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A fully gauge-invariant, Lorentz-covariant, nonlocal, and nonlinear theory, for ccupl d
spin-2 fields, g, and vector fields, A, i.e. , "electrons" and "photons, "is constructed. The
field theory is linear in the g fields. The nonlinearity in the A fields arises unambiguously
from the requirement of gauge invariance. The coordinates are generalized to admit hyper-
complex values, i.e. , they are taken to be Clifford numbers. The nonlocality is limited to
the hypercomplex component of the coordinates. As the size of the nonlocality is reduced
toward zero, the theory goes over into the inhomogeneous Dirac theory. The nonlocality
parameter corresponds to an inverse mass and induces self-regulatory properties of the
propagators. It is argued that in a gauge-invariant theory a graph-by-graph convergence is
impossible in principle, but it is possible that convergence may hold for the complete solu-
tion, or for sums over classes of graphs.

I. INTRODUCTION

Recently the study of nonlinear field theories has
gained increasing attention as the evidence has
mounted concerning the convergence difficulties
of conventional field theories. As is well known,
the conventional theories contain linear "free-par-
ticle" parts; the nonlinearities enter only via the
interaction Lagrangian. For example, the interac-
tion is of the order 3 in fermion-boson fields, and
of order 4 in the terms describing the interaction
between different fermion fields. Both local and
nonlocal interactions have been employed. The
first departures from such minimally nonlinear
theories were undertaken by adding next-higher-
order terms to the Lagrangian. Examples of this
approach are the Heisenberg theory, ' which adds
a (gP)' term, and the chiral theories which add y'
terms. ' In the newer efforts such piecemeal en-
largements of the theories were abandoned in favor
of the introduction into the interaction Lagrangians
of massive nonlinearities, i.e., of series of terms
up to infinite order in the fields, which are for-
mally written as functions of fields. Both algebraic
and transcendental functions have been employed.
A relatively recent survey of these developments
is given in Ref. 3.

In attempting to construct a convergent field the-
ory perhaps the most obvious and, unfortunately,
unsuccessful choice is the introduction of cutoff
form factors in the vertices of the interaction La-
grangian. As is well known, the reasons for this
failure are that the form factors must contain re-

tardation because of the requirement of Lorentz
invariance, and thus upon quantization are simply
equivalent to the introduction of an intermediate
boson field. This intermediate boson field now is
beset by all the divergences of the original field
theory.

One now is left with the other possibility which
is to change the form of the propagators. To
achieve this one must modify the free-field La-
grangian rather than the interaction Lagrangian.
This is the guiding thought of the present work.
Our program thus is the following: Modify the
free-field Lagrangian, and change the interaction
Lagrangian only to such an extent as required by
Lorentz and gauge invariance. This way all in-
variance requirements are built into the theory
ab initio; the theory is manifestly covariant
throughout.

In the present paper we shall describe the field
theory of a charged fermion field, g, interacting
with a neutral vector-boson field, A„. Upon quan-
tization this would represent, for the case of a
massless boson field, a generalization of quantum
electrodynamics (QED). In this work we will try
to maintain linearity in the $ field, i.e., the fer-
mion field, and allow infinite order of the free-
field operators. Then, as a consequence of charge
conservation, one is forced to introduce infinite-
order nonlinearity in the photon field, i.e., the A.

field. This way one obtains equations of motion
which are formally linear in the g field; a massive
nonlinearity of the g field arises only indirectly
via the interaction with the A. field. Because of the
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appearance of infinite-order derivatives it is ad-
vantageous to write the fields as functions of hyper-
complex numbers, ' i.e., to enlarge the Minkowski
space of the coordinates to a Clifford-Minkowski
space. As we shall see, this not only allows us to
write formulas in a concise form, but, more im-
portantly, turns out to be a powerful tool in the
mathematical manipulations needed in deriving the
results, i.e., in demonstrating the physical content
of the particular field theory under investigation.

The paper is organized as follows. In Sec. II we
introduce the Lagrangian of the. noninteracting g
field giving a certain justification for the ansatz of
the particular Lagrangian on which we concentrate
in this paper. We then derive the free-field solu-
tions and describe their properties. Finally, we
determine expressions for the conserved quantities
of this theory. In Sec. III expressions are given
for the Feynman propagator of the theory. We do
this in order to elucidate certain properties of the
infinite-order equations of motion of the g field.
The interaction of the fermion. field with the photon
field in a manifestly gauge-invariant manner is
achieved in Sec. IV by means of minimal coupling,
i.e. , by the substitution of p- p- eA in the free-a-
field Lagrangian. This way we ensure charge con-
servation of the P field. By use of Clifford algebra
a very concise form for the field equations is de-
rived and the gauge invariance of the obtained
equations is explicitly verified. We demonstrate
how certain possible generalizations of the linear
field theory can be obtained from our field theory
by an inconsistent limiting process, and this way
we elucidate the reasons for the violation of charge
conservation inherent in those theories. Finally,
we also give a closed expression for the current
vector in the presence of the A field. In the con-
cluding Sec. V our results are summarized and
an outlook is given on the further developments of
the theory implied by the results of the present
pape r.

(h 8ll
t/)(xp+ yP} = Q t f(x~)

PR
y(x+yh)+ y(x- yh) =2+, "y(x) .

„=, 2n)! (3b)

Upon inclusion of appropriate factors Eq. (3a} is a
possible generalization of the Dirac operator (iy8)
and Eq. (3b) a possible generalization of the Klein-
Gordon operator D. For spin--,' particles it is ex-
plicitly

h2n—„[y(x+yh)- y(x-yh}]= P, , "(fy 8)y(x)

=by 8)y(x) .

