

In Sec. II, the details of the self-consistent ap-
proximation. a,re exhibited. Section. , IH gives the
spectra for the special case of a point source. In
the charged case, the result is identical with that
derived by Pais and Berber ' for the case of strong
coupling; moreover, the approximation indicates
that the coupling is always strong in the charged
case. In the isovector case, there is a critical
value y, of the coupling constant. For y ~y, the
coupling is weak, and there are no stable excited
states like those found in the charged case. For

H =Q
Jt

s)(k)at (k)a„(k)dk

-g v„Jt[W*(k)a„(k)+W(k)at„(k)jdk, (1)

where the sums run over +=0, ~1 for the isovector
case, e =+1 only for the charged case with

T —= (7 +iT )/v2

y& y, the spectrum is like that in the charged case.
In the case of a point source, there is an inter-

esting orthogonality property that is like the one
pointed out by Van Hove' for the case of a neutral
scalar field interacting with a point source. In the
present case, not only are the physical states
orthogonal to the bare ones, but the physical
states are grouped into orthogonal subspaces that
are uncoupled from each other.

Section IV contains some remarks on methods
of improving the approximate state vectors in the
case of an extended source.

II. DETAILS

The eigenstates of the Hamiltonian (1) are com-
plicated superpositions of states of the form

~i;k, a, , k,o„.. ., k„n„)= Q at (k, ) P, , (4)

where the P, are the eigenspinors of 7~. The
eigenvalues of H are degenerate with degeneracy
2T+1, where T =-,', —,', .. . is the isospin of the
state. Here use will be made of the fact that a
superposition of states belonging to different eigen-
values of T, and T,

7, =-,'Tp+ atk ak -a~ k a k dk

=4,+Pf aa&(a)a„(a)aa,

can possibly have a simpler structure than an
eigenstate of H and T, . Since states with differ-
ing values of T, are to be superposed, the opera-
tor to be investigated is not H, but rather G:

Q =H -ATq,

where A. is a Lagrange multiplier.
The variational principle can be used to find the

best approximate eigenstates of 6 within the sub-
space consisting of states that are simple products
of a spinor y describing the source and a factor ~g)
describing the meson field
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0 = Ia&x.

As in I, the simplest procedure is to consider
(x, Gx)

(X, 0k) =fr k, (k) k(k)a (k)dk --,'k(,)

- r, J(w (k)(..)k.(k)

(7) ~(k) lw(k)l'dk
(d'(k) —x'

=I(-x).
Now y is an eigenspinor of Go&, which is of the
form

G~ =A -v'. B

A 7oBo 'T+ B T B+

(16)

where

+W(k)(7 &at(k)] dk.

e (k}= (k)(k) —n(X,

&~~&
= (x, rex ),

and (3) gives

(8)

(10)

B0=0A. +2I(0)&r0&*,

B, =2I(X)&~,&*

= 2I(x)&rk &
.

(17)

(18)

The eigenvalues of G,~ are A+ fBf. Let the angles
in isospin space of the vector B be 8 and y, so
that

f) (k) =a. (k)-d (k),

d (k) =W(k)(7' &*/c (k).

Then

(k, 0k) flak (k)k'((k)k(k)„dk ~ 0', ,
G'==,'x&7,&-g f&7 &f'

~
dk,, r fW(k)l'

and it follows that the appropriate meson state fg&

is the lowest meson eigenstate of (x, Gx), namely,
the vacuum of the b„(k)

(12)

The quantity (X, GX ) can be simplified by introduc-
ing the new creation and annihilation operators
bt(k) and f) (k):

Bo =Bcosf9,

B, = —Be ~sino.
W2

The eigenspinors of (17) are

(
exp (-iy/2) cos(8/2)

exp (iy/2) sin (8/2)

and

-exp (-imp/2)
~

~

exp (ip/2)

sin(8/2)

cos (8/2)

with

&~,& =cos8, &~, &
=—e~(' sin8

(19)

(2o)

6 (k) fg& =0 all n, k .
G' is the approximate eigenvalue of G

G'= (x, &zlGla&x)

(13) and

I
&7 &=-cos8 &7 &=-—e "('sin8

0

(21)

=&gl(x, Gx)R& . (14)

The state factor X is found by first substituting
(11) into G with the result

respectively. The second set with (18) and (19)
gives B= -2I(A.) & 0 and is therefore inconsistent.
The first set gives

B= I(A. ) k

G =Go-Ging,

Go =G'+Go +Goy'y

Z0f (k)k '(k)k (k).k.k„„
G~ = -2&(7'0 —&T0&)

—2p (g —&7 g) &7„&*I (c(A), .

