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An eikonal approximation for potential scattering at high energies is derived to second
order in 1/k for the Schrodinger equation. The procedure is based on the same assumptions
and restrictions introduced by Gl.auber, except that the derivation is carried one order fur-
ther. Vfhereas Glauber's solution provides for phase modulation of the incoming plane wave,
the second-order eikonal approximation, in addition to amending the phase term, turns out
also to include an amplitude modulation factor. This approximation, which is the result of
maintaining the original calculation to higher order, differs in general from the perturbation
correction by Vfailace of Glauber's first-order eikonal approximation, although both reduce
to the same correct solution for the special case of Coulomb scattering.

INTRODUCTION

The approach taken by Glauber' in deriving an
eikonal appxoximation for the SehrMinger equation
in potential scattering mas followed' by a corre-
sponding solution of the Dirae equation, and then
applied to various nuclear models for electron
scattering from heavy nuclei, where the Born
approximation becomes inadequate. The resulting
expression for the differential cross section agreed
with that obtained also by Schiff for use as a,

small-angle approximation, but was found to give
accurate results at all scattering angles. Some at-
tempt mas made to seek to justify the validity of
this approximation over the entire angular range,
but in any case it mas observed' that the diffraction
peaks agreed extremely mell in shape, although
somewhat displaced in scattering angle with re-
spect to those of phase-shift analysis. It mas noted
that merely changing the scale of linear dimensions
shifted the curves into correct position, and that
this high-energy approximation mas then found to
produce results without significant perceptible
deviation from those of an exact calculation. (See
Figs. 4 through 6 of Ref. 2.)

An analysis of high-energy approximations by
Moore4 made some interesting comparisons be-
tween a series expansion of the Glauber approxi-
mation and the terms of the infinite Born series.
It mas found that the first Born term is of course
reproduced exactly (as Glauber had pointed out),
but that if the subsequent Born terms are broken
up into on-energy-shell contributions (real inter-
mediate states) and off-energy-shell contributions
(virtual intermediate states), then further corre-
spondenees can be made. Every term of the Born
series may itself be expanded in successive powers
of 1/p, where p is the incident particle momentum.

It mas noted that the nth Born term is of leading
order V"/P" ' for the on-energy-shell contribution,
and V"/p" for the off-energy-shell contribution.
(Moore uses V for the potential itself as well as
its integral in the z direction, but since me are
making order-of-magnitude comparisons, me shall
not worry about this distinction. } The interesting
thing is that the Qla,uber expansion reproduces
exactly for every Born term the leading term of
the order of V"/p" ' at a/f scattering angles for
the on-energy-shell contribution, but completely
fails to reproduce any of the off-energy-shell
states of leading order V "/p".

There a.re tmo inferences to be dramn from aH.

this. One is that the success of the eikonal ap-
proximation is due to its inclusion of all the on-
energy-sheQ states to leading order for all mo-
mentum transfers, i.e. , aQ scattering angles,
despite the fa,ct that a small. -angl. e approximation
mas implicit in the may it mas originally derived.
One can look for alternate derivations or argu-
ments' to avoid making the small-angle approxima-
tion, but whether or not these are convincing does
not alter the fact that the result correctly repro-
duces terms of the Born series at all momentum
transfers, not just small ones. The second infer-
ence is that an important limitation of the Qlauber
approximation appears to be not so much an angular
restriction as it is the absence of off-energy-shell
contributions.

An extension of the Glauber approximation has
recently been made by %allace' in the form of a
perturbation expansion of the T matrix, obtaining
a set of ordered corrections to the Glauber formu-
la,. These mere applied to the particular case of the
Yukama potential, where they were found to ap-
proach the results of phase-shift analysis.

The fact that Glauber's result can (at least in
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particular cases) be adjusted' (by a simple "change
of scales" ) or perturbed' (in a T-matrix expansion)
with such success suggests that it might be fruit-
ful to pursue his original line of approach, but re-
taining now a higher order of accuracy from the
very beginning. It turns out that it is indeed possi-
ble to solve the Schrodinger integral equation con-
sistently to the next higher order in the expansion
parameter, simply by carrying Glauber's proce-
dure one step further.