= P(x„}+hy„s"g(x„}+' '

In this expansion odd and even powers of the Lo-
rentz scalar y„8"=—y 8 occur. Even powers have
Dirac unit-matrix operator properties because
y„s~y„s"=8 8~=- . Thus even powers of (y8) are
associated with spin-0 particles and odd powers
with spin- —,

' particles. In order to separate the
properties of spin-0 and spin- —,

' particles we con-
sider the following linear combinations of nonlocal-
ities:

(hy, 8)2n+1
!!(x„+y„h)—y(x„-y„h) =2+

(2 1, y(x„),

(2a)

y(x„+y„h)+ y(x„-y„h) = 2Q 2, y(x„),(hy 8) "

n-"0

(2b)

where Eq. (2a) is suited for fermions and Eq. (2b)
for bosons. Using the properties of the y„matri-
ces and observing that symmetrization of the y&

8"
products is not necessary, we obtain

h2 I
g(x+ yh) —g(x —yh) = 2g, CP(hy 8)P(x),2n+ 1)!

(3a)

II. LINEAR FREE-FIELD EQUATIONS

NONLOCAL. IN CLIFFORD SPACE

We propose in this section a theory for spin--,'
particles with nonlocality in Clifford space. This
means that the value of the field variables g at a
point x„will be connected by the field equations
with the value of P at a point x„+y„h. The hyper-
complex numbers y&, i.e., the Clifford numbers,
are in fact the Dirac y matrices with [y„,y„]= 2g„„.
(We use Bjorken-Drell conventions. ') This non-
locality is defined by the Taylor series'

~
h~ has a meaning of a small "elementary" length;

thus (hys) is dimensionless, and transforms like a
scalar under Lorentz transformations. The value
of ~h~ should be sufficiently small, so that no con-
tradictions arise with known experiments. 1/ ~

h
~

corresponds to a "cutoff" mass and may be very
large, for example larger than, say, 100 GeV.

The free-particle spin--,' equation now reads

'[y(x+yh—) y(x yh)-] my-(x) =O-.
2k

(5a)

Similar arguments may be used to generalize the
Klein-Gordon equation. This way one obtains from
(3b)



a-'[y(x+ yf()+ q (x —ya) -2q (x)] —~'q (x) = 0

It is understood, that the y„matrix of the argu-
ment of the P functions operates on (I), as defined
by the Taylor expansion Eq. {3a). That is, we
should write (x+yh)W() rather than p(x+yh). Never-
theless, we shall use the notation of Eq. (5) since
no ambiguities will arise.

The above equation is a functional equation and
is derivable from a variational principle. Before

demonstrating this, let us investigate a more gen-
eral case of a nonlocal Lagrangian,

g =g(y(x), y(x+a), p(x- a)) .
Using Hamilton's principle

6 d kg=0,

we obtain, if, as usual, the functions are not var-
ied at the boundary of the support 8 of Eq. (7), the
following equation:

Bg sgaq(x)+, -ay(x+a)+ aq( -a)) .
sy x) &y(x+ a) sy x-a)

We find an expression for i)y(x+ a) using the fact that a formal Taylor expansion is possible and that 6
commutes with the differentiation operators,

We integrate Eq. (Ba) by parts and drop the surface terms The r. esult is

0= u' +P, (a„ag' +P, (- „e")" )5y(x) .sqx „,n!»qx+a „=, n! " sq x-a
The operator g(-a„s ) /n! is a linear displacement operator; it translates in Eq. (9) the function

M(q (x), cp(x+ a), y(x- a))/Sp(x+ a)

from the point x to the point x- g. We thus obtain

&S(cp(x), y(x+ a), y(x- a)) &S{y{x-a), p(x), q (x- 2a)) &Z(y(x+ a), p(x+ 2a), y(x))
sq (x) s y(x) &q (x)

(9)

that 18)

0= d'x5cp(x) [Z(x)+Z(x- a)+Z(x+a)] .
g sp x)

(10b)

The Euler-Lagrange equation now reads

[Z(X)+Z(x- a)+Z(x+a)] .
sy x)

Equation (11) can be derived directly from Eq. (8) if the support Ss a is taken to be larger than the support
8 of g [this assumption is equivalent to the assumption that surface terms can be neglected in derivation
of Eq. (9)].

The variation of the Lagrange function is

d'x~Z
S

d'x, ' 5p(x, )+ d'x, ' 5V)(x, +a)+ d'x, ' 5q(x, -a) .sZ(x,), sZ(x, ) sZ(x, )
g 8+ Xy g p X2+0 g ~p X3 —0
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Setting x=x, +a, x=x, -a, x =x„we obtain

0=
S

BZ(x)
( ) d, BZ(x- a)

( ) d, BZ(x+a)
5 ( )

Now, following the assumption that the support of the integrals has the above-mentioned property,

S( S- a, SC:S+a,
we obtain (10b), where from the variational Eq. (11) follows immediately.

A generalization of the variational principle is obtained immediately for the case where J is not only a
function of the field variables at different discrete points, but also a function of a continuous region of
points, that is,

C

g=Z p x, g x+a
y

~ ~ ~
y px+p dp

a

We have

0= d'xM;

Bg ~Zu'x, . )))(x) ))((x+a) ~" + &) ))('(*'))),By(x} By x+a B Ii)ix+

and herefrom we obtain as in Eq. (10b)

d'x 5(p(x) Z(x)+Z(x- a)+ ~ ~ + dy
8 BZ(x- y)

By(x) Bp(x)

where

S(x- y) =Z(y(x- y), y(x+ a- y), . . . , (c- f))qr(x)) .

The Euler-Lagrange equation (11) now reads in
the generalized form

0 = gg(x- a,)+ dy . (11')BZ(x- y)
a=a

We now derive Eq. (5) (spin--,' equation),

(i/2h)[g(x+ yh) —P(x- yh)] —m P(x) = 0,
and its adjoint,

(-i/2h*) [y(x+ yh") —y(x- yh*)] -m T()(x) = 0,
(12)

from a Lagrangian, which we will define presently
Let us first explain the adjoint wave function in
Eq. (12) more thoroughly. We have (yt =yoyyo}:

(hy, B)n
y(x+yh) =- g, y(x)

=
Ct (x)Q

Pg 0

= P(x+ yh*) .