(15)

exp(-iy/2) cos(8/2)
exp(imp/2) sin(8/2)

In solving for cos6f, two cases arise. Let

'"'-=4m(x)

Z(A. ) —= I (A.) -I(0),

(22)

(23)

G =-Z(r. -&.&)

x g+kb k+Wkh~ k dk,

then

cos8 =c(A.), fc(A. ) f
&1

=s =~1, fc(x) f& 1, (24)

where and correspondingly
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G' = -I(o) -z(~)—,fc(x) l
&1

168(A,)
'

= -I(O) --,'Zs, fc(Z) f~ 1. (26)

static field falls off at large distances like e "/r,
while the charged static field falls off like e "/r
with m' = (m' —A.')'"

The value of X must be chosen to make the expec-
tation value of T, equal to the desired value, which
will be denoted T (not to be confused with total
isospin)

r=8z~ R~ )-, z, )z(~), i~(~)l

III. POINT SOURCE

For the case of a point source, the integrals
J(A.) and K(A.) converge, and l(A. ) is divergent. As
will be seen, I(0) only appears as a source self-
energy term and therefore causes no difficulties.
The values of J and K are

=-,'s, fc(X) f

~ 1

t &u(a) fw(a) f'
K(A) Ji [ 2 ) 2]2

Finally,

(H) =G'+AT

(26)

(27)

z()).) = [1 —(1 -x'P"]

4m(1 - x2)~~2 (3o)

= -I(0) —J (X) +
In the case of charged scalar theory, it follows

that fc, (A.) f
& 1 always, so that

+2k, I- 2 KA. , t]c A,

=-I(o), Ic(&)l ~1 (28)

T=y
z2)&A

T2

T +(~/2)
Of course, the above procedure can also be ap-

plied to the case of charged mesons interacting
with a static source. The Hamiltonian for the
charged case is the same as for the isovector
case, except that there is no interaction with the
neutral meson field. The results in that case are

A.

4I(~) '

and, after some algebra,

(H ) = -I(O) + m([T'+ (r/2)']'" —r/2). (32)

This is the same result as that obtained by Pais
and Berber. ' As noted in Ref. 3, the states ob-
tained for T = +2', ~-2', +-'„. . . are all stable in this
approximation, that is,

cosa, = 4, fc, (Z) f
& I (H)r&(H)r, +m, T~ ~. (33)

=s=+1, fc, (z)f &I

A,
2

7=8 +2z ) —)6, )rc(x), )c.(z)) 1

=-,'s, fc, (A) f

~ 1

g2
(H) =-I(0) —J'(A.)+

A.
+2k.' 1-& 2 K A, , C, A. &1

The result of Ref. 3 was restricted to the case of
strong coupling. However, it is clear from the
foregoing that in the case of a charged scalar field
interacting with a point source, any coupling con-
stant greater than zero gives strong coupling in
the self -consistent approximation.

The isovector field is more varied. Here the
solution of the equation does have two regions,
one for weak coupling and one for strong coupling.
The critical value of y is y, with

=O, fc, (Z) f
1. yc 2 (34)

As noted in I, there is a static meson field sur-
rounding the source in this self-consistent approxi-
mation. In ihe case that fc(X) f

~ 1, the static field
consists entirely of neutral mesons (or is absent
in the charged-meson case); the static neutral
fields in lg„,) and fg „,)are different. When
fc(A.) f

&1, both neutral and charged static meson
fields are present around the source. The neutral

For y&y„ it follows that cos8 =s =+1 and

x=0,

T, =+2 y- y.g j.

(H) =-I(o).
(36)

Only for y& y, is there a spectrum of states; all
values of T & —', are
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T2

T'+ (y/2 —1/8y)' '

(a) = -I(o) (36)

+ mI [T2 + (y/2 —1/8y) ] —(y/2 + I/8y)),
1 3 5

y&y, .

Again it is easily seen that

(a), (a&r, +mt T-- (37)

so that all of the states listed are stable in this
approximation.