THE INTEGRAL EQUATION

Following Glauber, we look for a solution of the
Schrodinger equation,

~
~ 4&ll -1''l

4I
(1)

by employing a trial function consisting of a plane
wave multiplied by an unknown modulating function,

y(r) = C (r)e'"' ' . (2)

The result is an integral equation for the unknown
function, which like Glauber we integrate by parts
in spherical coordinates over p, =cos8, obtaining

()o 2m' her" (1-p) p =+ 1

C (r) =1+, dr" d y . V(r —r")e(r —r")
77 p p zk

p

dr" dP dp
7T p -1 zk Bp,

(3)

Equation (3) is obtained by substituting (2) into (1) and making the change of variables r" = r —r' before
integrating by parts. For p, =+ 1 the vector r" extends from the origin of the double-prime coordinate
system in the + z direction, corresponding to directions parallel and antiparallel, respectively, to the in-
coming momentum vector k . Since for p =+1 there is no azimuthal dependence in the first integrand of
Eq. (3), integration over (t) becomes trivial for this term.

Glauber's approximation was made by dropping both the second integral of Eq. (3) and the p, = -1 contribu-
tion to the first integral, since (as we shall see explicitly) these are of higher order in 1/k, and hence of
1/kd, where d is a characteristic dimension of the scattering center. His resulting integral equation for
the unknown modulating function, retaining only the p, =+1 term, and converting from spherical to Carte-
sian coordinates and back to the single-prime variable, is

i
eo(x, y, z) = 1-— V(x, y, z')e, (x, y, z')dz'. (4)

Equation (4) has the exact solution

ip, (x, Z, z ) = zzp (-— V(x, p, z')dz'),

so that the wave function (2) becomes, when one is content with having satisfied integral equation (3) only
to first order in 1/kd,

i
p (x, p, z) =zxp(ikz —— V(x, z, z')dz') . (6)

We now investigate the consequence of satisfying Eq. (3) to second order in 1/kd. The (((=-1 contribu-
tion to the first integral of (3) becomes

2' - ter".(i-lj) ~ 00

4'' p p, ik
dr" d((t) . V(r —r")(k(r - r")i = — e ' (' ~ V(x, y, z')C (x, y, z')dz'.

85

This may be integrated by parts over z', obtaining for the leading term

V(x, y, z)C (x, y, z),1
2Skv
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which we note to be of second order in 1/k, plus successively higher-order terms obtained from repeated
integration by parts; these we can drop.

The last integral of Eq. (3) may likewise again be integrated by parts over p, , but this time we retain
only the y, =+1 term (of second order),

2m " „" " e"" ~' "' B(VC) 2m " „" 1 B(VC)—
4 ~, dr" dp dp, .

k
= —

4 ~, dr" d(f)
0 0 -1 Bp, 7l r Bp.

plus terms of still higher order in 1/k which may be dropped.
One must be careful in integrating (8) over azimuth, since the integrand becomes multivalued in the

limit p =1. This is best seen by writing it in terms of the 8 variable. The expression then becomes

(8)

lim dr"
2vjikv p p p

r" sin8 p B8

For fixed magnitude r" the integration over azimuth in this limit corresponds to evaluating the partial
derivative with respect to g as the tip of the position variable r" sweeps about the z" axis in all the dif-
ferent azimuthal directions, and then letting g go to zero. Unfortunately the non-Cartesian character of the
coordinate system presents a problem, but one can avoid having to deal with a multivalued partial deriva-
tive in this limit by transforming to Cartesian derivatives, which for a smooth function become indepen-
dent of azimuth at 8 =0. Then (9) becomes

I " I
lim dr"

27t'8kv e 0 () r sing
B V4 B V4 „ . B V4

dP „r"cos8cosg+ „r"cos8sing — „r"sin8 (10)

The last term of (10) is easiest to evaluate, becoming simply

1 . " „" B(VC) 1 "„„B(VC)
271kkv p p p p dz kkv. p Bg

, , I V(x, y, z')e(x, y, z')jdz'I ' 8

V(x, y, z)C(x, y, z).