Consider now the Lagrangian

2 = (i/2h) T))(x)[)I)(x+yh) —Ic)(x-yh) ]
—mT) (x)y(x) . (13)

Equation (5) follows directly from M/6g= BZ(x)/
B(T)(x}= 0. We calculate now 52/6g using Eq. (11}.
With a =yh this equation reads after straightfor-
ward calculation

0 = ( i/2h)[T(-)(x+ yh) —)T)(x —yh)] -mT()(x) .
A comparison of (12) and (14) shows that there are
two possible choices of h:

(14)

h- h*

h =-4*,
(15)

that is, h must be either a real or an imaginary
number when the Lagrangian (13) is used. As it
is the simplest possible Lagrangian, the "principle
of simplicity" causes this result. Another way to
understand (15) is to note that the operator (1/h)
sinhg [see Eq. (18}]would not be Hermitian other-
wise. We investigate the theory with real h, as
it will turn out that then all the poles of the Green's
function lie on the real axis. In the Appendix we

give a short discussion of the properties of the
theory with imaginary h, where the poles lie in
the complex & plane.

Let us now introduce an operator notation which
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-hy a eh@ I}

!!/(x) -my(x) =0, (16)

will be of great convenience later. The field equa-
tion (5) obviously can be written

which is the usual Dirac problem.
We gain more insight about the kinematics of

our new wave equation when we "square" Eq. (22).
We obtain

(1/h)(sinihy s)P(x) —m P(x) = 0 . (17)

where exp(hy s) =g(hy s)"/n! is the Taylor ex-
pansion operator. Equation (16) may be equiva-
lently written

(1/h') sin'[h(p')"'] =m'

which yields with

&l/fJs —= are sin(hm)

the following solutions:

(25)

Using iy„su =p we obtain

(1/h)(sinhgq(x) —mP(x) =0, (16)
h(P')"'=M h

h(P')"' = 2n+ M,h, n = 1, 2, ... . (26)

or, formally,

i!y(x) -mq(x) =0

with the operator

sin(hP) ~ h"
h!/l ~ (2n+ 1)!

(19a)

Note that because of P = v —k, we get

(uP —k )'/' =M

(aP —k')"' = M„' =(vn/h)+M„n =1, 2, . . . . (27)

We see that the usual dynamics is not changed as
the usual dispersion relation holds:

(19b)
aP =(M') +k (26)

We now solve (17) for the case of plane waves,
i.e. , we set

y"(x) = w"(p)e ""u'",
]+1 for r=1, 2r=12341 erj 1 f 34y ~

Equation (17) then reads

(20)

(21)(1/h) sin(e, hy„P" )w" (P) —mw" (P) =0,

or, written in analogy to Eq. (19), explicitly
showing the matrix operators (p' =p„p"= uP —k'
is a number),

The only difference is that a discrete spectrum
M„of masses appears. From (26) we have

M, =m+-,'(mh)'m+ ~ ~ ~ . (29)

This equation means that for the mass M, a finite
mass renormalization is effected. For n40 a
"cutoff" spectrum of masses has been found. Note
also that the roots of Eq. (27) would become com-
plex for hm&1.

When solving the plane-wave equation (22) we
found that the solutions were usual Dirac plane
waves with a mass defined by Eq. (23). Inserting
(25) into (23) we obtain

(30a)
'

e„pw "(p) -mw"(p) =0 ~

Defining the numbers

(22) This means that

(30b)

h (p2)1/2

sin[h (p2)1/2] 1

(22) can be written as

e„pw (p, 0) —Qw (p~ 0) = 0

(23)

(24)

and we found that the values of 0 are discrete.
Therefore the solutions of Eq. (21) must bear an
additional discrete quantum number n, which be-
longs to the mass spectrum. The solutions of
Eq. (21) are then given (cf. Bjorken-Drell) by

1 0 p, /(E +M'„)

P,/(E+M'„) P /(E+M„')
PJ(Z+M'„) -P,/(&+M'„) 0

P /(E+M„')
-P./(E+M'„) (31)

We now show that the free-spin- —, equation has divergence-free tensors which define differentially con-
served quantities. We start with a divergence-free four-vector which thus can serve as current four-vec-
tor. As we possess a Lagrangian, we could derive it by means of a generalized Noether theorem. Much
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easier and more instructive for later developments is to construct the current vector from the wave equa-
tions (5) and (12). We multiply Eq. (5) by g(x) from the left and Eq. (12) by p(x) from the right and write
these equations using differential operators as in Eq. (17):

g(x}h 'sin(ihy 8)g(x) -mg(x)g(x) =0,

y(x)h
' sin(-ihy 8)q(x) —my(x)p(x) =0.

(32a)

(32b)

The difference of both equations is

0 = g(x) sin(ihy ~ 8)g(x) + g(x} sin(ihy ~ 8)p(x),

or, explicitly,

@2n+ j.. . y(x)[(r 8}'""+(r 8)'""]y(x)
n=O

(34)

Our task now is to express

q(x)[(r. 8)'""+(y 8)'""]y(x)

as a divergence of some operator. In the case n =0 which gives the usual Dirac current it is simply
8&(py" p). In the theory of the Klein-Gordon wave equation the similar expression

0 =@*(8P~—8„8")y

occurs. The divergence equation there is

0 =8 [cp+(8"—8")p]

In analogy we expect

g(x)[(y 8)'""+(r 8)'""]t(x) =8„+(-)"[t(x)(r.8)'r'(r 8)'" 'g(x)1.
A=Q

Simple differentiation proves this identity. Thus we obtain for the current after insertion of all necessary
factors

j„=ey(x)8P(x)

with

(35a)

kl 2n

(35b)

For h-0 this expression reduces to the usual egy„g.
The energy-momentum tensor in the Dirac theory is given by

LP(rll sv ylsv)y

This is a Hermitian, but not a symmetric tensor. Symmetrization is effected through terms like

P(y'8" r"8")4-
In analogy to the current derived above we try the ansatz

2n2 2 +, ,
(~4)'b'&" y'& Rr &)' 'I t. -"" (36)

As this tensor is not symmetric we have to prove both divergence conditions:

e„T"'=0, e,T""=0.
%'e begin with the first form:

(3V)
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rr" -"=ii(' gT (-)'a*" (r r)'[F,r'r" +r,r'r"-r„r"i' —i,r'i")(r'r)
i)=0 ))=0 (2n+ 1)!