Each value of T has its corresponding meson
vacuum lgr). The value of d„(k) in Eq. (11) depends
on T; so does b (k). These will be written d„(k, T)
and b„(k, T). Clearly

b (k, T) =a„(k)-d (k, T),

b. (k, T)lgr&=o,

d (k, T) =W(k)(r„&$/e„(k, T),
e (k, T) =(g)(k) —nX(T),

(r,&r=cos8r

(r ) = p —e "rr sin9T ~2 T

(38)

+ -I /2 +j./2

0-Z/2 ~ ~X/2

so that

(Xi/2 t X-i/2) t

(rc(&-i/2 = (res&i/2 ~

Then

(40)

(41)

( (g i Ig)="- J. I)g,s(s.)l* . ccs*sI

~'(k)
+

~
2( ) 2~2

sin28 dk

(42)

so that

(g 1/2 lg-»2& —o. (43)

Similarly, it also follows for strong coupling that

(g, lg, & =6„. (44)

Thus, for each value of T there is a set of states
!T; k, n, , k, n„. . .) defined by

It follows by standard techniques that

2)s(g, lg, ) = pf Id. (s,-g) -d„(s, 7 )I'gs. (39)"
Consider first (g», lg», ). It is convenient to set

)

(k, , r)bt (k, r) ~ ~ ~ lg, &X, .
The sets (45) for different values of T are in or-
thogonal subspaces. There is no interaction that
connects the different subspaces. This situation
has some resemblance to what happens in the cou-
pling of a neutral scalar field to a static point
source; in that case all the physical states are or-
thogonal to all the bare states. 4 In the case treated
here it is also true that all the physical states are
orthogonal to all the bare states. However, here
there is also no coupling between the states l-,';kn)
and the states l--,';k'n').

IV. EXTENDED SOURCE

!
1
2 i kinit "2n2t )

=b'. (ki, l»'. (k„2). Igi/. &X i/2 (47)

Owing to the orthogonality relation (41), either of
these two latter sets is orthogonal to the first set.
The state l

—,) is the "upper state" of Ref. 3. The
set A has the advantage of being closer to the set
of physical states, while the set B has expectation
values of G that start at G'+ 4I(X), which is large.
On the other hand, it is quite simple to develop
a perturbation theory using set B, while set A
seems less amenable to such a treatment. More-
over, set B gives a second order value for the
source self energy that is much lower (greater in
magnitude) than that obtained with set /i. How-
ever, the self-energy of the source is not a phys-
ically interesting quantity; its accuracy is not a
criterion by which to choose between sets A and B.
The point of view taken here is that the more
physical nature of set A. is of overriding impor-
tance, and improvements in the zero-order state
vector will be sought by using set A.

It is possible to find G and Gp such that

G =Gp+ V (48)

and all states
l
—,'; k,.n,.) and

l
——,'; k, n,.) are eigen-

Consider now the situation when the source func-
tion v(k) is chosen to make the integral in (42)
finite. It is convenient to set

g =(gi/, lg, /, )

In order to improve the wave function, it is nec-
essary to add components orthogonal to l-,'). There
are two sets of states that can be used. For one
set, take the set

l
—,'; k, n, , k, n„.. .) defined in

(45); then for the other set, it is possible to take
either the set A consisting of the states
l
-—,'; k, n, , k, n„. . .) or the set B of states
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Then

Z x«(ilo I
i ) xg'

f= at/2

(x» IG I x «) = (x» III I x «),

states of G„ the choice is

(49)

ence in the present case is that V connects states
with meson numbers that differ by any number.
Of course, it also follows that there is a factor Z
in each matrix element of V, so that the coupling
constant y"2 is renormalized by a factor Z.
The constant Z, is also related to the source wave-
function renormalization constant Z.

Z» =Zlcos(8/2)l

and in weak coupling the two are equal.

V. SUMMARY

Z To( Z

x 8*kb k, -i+tVkb~ k, i dk,

(50)

where the extra term vanishes because

W*(k)d (k, -i)+W(k)d* (k, i) =0. (51)

The difficulty in constructing a perturbation theory
arises because Vl-,') has components with states
I
-—,'; k, n„.. . , k„»»«„) with all possible numbers n

of --,'- mesons (except n =0). Thus, it seems more
reasonable to use approximations that hf, ep all
terms up to N mesons, where N is small. These
approximations are well known. ' The only differ-

The self-consistent technique is simpler than
previous methods' for approximate solution of the
charged scalar theory. It can also be applied to
isovector scalar fixed source theory with the in-
teresting result that there is a critical value y, of
the coupling constant. For coupling weaker than
the critical value the self-consistent field is en-
tirely neutral.

The orthogonality relations that arise in the the-
ory applied to a point source are a sharper version
of the ones originally noted by Van Hove4 for the
case of a neutral scalar field. In the case of an ex-
tended source, it seems likely that methods based
on a limited number of mesons are most promising
for improving the wave function and computing
scattering matrix elements.
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