The two transverse-derivative terms of (10) are not quite so simple. What keeps them (and the third term
as well, for that matter) from vanishing altogether in the limit 8-0 is the fact that the entire integral
over azimuth is being divided by sin8; otherwise the azimuthal integral of the term in brackets of (10)
actually vanishes in this limit. As it is, however, there is an indeterminacy to be evaluated. Thus the
first term of (10) becomes, again transforming the partial with respect to 8 (this time due to L'Hospital's
rule) into Cartesian partial derivatives,

I . 1
lim dr"

2mkkv () 0 tang
B(VC) „,
Bx

lim, dr" dP — „cosp1 . 1 " „" B B(VC)
2mukv e 0 sec2g 0 0 Bg ax"

] co . PP B2(V@)
lim dr" dP „,r" cos8cos'Q

27lkk'V g ~0 0 0

+ „„r"cos8 sing cosP+ „„r"sin8cosg . (12)
B'(Vc) B'(Ve)

8$ dx Bz x

As 8-0 the Cartesian partial derivatives approach their limit Values on the z" axis and may be taken out-
side the integral over p, whereupon the coefficients of the mixed partia1. -derivative terms vanish in the
azimuthal integration, leaving only the second partial with respect to x",

1 . " „„8'(VC) 1 " „„I 8'(VC)

z 82
dz'(z-e'), , V(x, y, z')C(x, y, z').

2kkv ax'
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There is a similar term involving the second partial derivative with respect toy. These two terms, together
with (7) and (11), represent the contributions of second order in 1/kd to the integral equation (3). Other
terms are of still higher order .Thus Eq. (3) may now be written

e(x, y, z) =1 —— V(x, y, z')C (x, y, z')dz'

1 1 g B2 B2
+ ~ V(x, y, z)C(x, y, z)+

2&
(z —z'), +, V(x, y, z')e(x, y, z')dz'. (14)

Equation (14) contains all contributions up to second order in 1/kd, as compared with Glauber's Eq. (4),
which included terms of first order only. It should be noted that no additional assumptions were made in
deriving (14) beyond those introduced by Glauber to obtain (4}; the process was simply carried one step
further. There remains the problem of solving (14), to obtain a wave function that satisfies the Schr5-
dinger integral equation to second order.

SOLUTION FOR SPHERICALLY
SYMMETRIC POTENTIALS + — z' ' 4 b, z' dz',8 ', BV(b, z')

The transverse second partial derivatives in the
last term of Eq. (14) may be taken outside the
integra1. , i.e. , the differentiation may be commuted
with the integration, provided only that the poten-
tial has continuous derivatives. ' lt is convenient
also to transform the expression in terms of the
impact parameter b =(x +y')"'. Equation (14)
then takes the form for spherically symmetric po-
tentials

dropping the term involving s4/sb which will be of
third or higher order. But spherical symmetry
of the potential means that

, 8 V(b, z') 9 V(b, z')
Bb Bz'

As a result this term becomes an exact differen-
tial, since again we can neglect the derivative of
C as of higher order. Thus

C(b, z) =1 —— V(b, z')e(b, z')dz'
Sv

+ V(b, z}C (b, z)
1

2Skv

2kkv b Bb Bb

1 B
2 + b —V(b, z)4 (b, z) .

(16)

Equation (15) therefore takes the form

x z —z' V b, z' 4 b, z' dz'. 15 Z

4(b, z) =1-—
Sv V(b, z')e(b, z')dz'

If it were not for the z' in the integrand of the
right-hand integral of (15), this integral would be
of the same form as the first integral, and one
could then simply look for a suitable function 4
which would make the integrand an exact differen-
tial. But the integral involving the added factor
z' is to be contended with. However, Eo. (14) is
correct only to second order in 1/k; this means
one is required only to find a solution which satis-
fies it to that order; in other words, one is free
to add or subtract terms of third or higher order
to the right-hand side of (15) if this facilitates the
solution. We also make the tentative assumption
at this point that the unknown function 4 will turn
out to have the property that its derivative is of
higher order in 1/k then 4 itself (as was true of
Glauber's solution). This will of course have to be
verified subsequently. Hence the term including
the factor z' in the integrand may be written

1
1 + b —V(b, z)C (b, z)

B

2hkv Bb

V b, z' 4 b, z' dz'. (17)

We look for a solution of (17) of the form

C(b, z) =f(V(b, z))

ixexp —— Vb, z Vb, z dZSv

(18)

where the function f(V(b, z)) is to be determined
so as to satisfy Eq. (17) to second order. This
will make it possible to evaluate the integrals on
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the right-hand side of (17) explicitly, since it will
make the integrand an exact differential. The ex-
ponential in (18) is chosen to provide phase modu-
lation of the incoming plane wave, just as in the
case of Glauber's first-order solution. The func-
tion f should have the property of reducing to the
Glauber result f =1 when terms of higher order

than the first are dropped from the integral equa-
tion. Thus f(V(b, z)) will have the form of unity
plus higher-order terms. This means it is of
zeroth order, and its derivative is at least of
first order.