=--'*)r PQ,„„I,(r»"'I'"-'")(r')" I(
5=0 k=o

-!(( P (r r)'(r"- r')(r')" "'I('., (2n+1)!

VWhen adding the two terms on the right-hand side, only the term with k = 0 in the second part of the total
sum and the term k = 2n in the first part of the total sum remain:

2n+1 an+ 1
8 T("=-—iT() Y

2h ~ (2n+1)! 2h ~ (2n+1)!(r r)'"' (i"-r") ( (( -~— (r"-r")(r')'""I(.
n=O

Using the wave equations (5) and (12) we finally obtain

B~ T"'= mg[B~ —8']g —$[B"—8 "]mg

We now prove the second part of Eq. (37):
k 2n

B„T"'=-2ig Q Q, (r 8)'[B,r"8"+r"B„B'-r~B'8,-8'r" 8„](r 8)'" "[g.
n=o k=o

Only the middle terms remain'.

kI 2u

) = ' P Q ( (r )i )'r , (r i )'" '"—(r i)'"r (r r )'" '
)I

.
n=0 k=O

Again the sum over k cancels out up to four terms: k =0, 0 =1 for the left term and 0 =2m, 4 =2m —1 for
the right term. We obtain explicitly

i r'"=-liil ~~ (r'(r" r)(r r)'""-(r i)'""(r»r'-(r ')r"(r r) '(r')''""""r"(r '))Ip.
J~ (2n+1)!

We can use the field equation as before and arrive at

B,T""= (r„(r 8)-mt m4(r B-)r„4+4(r 8)r„ml+~r„(r 8)4

With this result the proof is completed that Eq.
(36) indeed is divergence-free. As this expression
reduces for h-0 to the Dirac energy-momentum
tensor we expect it to be an appropriate form for
our further investigations.

Our intuitive method in deriving j„and T"' may
be made more understandable by simple means.
Let us consider the expression (37) once more:

O = f(~)[D(r ~ 8)+ D(r ~ 8)]g(~). (37')

Equation (37') is a generalization of (37) in the
sense that f, g, and D are arbitrary. We may fur-
ther write formally'

o=f(~)[(8 +8 )~"(r 8 r 8)]g(x)

=8 [f(~)~"(r 8 r 8)g(&)].

D(ra)+ D(rb)
a„+b„

Solutions of (38) in our special case are easily
found, if we "forget" for a moment the matrix
character of the involved functions:

D(a) + D(b) sin(iha)+ sin(ihb)
a+6 a+6

(36)

I 2n +2n+1 ypn+1

(2n+1)! a+b

I 2n 2n

P ( ))) a)) b2n-)) (39)„,(2n+1)!, ,

The characteristic function J"(ra, rb) is defined by
the functional equation
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We regain the matrix character using the apparent
symmetry of Eg. (38):

J"(a„,5„)= Z"(b„a„). (40)

As usual, we are able to give explicitly all
Green's functions in momentum space. Let us in-
vestigate as an example the Feynman propagator
S~ which reads in momentum space

S (x' - x) = " e-'""'-"'S (P)
d4*

(2v)'

We have

(41)

h ' sin(hP„)S~(x' -x) —m S~(x' —x) = 6'(x'- x),

(42)

which has the following explicit solution in momen-
tum space:

I
h ' sin[(h + ic)P] —m

' (43}

The integration path is specified by the small
quantity +ic. This method of defining a procedure
to insure convergence in a well-defined manner
has been introduced by Sommerfeld. The resulting

Equation (33) is symmetric in a, b. Replacing a by
a,y' and b by b„y" we have to introduce y" some-
where. Because of the above symmetry the only
appropriate place is between a' and b'" "; we ob-
tain Eq. (35). A similar derivation is valid for the
7.'""tensor. However, care must be taken in plac-
ing the required Dirac matrices.

III. FEYNMAN PROPAGATOR FOR

FREE SPIN- 2 PARTICLES

integration contour, when transforming back into
position space, ls shown 1n Fig. 1 for Sy(p). The
integral can be evaluated deforming the path of in-
tegration as indicated by the dashed curve in Fig.
1. Since the path of integration has been specified
above, we omit the factor +ie from Eq. (43).

To rationalize the denominator we multiply with
h 'sin(hP)+m and obtain

[j(/h(j )'"] .[h(j'}"l.
(1/h2) sin2[h (P~)'~2] —m2

ur„=~(h '[wj —arcsin(hm)]'+h']"'

for n=~(2j), j=1,2, . . . . (45b)

As the propagator has an infinite number of
poles, it has a meromorphic expansion

S.(P) =g
M„=h '[ vj+arcsin(hm)]

(46a)

for n=2j+1, j=0, 1, 2, . .. ,

+ Sl
2 2

It~0 P

i.e., it goes over into the conventional form of the
Feynman propagator for h - 0. Incidentally, this
limit again demonstrates the way one must treat
(p2)1/2 at p2 0

From Eg. (44) it is obvious that there exists an
infinite number of poles on the real axis. Their
location is shown in Fig. 2. We shall number them
with the index n as indicated in the Fig. 2. Thus,

~„= acth '[ vj+arcsin(hm)]'+h'j'"

for n=s(2j+1), j=0, 1, 2, . . . (45a}

M„=h '[ vj —arcsin(hm)] (46b)

for 'N=2jy j=ly 2y. . .
The coefficients a„are easily calculated to be

a = (-)"+i(1 h2mn)-u2

We may now perform the energy integration
(7 =f-f'),

] +00

S~(k, 7) = — S~(k, ~)e' '&ur

(4V)

( )II+ 1

n=1

$ Qpf' g p + Pffft

P -M„+it
FIG. 1. The solid curve shorvs the integration path

in the complex energy plane for the Feynman propagator;
the dashed cuxve gives a possible deformation of the
integration path which may be suitable for the complete
calculation of the propagator.

In the above equation the order of summation and
integration has been exchanged. Every term in
the sum may be evaluated by the usual residue
method in the complex plane. This way one obtains
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for 7 &0

for 7 &0.

(49)

Formally this result may be written as an integra-
tion over the propagator (48), but this cannot be
easily evaluated. We conclude this discussion by

noting that as can be seen from the alternating
sign (-)~ in Eq. (47), the Green's function S„has
self-regularizing properties as first introduced

by Feynman. '

(P —eg)"=((p —eg) ~ ~ ~ (p' eg))-, (51)

where ( ~ ~ ~ ) means that the quantity has been sym-
metrized in the n factors of P - eg. Thus we have
for (41)

IV. GAUGE-INVARIANT NONLINEAR

COUPLING WITH THE PHOTON FIELD

To insure gauge invariance we introduce the
interaction with the photon field by means of the
usual minimal coupling, i.e., we replace p' by
p —e8. Such an ansatz is manifestly gauge-in-
variant because our field operators are (infinite)
polynomials in p. Thus an addition of sA/sx& to
&„can be neutralized by a phase factor e-"~ in
the wave function, that is,

ga„(p —eA')" g -Qa„(p' —eg —ey 9A)" e ""g.
(50)

Here we understand the operator (p' —eg)" as

ga„((p —eg —ey BA)" 'y")(p„—eA„—eB„A)e "~g =pa„((p —eg —ey ~ sA)" 'e "A(p —eA))g.

This procedure may be continued n times, yielding
finally the following result:

pa„(p —eg)" p —e"~Q a„(p' —eg)" g . (52)

This way we see that our operator h 'sinhg goes
over into h 'sin[h(p' —eg)]. Our field equation (18)
reads now

U(h) = exp[ih(p' —eg)],

U(-h) = U-'(h) = e~[-fh(P -,g)],
U, (I) =e*"'

U, ( h) = U, '-(h) = e-

(54a)

(54b)

h ' sin[h(P —eg)] q(x) —my(x) =0. (53)
The operator U(h) may be defined by the differen-
tial equation

This equation is gauge-invariant and linear in P;
however, it is nonlinear and nonlocal in g&.

We will presently give a better form of the in-
volved operator sin[h(P-eg)] so that some nonlocal

properties of the above equation become more
transparent. Let us therefore investigate the gen-
eralized translation operator

exp[ih( p —eg) ] = exp[-h(y 9 + i eg) ] .

-fs„U(h) =(p'- eg)U(h) .

We now introduce an operator V(h) by

V(h) = U, -'(h) U(h),

V(-h} = U, -'(-h)U(-h) .

(55)

(58)

This operator is equivalently defined by the differ-
ential equation

We define fs„V(h) = eU, '(h)g'U, (h)V(h) . (57)

-5= n -4=n

J=2

2=h 3=f1 4=n 5=n

Res)
J=2

FIG. 2. Positions of the poles of the propagators. The poles are numbered from n =—~ to n =+~, n & 0; n =+1 are
the usual poles which remain in the hmit h 0.
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This may be seen by direct differentiation of the
definition (56) using (55):

is „V(h) = [is„vU '(h) ] U(h) + UU (h) [is„v(h) ]

=PU, '(h)v(h)+U, '(h)(-P+eg}V(h}

= v, -'(h)Pv(h) v,—'(h)-PU(h}

+ U (h) egvo(h) U (h) U(h) .

The solution of (57) is
h

y(h)=e p(-'e U, '(5')g(x)U, (h')dh'), (55}
G

where we have used V(0}=1. Using (56}we obtain

U(h}=U(h}e p, (-'e U'(h }d,(xlU'(h }dl ,).''
0

(59)

Equation (59) may be written much more concisely

by observing that U, (h) is only a translation opera-
tor acting on everything on the right-hand side with
the useful property

U()(h) [A(x)B(x)]=A(x —hy) B(x —hy)

= [V,(h)Z(x)][V,(h) B(x)] . (60)

h

exp -ie x+h'y dh' x
0

because

(61)

In Eq. (60) we have dropped gauge-invariant terms
of the form g„,F"". This means that the operator
equation

h

exp -ie U, 'h' x U, h'dh' x
0

may be written as

exp ie -U, '(h')g(x)v, (h')dh' g(x) = g dh ' dh ' ~ ~ ~ dh "U, '(h ' Q(x)U, (h ')h (-ie)"
0 n=0 yg t

xU, '(hl")d'(x)U, (hl") U '(hl"')x((x)U (5'"l))p(x).

Now using (60) we obtain

dh ' dh ' dh'" [U '(h ")g(x)]U '(h ")U (h ")[U -'(h ' )g(x)] U '(h ")U (h ")' ' '

tl = p

x [U '(5 " )d(x)]rl '(5 "')ll (5 "
))P(x)

dhl ldhl l . . dht &X((X+ hi'ly)d(X+hl"y) d(X+hl'ly))P(X)
(-ie}" ]5

7t 0
l

Here again gauge-invariant terms of the form a„„F"'have been omitted. Using Eqs. (59), (60), and (61),
we obtain

h

exp[ih(d —ed)]P(*) =e' i exp (-
' d(x+5'y}dl ')5(x)

0

h

=exp -ie x+ h' —h y dh' x —yh .
0

(62)

Here it is understood that the y matrices in the argument of P operate not only on g, as mentioned earlier,
but also on the exponential before it. We shall retain the notation of (62) as no ambiguities will occur at

the present. [See, however, below, Eq. (78)].
Introducing a new variable h" =h —h' we obtain

h

e p['h(P —ed)]d(x)=exp(-'e d(x —5"y)dh")P(x —hy).
0

(63)

A similar result may be obtained for the operator e '[~ '"]". It is sufficient to replace h by -h in (63) and

to transfer h" into -h'. The result is
h

exp[-ih(p —eil')]d(x)=exp('e (dxy)dhh')p(x hy)+.
0

This way the complete, gauge-invariant, Eq. (53) now reads

h

(hie) ' e p
-' x((x —5'y)dh' P(x —hy) — e p

' d'(x 5'y)dl' P(x+hy)I —md(x)=5.
0 0

(64)

(65)
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We now check the gauge invariance of the above equation. Note that the gauge transformations should be

g(x) —g(x) + ysA (x),

g(x+ hy) —g(x+ hy) + y 8 A(x+ hy),

g(x —hy) -g(x —hy)+ ysA(x- hy),

y(x) e -ieA(2()g(x)

y(x+hy) —e "A("'""')q(x+hy)

((()(x hy} e ieA—(x-hz)g(x hy)

We need the transformation of the exponents:

l b h a
g(x-h'y)dh'- g(x —h'y)dh'+ y ~ sA(x-h'y)dh'.