When (18) is substituted in (17), and the inte-
grals explicitly evaluated, we have

8

f( V(b, z)) exp (- — 'V(b, z)f( V(b, i))d* )Sv

=exp —— V b, Z V b, z dZ
Z

Sv

I 8 z
1+b —V(b, z)f(1(b, z)) exp —— V(b, z)f(V(h, z))dz)28kv Bb hv

z 1+b ——exp —— V(b, z)f( V(b, z)) dZ . (19)
8 9

Bb Bb Av

The differential operators operate on everything to their right in each term of Eq. (19). However, in the
middle term the on]y derivative that need be retained is BV(b, z)/sb, since the derivative of 4 will contrib-
ute terms of third or higher order to the integral equation. In the case of the third term of (19) the first
differentiation results in

z 8 8 Z1+b ——exp —— V(b, Z)f(V(b, Z))dZ
2Mb Bb Bb Sv

x SV 8

1+b — ' Vb z dz exp —— V bZ Vb z dz 20

to second order, since the derivative of f contributes higher order. The second derivative operator in
(20) again may be considered to operate effectively on only the potential function outside the exponential
for the same reason, so that finally Eq. (19) may be written to second order, with the exponential factored
out,

f(V(bg))=1 — . , (1+b —
) V(b, z) f(V(b, z))+ J (1 e)

b' f(V(bz))dg . ,(21)

Equation (21) is equivalent to the original integral equation, which can effectively be recovered (consistent
to second order) merely by multiplying through by the exponential. The only difficulty in solving for f is
that it appears inside the integral on the right-hand side. However, since the function f consists of unity
plus higher-order terms, it may be introduced in both terms on the right-hand side of (21) and only the
unity part retained. A better way to see this is to be reminded that it is consistent to add or subtract
higher-order terms on the right-hand side of the original integral equation. We are therefore free to add
on the right-hand side of (21) the terms

since [1-f] introduces only higher-order terms; this is precisely equivalent to adding corresponding ex-
pressions to the original integral equation. With this addition to (21), we obtain the expression for f,

f( V(l„.))= 1 —„', ( 1 .b —,', ) V(b z) ~ „,', (
1 ~ b —,', )f, ' ",' dd . (23)

This is the solution to be substituted in Eq. (18) to obtain the modulating function for spherically symmet-
ric potentials,

e(l, )= 1 — 1 b —V(hz) —— 1+h — ,
' dz

I
1 s z 8 * SV(b z)

%kv Bb '
b ab „ eb

xe p( —— V(l, z) 1 — 1 b —V(b, z) —— 1 b — ' d dz).
( f ' 1 s Z s ' V(b z)

kv „ ' 2Skv Bb ' b Bb „ Bb
(24)
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It can be readily verified by direct substitution
that (24) satisfies integral equation (15) for spheri-
cally symmetric potentials, provided only than one
is permitted to add on the right-hand side of (15)
additional expressions such as (22) (multiplied by
the exponential factor) and terms involving deriva-
tives of 4, all of which are of higher order. Since
Eq. (14) was obtained by truncating expressions
of higher order than the second from the exact
integral equation, there is in principle no incon-
sistency in adding such terms. Glauber's solution
(5) is an exponential which satisfies the integral
equation to first order in I/kd; Eq. (24) is a cor-
responding exponential expression that satisfies
it to second order. The exponentia1 is retained to
all orders, but the function f is significant only to
second order.