0 0 0

The right-hand side may be rewritten using

J yaA(x —h'y)dh' = — s„,A(x —h'y)dh'
0 0

=A(x) -A(x- hy) .
Similarly we would obtain the result for the other exponent. We thus have

f h

g(x+h'y)dh - g(x+h y)dh -A(x)+A(x+hy),
0 0

f
h h

P(x —h'y)dh'- P(x —h'y)+A(x) -A(x —hy) .
0 0

(66)

(67)

(68)

(69a)

(691)

It is now obvious that the transformation of the exponent neutralizes the transformation of the (() functions.
Only an over-all phase e "A("' remains. Explicitly (65) reads after the gauge transformation

h

(2hi) ' exp ie g-(x —h'y)dh' —ieA(x) +ieA(x —hy) exp[-ieA(x —hy)]g(x —hy)
0

h
—exp ie x+6'y dh'-ieA. x +ieA x+hy exp -ieA x+hy @+ivy —m exp -ieA x x =0.

0 J

(70)

This means

[Eq. (70)]=e "A(" x[Eq. (65)].

Let us build a bridge to other existing theories which are either nonlinear in the field or nonlocal in the
interaction term To do .this we rewrite (65) to exhibit the interaction term:

h

(2M) 2[/(x —hy) —g(x+hy)] —m(i)(x) =(2hi) ' I —exp -ie g(x —h'y}dh' (()(x —hy)
0

—(22') ' ( —e p (e d(x+2'y)dh') 2(* hy).
0

(71)

Let us investigate the case h-0. The left-hand side reduces to the usual Dirac equation. In order to show
the behavior of the right-hand side, it must be given in powers of h. This can be done in two ways. The
first choice is to expand the exponential leaving the integral intact, at the same time going to the limit
h-0 in the argument of the fields. We obtain

h h(2— )2(*)=—' 4(*-h'y)dh'+ 2((*+2'y) dh') P(x)2h 0

d(x+h'y)dh')P(x) .
2h

(72)
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Equation (V2) is a particular approximation of Eq. (65); only the nonlocality in g has been preserved; the
nonlinearity in g and the nonlocality in (!)(x) have been neglected. The integral in Eq. (V2) may be evaluated
completely:

g(x+ h'y) dh' = — g h'"g(x) dh'
+h +I) ~ (y, s)&

2' 2a „„,n&

(,s)an
= e — h'" x„,(2n+ l)!

sin(hP) ~( )
sin[h(-O)~ ]

P h(- (72)

Another possible procedure is to perform an approximate integration of the exponents in (65). Using the
Eq. (73) the following result is obtained:

(p ~)y(&) (ee. (ehA(x) e ieH( -))yx(&)
1

Sgi

= h-' sin[he&(x)] q(x) . (74)

Only nonlinear terms in g have been retained. Equation (74) is local.
Both these approximate equations [Eqs. (72) and (V4)] are not gauge-invariant. This can be traced to the

inconsistent way in which the limit h-0 has been performed. However, going to the full limit h-0 we of
course obtain the inhomogeneous Dirac equation for both (V2) and (74). This shows in which way the gen-
eralizations of the Dirac equation such as either Eq. (V2) or Eq. (V4) are inconsistent. They may be fused
into a consistent gauge-invariant theory involving both nonlinearities and nonlocalities.

Now we will derive a divergence-free four-vector for the coupled equations which in the limit h-0 re-
duces to the Dirac-current four-vector. We begin with the field equations g and T(). First we derive an
equation of motion for the adjoint fields. We take A.„to be real, i.e., to be a linear combination of both
positive and negative frequencies. We recall y+=yoyyo. Another useful operator equation is

yOx y0 y exy

The adjoint of Eq. (65) is (recall that the A„ field is always real)

h

(phi) '
7i)(x —hy)exp ie x((x —h'y)dh' —p(x+hy)exp -ie d(xeh'y)dh') —mp(x)=p.

. 0 0

We multiply Eq. (65) by (!)(x) from the right, Eq. (76) by g(x) from the left, and subtract:

h

P(*) e p(-'e x((x —) 'y)di ' P(x' —hy) —P(x) exp 'e x((xeh'y)dh')P(x+by)
0 0

(V5)

(76)

h

+P(x —) y) exp(ie x((x —h. 'y)dh' li(x) —P(x+hy) exp -'e d(x eh'y)dh') P(x) =0.
0 0

(V8)

with

We may write the first and the last term in Eq. (V7) together after we have used (64). Similarly we treat
the middle terms of (VV) and obtain [recall the remarks after Eq. (62)]

g(x)[exp(-hy s) —exp(hy s)]!t(x)—T()(x)[exp(hy s) —exp(-hy ~ s)] $(x) =0,

h

X(*)= e"p (-'e x((x ' h'y)dh') d(*),
0

h

((x) = exp('e (* e() hIyP(dxh) . -'
0

(78)

We now want to write Eq. (V8) as a divergence of a. four-vector. To do so we investigate the operators

0 =exp(-hy s) —exp(+hy s), (80a)
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0' = exp(hy ~ a ) —exp(-hy ~ a)

more closely. VFe first separate the even and odd terms in the expansion of the exponentials:

(80b)

~ (hy a)'""+(hy a)'"" - (hy a)'"-(hy a)'"
(2m+1)! ~, (2n)!

+even ~oM

- (hy a)'"-(hy a)'" - (hy a)'""+(hy a)'""
{2n)! „(2m+1)!

(81)

@even + @0M

We now note the following identities;
a 2(l

g(x)n"'a(x) =a„g(x) g g, h'"(y a)'" 'y('(y a)-' B(x)

=- a„[A(x)J"B(x)],

I 2n

~(«)&'"'"a(«)=«, «(«) Z Z(«"-«'(, ~ '&" ' )&(*((2e) !
=- a„[g(x)Z'('11(x)].

(82)

They can be proven by direct differentiation. We obtain finally from Eq. (V8), inserting all necessary fac-
tors to achieve Dirac's current in the case h- D,

j„=—,
'

e[g( x)($„+K„J&(x) + q(x)JLS„-A„]!!(x)]. (83)

To complete the photon-electron interaction we add a possible generalization of the free equations for
the vector potentials. According to Eq. (5b) we assume the following form:

-h-'[Z„(x+ hy) +g„(x—hy) —2&„(x)]=0. (84)

Being a generalization of the equation QA„=O the Eq. (84) is valid only in the Lorentz gauge. By a proper
definition of the y matrices this equation may be made to be gauge-invariant. VFe shall not consider this
question here and restrict ourselves to the I orentz gauge. In this case the coupled equations for the A„
field read

-h-2[g„(x+ hy) +g„(x —hy) —2g„(x)]=1„,
where j„ is given by (83).

(85)

V. SUMMARY AND OUTLOOK

In this paper we have described a classical theo-
ry of a spin--, field interacting with a vector field,
which is nonlocal in the sense that the field equa-
tions connect the field at a given point x with the
fields of such points which are separated by a hy-
percomplex distance of order h from the point x.
Hence one could call it a hyperrelativistic field
theory. The field equations are local as far as the
Minkowski coordinate x is concerned. The theory
is Lorentz- and gauge-invariant, and it reduces to
the Dirac theory in the limit h —0. A particular
form of the Lagrangian was considered. Other
forms are possible and perhaps preferable. For
example, one may exponentiate also the mass
term, i.e., use as the basic form the operator
exp[fh(y P+y, m)] in Eq. (16). Also, one may gen-
eralize the Lagrangian by writing

dh'g O' P x e'" &'~ x, (86)

where a suitable g(h') is used. Equation {13)is
obtained with the choice

g(h') =(i/2h)[6(h +h') —5(h -h')] —ma(h').

Since the field theory is equivalent to a theory con-
taining infinite-order differentiations in Minkowski
space, it is formally equivalent to a theory which
describes a system of particles with an infinite
discrete-mass spectrum. By the choice of the
phase of the nonlocality parameter k they can be
made to have real masses. [Alternatively, they
can be made to be tachyons (see Appendix A).]
Therefore the Green's functions have self-regula-
tory properties; they can be considered to be rep-
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resented formally by an infinite sum over "ele-
mentary" graphs. Any graph computed with prop-
agators of the kind of (44) has a finite value. Fi-
nally, explicit expressions were obtained for the
current four-vector and the energy-momentum
tensor of the theory.

Since in a theory with infinite derivatives it is
difficult to write expressions for the canonically
conjugate fields, i.e., the momentum fields, all
manipulations were carried out formally without
their use in terms of operator equations involving
integrations over variables belonging to the Min-
kowski-Clifford space. This is important in view
of the next step, viz. , the quantization of the
fields; that will also have to be done without the
explicit use of Momentum fields. It will be per-
formed in terms of the conserved quantities of the
theory, i.e., in terms of the current four-vector
and the energy-momentum tensor. As the required
mathematics is not too familiar all results were
checked out by direct calculation.

We shall discuss the questions connected with the
quantization of the theory in detail in a forthcoming
paper. Nevertheless, it may be instructive to dis-
cuss some of the qualitative aspects already at this
point. To begin, let us discuss the vacuum polar-
ization. Since the current density is different from
that of the Dirac theory, the vertex function obtains
also a new form. Therefore the questions concern-
ing the convergence of the Feynman perturbation
expansion must be reexamined. This can be done

by noting that the requirement of gauge invariance
expressed in the form P„j"=0 can be used to esti-
mate the asymptotic behavior of j for large p,
namely, the charge-conservation condition can be
fulfilled identically only if the expression P„j"for-
mally reduces to the equations of motion. Thus
asymptotically in momentum space there must hold

(88)

This must give rise to a quadratic divergence of
the lowest-order vacuum-polarization graph as it
is of the form

I
I d'pi GK . (89)

This is true for any gauge-invariant theory, e.g. ,
for the usual QED. These considerations show
clearly the origin of the convergence of field theo-
ries where the question of gauge invariance has not
been considered. " Examples of such theories are
Eqs. (72) and (74), where the gauge invariance of
Eq. (71) has been lost because of an improper lim-
iting procedure. In the present theory the conver-
gence comes about by virtue of the fact that the
full gauge-invariant graph having one virtual elec-

tron-positron pair is, in fact, described by a
superpropagator in which in addition to the pair an
arbitrary number of photons is exchanged between
the two vertices. Each of these graphs by itself is
not gauge-invariant. In particular, the lowest of
the graphs, in which no photon is exchanged be-
tween the vertices, does not fulfil (88). Thus here
(89) can be, and in fact is, convergent. The graphs
in which in addition photons are exchanged between
the vertices have additional propagators, and are
also finite.

In the present paper we have treated explicitly
only the case of "electrons" and "photons. " No

difficulties arise when introducing hadrons. Thus,
one could describe the meson-nucleon interaction
by using the replacement A. „-8„y, of course aug-
mented by the necessary isospin, etc. couplings.

All these fields and coupling constants are unre-
normalized quantities.