When the modulating function (24) is introduced
into Eq. (2), the resulting wave function consists
of a plane wave modulated by the presence of the
scattering center not only in phase (as was the
Glauber solution) but in amplitude as well. This
wave function may be substituted in the expression
for the scattering amplitude,

f(e) = —
4 &. fe"'""")'(),e)j(v(l, *))

8

xexp —— V b, z V b, Z dz Pzd'b,
Sv

(25)

f(e) =—. Z, (qb)(e'"(" —1) bdb,
0

(26)

where, however, now

where e is the scattering angle, q =g —Q is the
momentum-transfer vector of magnitude q =

2k sin-,'8, n is the unit vector in the z direction,
and d'b = b dbdQ

At this point one either takes advantage of the
small-angle approximation or alternately invokes
the argument of restoration of time-reversal in-
variance' in the scattering amplitude. We shall
not here dwell. upon these arguments, since they
are precisely the .same as were invoked previous-
ly." The net result in any case is that the mo-
mentum-transfer vector q is taken to be perpendic-
ular to the z direction, so that the integral over
z in Eq. (25) becomes that of an exact differential.
With the integral representation of the Bessel
function, the result takes the same form as
Glauber's,

q(b) =- — V(b, z) 1 1+b —V(b, ,)
1 1 B

Sv „' 25kv Bb

z s ' sv(b, z)1+b — '
dZ dz.

Bb „ Bb

(27)

This is to be compared with Glauber's first-order
function, '

OO

Xo(b) = —— V(b, z)dz.Sv (28)

COULOMB POTENTIAL

Since the Glauber approximation provides the
correct solution of the Schrodinger equation for
the Coulomb potential, we should like the second-
order correction in (2'I) to vanish for this case;
otherwise there would be the unpleasant task of
explaining why a more accurate calculation should
give a poorer result. (Actually, since the infinity
at the origin violates Glauber's basic restriction
on the behavior of the potential, there is really no

It is significant that when the exponential of Eq.
(26) is expanded in powers of V, the function (27)
results in the appearance now of terms of order
V" /P" in the scattering amplitude, as well as
V" /P" ', whereas the first-order solution (28)
produces only terms of the latter type (although in
one case it is the integral of a power of V and in
the other case a power of the integral). Now

Moore has identified terms of leading order
V"/P" ' as contributions to the scattering ampli-
tude from real intermediate states on the energy
shell, whereas the terms of order V"/P" not found
in Glauber's solution correspond to virtual inter-
mediate states off the energy shell, and this
applies at all scattering angles. Since we have re-
tained one order higher in I/p and Glauber has al-
ready included all on-energy-shell contributions
to leading order, it is to be expected that off-en-
ergy-shell contributions are now to be represented
in the expansion of Eq. (26).

A comparison of Eq. (27) with Wallace' s' first
correction to the Qlauber approximation shows
that intr'oduction of Glauber's first-order result
into a T-matrix perturbation expansion is not in
general equivalent to having carried the original
calculation to higher order, although, as we shall
see, it does indeed give the same answer in par-
ticular cases.

It should be remembered that the solution (27)
is restricted to spherically symmetric potentials,
and presupposes also that the potential has contin-
uous derivatives.
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a priori reason to expect it to work so well; and in
fact it does not give the correct result for the
Dirac equation. ")

There are two terms to be evaluated in the ex-
pression in brackets of Eq. (27). The first term
contributes an integral of the form

J V(b, z) 1+b —U(b, z)dz
Bb

1+-,'b — V b, z 2d~.
Bb

Aside from constant factors this becomes for the
Coulomb potential

The second term requires evaluation of

z 8 8 ' dz z' 8 V(b, z)
b Bb Bb „b +2 b Bb

when

1
V(b~ z) =

(ba 2)cga ~

Hence the second term becomes

V(b, z) — ' dz= —— z [V(b, z)] dz
z' s V(b, z) 1 s
b Bb 2b Bb 0

for this potential. Since the two terms are seen
to cancel in this case, the second-order correction
in Eq. (27) vanishes for the Coulomb potential,
leaving Glauber's correct first-order result of
Eq. (28).

ONE-DIMENSIONAL LIMIT

It is interesting also to consider the solution of
the one-dimensional Schrodinger equation to second
order. However, the result in (27) may not be
used here directly, since it was derived for
spherically symmetric potentials only. We there-
fore return instead to the integral equation (14).
This becomes for the one-dimensional problem

C (z) =1 —— V(z')4 (z')dz' +
2 „V(z)4(z) .

Av Mkv

(29}

Although an exact solution of Eq. (29) may be
found in the form of (18) correct to all orders,
the integral equation itself is significant only to
second order. Hence the function f(V(z)) which
satisfies this equation should be represented only

to second order. It should be noted that (both here
and in the three-dimensional problem} from the
viewpoint of mathematical consistency alone the
exponential in (18) is not required to all orders.
But knowledge of the physics of the problem sug-
gests a solution in terms of an explicit exponential
factor providing phase modulation of the incoming
plane wave. Precisely the same consideration
1.ed to the choice of an exponential solution in the
Glauber approximation, despite the fact that the
integral equation itself was retained only to first
order.

The solution of Eq. (29) is therefore

e(z) = (1 ) exp —
~ J v(r) (1~ jdi

(30)

in terms of the particle's incident energy E.
Now in the solution of the one-dimensional Schro-

dinger equation the local wave number for a plane
wave modulated by the presence of a potential V(z)
is

2m 1/2 V V
k(z) = —[E —V(z)] 2E 8E'

(31)

The eikonal approximation of Glauber corre-
sponds to retention of only the first-order term
V/2E of this expansion. This is readily seen by
substituting the expansion in the expression for
the phase change,

[k(Z) —k]dZ= —— V(Z) 1+ + . dZ.v(z)
2E 4E

(32)

The first term of (32) is identified to be the
Glauber phase correction.

It has been suggested' that a considerable im-
provement in the eikonal approximation of G1.auber
might result if one could replace just the leading
term of (32) by the correct expression for
[k(z) —k], namely, the entire expansion. It may
be seen from Eq. (30) that the second-order eiko-
nal approximation corresponds precisely to the
inclusion of the second term of this expansion. Of
course in three dimensions the problem is more
complicated, and the very concept of a local wave
number becomes questionable, but this term is in
fact buried in the second-order correction of Eq.
(27).
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We use Wilson's theory of broken scale invariance to study the anomaly of axial-vector
current in a world with one space and one time dimension. It is shown that in the Schwinger
and Thirring models, Wilson's approach and the perturbative approach yield similar results
for the anomaly of partial conservation of axial-vector current.

I. INTRODUCTION

In recent years the problem of the PCAC (par-
tially conserved axial-vector current) anomaly in
the presence of electromagnetism has been studied
extensively in the framework of renormalized per-
turbation theory. ' It was found that the anomaly is
related to the breakdown of the naive Ward identity
caused by the presence of a triangle graph in the
renormalized perturbation theory. The anomaly
also leads to many low-energy theorems for the
electromagnetic decays of neutral pseudoscalar
mesons' and other electromagnetic processes. '

Another approach to the problem of the PCAC
anomaly was proposed by Wilson. 4 He applies his
formulation of broken scale invariance and opera-
tor-product expansion to this problem. Be shows
qualitatively that the anomaly is related to the
short-distance behavior of the product of currents.

Recently Crewther, ' following the suggestion of
Wilson, has proved that in fact the anomaly can
be explained by the short-distance behavior of the
product of currents. He also relates the anomaly
constant to other physical constants in high-energy
electroproduction and electron-positron annihila-
tion processes.

So far, the anomaly has been studied either en-
tirely in the framework of renormalized perturba-
tion theory or in the framework of Wilson's theory
of broken scale invariance. ' However, the connec-

tion between these two different approaches has
not been examined. ' In the perturbation theory
one can treat the anomaly successfully. Yet it is
not at all clear whether Wilson's theory of broken
scale invariance can be applied. On the other hand,
in Wilson's approach although we have interesting
results relating the anomaly to other physical
quantities, we do not know how to calculate these
quantities in strong interaction. It is therefore
very desirable to find models in which both the
perturbation theory and Wilson's theory of broken
scale invariance can be applied.

It is the purpose of this note to study the PCAC
anomaly in some solvable models. The models we
discuss are the Schwinger model' and the Thirring
model. ' Both are field-theoretic models in one
space and one time dimension. These models
have been very useful to provide testing grounds
for theoretical ideas. Although they are very spe-
cial models, nevertheless, any general feature of
quantum field theory should remain true. We will
show that in these models the anomaly is related
to the short-distance behavior of the product of
two currents, and the results so obtained for the
anomaly are the same as those obtained by per-
turbation theor y.

In Sec. II we discuss the anomaly in one space
and one time dimension using Wilson's theory of
broken scale invariance and operator-product ex-
pansion. The PCAC anomaly will also be related