Similarly one can consider the weak interactions.
In fact, they are of particular interest in the pres-
ent context since the weak coupling constant has
the dimension (length)'. One may thus suspect

h' =const ~G, (90)

where the constant depends on the details of the
manner in which one chooses to write the weak-
interaction Lagrangian. At any rate, this would
imply a value for h ' of the order of 300 GeV. The
weak interactions this way could be said to be re-
sponsible for the convergence of strong and elec-
tromagnetic field theory —a frequently mentioned
speculation. The unphysical result of the usual
theory that the weak processes, e.g., neutrino
scattering, violate unitarity at E & 300, GeV pre-
sumably will be eliminated by higher-order rescat-
tering via "weak" vertices which at that energy
have, in fact, become strong. In conventional the-
ory the relevant graphs, which are essentially
vacuum-polarization graphs, diverge quadratically,
while here they are finite.

Having finite solutions the theory will force a re-
thinking of the question of physical interpretation.
To begin with, the parameters of the theory, the
masses and the coupling constants appearing in the
Lagrangian, are bare quantities. The clothed par-
ticles must be obtained from solving the coupled
equations, i.e., one has to compute the finite re-
normalizations. This way one will obtain explicitly
composite structures for the particles; they will
contain an arbitrary number of bare particles—
they will exhibit parton properties. "

As a final point we mention that in higher-order
corrections the present theory will yield somewhat
different values than the renormalized @ED. (The
lowest-order graphs are insensitive to the kind of



modifications of QED effected by the present theo-
ry. ") The expected magnitude of these deviations
will be of the order m, h (m, is the electron mass).
For example, the value of g-2 for the electron
would be changed by (c)/2v)m, h -10 '(n/2v) which
is about at the limit of the. present experimental
and theoretical accuracy. " An improvement of on-
ly an order of magnitude in the accuracy of the ex-
perimental number will be required to show devia-
tions of such a magnitude from the predictions of
QED. Needless to say, these estimates are highly
speculative; in particular, the assumption h'=G
is purely hypothetical.

To summarize the outlook, we believe that the
present theory can give a good starting point for
the investigation of many unsolved questions in that
it provides a possible framework in which to per-
form actual calculations.

Im M
)l

n=5 (g}

APPENDIX

In this appendix we investigate the properties of
the theory given by Eq. (18) with imaginary h. We

- introduce R new 1 eal parameter / by

(Al)

and obtain from Eq, . (18)

n=-1

. n=-6

[ I ' sinh(l j)) —m] g(x) = 0. (A2)

The poles of the Green's function are easily found
to be defined by

I 'sinh'[ l(P')"'] = m'.

We obtain in analogy to Eqs. (45) and (46b)

M„=+I '[svj+arcsinh(lm)]

for n = a(2 j+1), j = 0, 1, 2, . . . ,

M„= sl '[iw j —arcsinh(lm)]

for n=+( j2), j=1,2, . . . ,

and we find the energy poles at

&u„=+(M„'+k')'" for n&0,

a&„=-(M„'+k')'" for n&0.

(AS)

(A5)

It is obvious that the values of +„are complex be-
cause the masses M„are complex. For j@0, M„ is
almost completely determined by the term fvj/l.
In Fig. S(a) the masses and in Fig. S(b) the poles
in the complex energy plane are shown.

All formulas derived so far can be rewritten us-

FIG. 3. The singularities of a theory with purely
imaginary h: (a) The complex masses of the noncausal
theory. Only the masses n =+1 are real. The other
masses correspond to tachyons. (b) The poles of the
propagator in the complex energy plane.

(-)'(1+I'm') '"
y p —M„+)c (A6)

The energy integration [Eq. (48)] can be carried
out and the result is completely different from Eq.
(49) since two corresponding poles are always to-
gether in the upper (n&1) or lower (n& 1) part of
the energy plane [see Fig. S(b)]. (The poles 0=+1
lie as usually on the real axis. ) As is well
known, ' the resulting Feynman propagator is non-
causal.

ing Eq. (Al). We quote here only the result for the
meromorphic expansion of the Feynman propagator
to stress the noncausal behavior of such a theory.
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In a preceding paper, we have calculated the radiative correction to the "triangle anom-
aly, "using source-theoretical techniques. Here we apply the same methods to a different
causal arrangement, and obtain the same result, giving a total anomaly through order 0,
pxoportional to 1+0/2x. In order to obtain this result, we found it necessary to compute
(for m = 0) the fix st radiative corrections to the me photoproduction amplitudes, which are
presented here for the first time.

I. INTRODUCTION

In a preceding paper' we have shown that the
low-energy theorem for pion decay is subject to
radiative corrections, as expressed by the factor

I= 1+(y/2m+ 0(n ) .

%e showed there that this result is not in forrnal
disagreement with that of other authors, since the
low-energy theorem is necessarily expressed in
terms of the gNlV coupling constant at zero mo-
mentum transfer squared.

The main purpose of this paper is to offer sup-
port to the calculational techniques used in I. One
of the important aspects of source theory is the
application of internal consistency requirements
by considering a given process under different
causal situations. The calculation of I was the
first not to employ the techniques of operator field
theory, so it would not seem inappropriate to offer
a second calculation using our methods. Whereas
in I spectral forms in terms of the pion momen-

turn were obtained, we will here derive spectral
forms in terms of the momentum of one of the
photons. Since the anomaly is defined for all mo-

. menta equal to zero, without loss of generality we
may set m „=0throughout.

The second purpose of this paper is to present
the lowest-order radiative corrections to the go

photoproduction amplitudes. Here we will con-
sider the case m, =0: This is a common approxi-
mation when perfox'ming calculations involving
pions, and is here done for the obvious reason of
kinematic simplicity; certainly this will suffice
for our calculation of the anomaly. To our knowl-
edge, those amplitudes have not been calculated
before.

To provide R bRsls for the rRdiRtlve corrections
to the anomaly, we will here compute the lowest-
order triangle process, which is defined by the
causal stipulations of Fig. 1. The vacuum ampli-
tude describing the production of two fermions by
an extended photon source, and their subsequent
annihilation into a photon and a pion, is [cf . Eg.
(&4) 1 (&x+ @=0)


