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In classical special-relativistic dynamics, equations of motion for interacting point parti-
cles can be derived from Lorentz-invariant variational principles of the Fokker type. Simi-
larly, approximately relativistic equations of motion for such particles, obtained by expan-
sion of the exact equations in inverse powers of the speed of light, follow from variational
principles involving approximately relativistic Lagrangians of the type first found by Darwin
for electrodynamics. Here the general form of such Lagrangians is established by directly
approximating Lorentz-invariant variational principles describing point particles interact-
ing through two-body forces. Only interactions which possess a static Newtonian limit are
considered; the interaction is not assumed to be symmetric in the particles' variables. The
exact variational principle is assumed to depend at most on velocities and thus leads to at
most acceleration-dependent forces. The same is found to be true of the approximate varia-
tional principles. The general approximate Lagrangian obtained is characterized by the
absence of terms of order c ~ and by the possible presence, for each relativistic particle
interaction, of three new functions of the Euclidean interparticle separation which may be
independent of the static Newtonian potential. The form of the usual ten approximate conser-
vation theorems is established using the invariance properties of the approximate Lagran-
gian. Two examples of approximate Lagrangians are evaluated explicitly. The first estab-
lishes the form of the approximate Lagrangians associated with relativistic particle inter-
actions which allow definition of "adjunct fields, "while the second establishes this form for
a particular interaction connecting pairs of points on the world lines of particles with space-
like separation. Possible applications of the results in the classical and quantum domains
are discussed.

I, INTRODUCTION

The Newtonian mechanics of point particles is
based on the concept of instantaneous interaction
at a distance. As a consequence of the success of
this theory it served as a model for physical the-
ories for two centuries. However, in time it was
supplanted by field theories in which an agent, the
field, is held resyonsible for transmitting forces
between the particles. Concurrently the syace-
time concepts of Newtonian mechanics were su-
perseded by those of the special theory of relativi-
ty. Thus there was a transition from a description
of a physical system in terms of particles inter-
acting at a distance to one involving fields acting
only within an infinitesimal neighborhood (near ac-
tion); this further involved a change from a sys-
tem with a finite number of degrees of freedom to
one with an infinite number. The transition from
Newtonian point mechanics to field theory' was
greatly accelerated by the enormous success of
Maxwell's electrodynamics, which fitted the in-
variance requirements of special relativity as well

as the available macroscopic experiments. Indeed,
since there seemed to be no other way to describe
radiation on the classical level, nor to develop a
relativistic theory of interacting elementary par-
ticles on the quantum level, the belief that the
field was the basis of all physical phenomena be-
came quite firmly entrenched.

However, later developments such as the Wheel-
er-Feynman theory' showed that on the classical
level it might be possible to describe radiation
within the concepts of a theory of directly interact-
ing particles. Furthermore, quantum field theory
is not free from difficulties, and various authors
have realized that a relativistic theory of direct
particle interactions' may be of help in overcoming
some of these difficulties. Thus, most attempts
at formulating a classical relativistic dynamics of
interacting particles are made with a view toward
eventual quantization.

Three general approaches may be identified.
One is to replace the Newtonian Galilei-invariant
force laws by Lorentz-invariant ones, an approach
taken by Poincarb' even before the special theory
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of relativity was created. This approach was later
developed by Havas and Plebanski. "

The second approach is through various canoni-
cal formalisms, initiated by Dirac."One of the
formalisms he suggested has the advantage of deal-
ing with variables at a single time, as in Newtonian
dynamics. Dirac himself was unable to demon-
strate that his formalism was not empty. Bakam-
jian and Thomas ' were able to show that it allowed
a description of interacting particles provided that
one renounced the concept of Lorentz-invariant
world lines for these particles '; on the other hand,
it was shown through various "no-interaction" the-
orems (first developed by Currie ")that maintain-
ing this concept within the canonical formalism ex-
cluded the possibility of interactions.

The third approach is to base the equations of
motion on Lorentz-invariant variational principles.
Such variational principles depending on the four-
dimensional separation of the particles and on the
product of their four-velocities were first intro-
duced by Fokker, "and developed by various au-
thors. " A general dependence on other relativis-
tic two-body invariants depending on the separa-
tion and velocities of the particles was introduced
by Havas "'~; the equations of motion following
from such generalized variational principles form
a subclass of the equations considered in Ref. 5.

All such equations of motion depend on more
than one time. Little is known about the general
mathematical properties of, exact solutions to,
or the quantization of such equations. Consequent-
ly, either very special examples are solved" or
else a single-time approximation is made. This
latter has the advantage that it is possible to de-
velop the quantum theory corresponding to the re-
sulting equations by standard methods. '6 Here the
approximation approach is exploited on the clas-
sical level. A discussion of the corresponding
quantum theory will be given elsewhere. "

The approximation most commonly employed in
relativistic dynamics is an expansion" in powers
of c ', the most famous examples of which are
those by Darwin in electrodynamics" and by Ein-
stein, Infeld, and Hoffmann (EIH) in the general
theory of relativity. '0 The usual applications of c 2

equations have been to few-electron atoms, using
the Darwin Hamiltonian, and to two- or three-body
motions of celestia1 bodies, using the EIH Hamil-
tonian. However, many-body applications are also
possible; investigations include a study of the qual-
itative aspects of the Ã-body problem for special
cases of approximately relativistic Lagrangians, "
and application of the Darwin Hamiltonian in mag-
netism' as well as in the study of relativistic ef-
fects in the statistical mechanics of charged parti-
cles."

Recent work on approximately relativistic La-
grangians by Havas and Stachel'~ focused on the
invariances of such Zagrangians (correct to order
c '), and in particular on deriving the center-of-
mass theorem from invariance considerations.
Some of the questions raised by their results are
answered here.

It was noted in HS that all the particular ap-
proximately relativistic Lagrangians considered
in their paper fitted a general form, but that it
had not been established whether all approximate
Lagrangians following from exact (special or gen-
eral) relativistic variational principles had to be
of that form, i.e., whether all relativistic correc-
tions were of the same type, differing only in the
factor of one term.

This led us to search for the general form of the
approximately relativistic Lagrangian (to order
c ') appropriate to those Lorentz-invariant vari-
ational principles considered in H which have a
static Newtonian limit [i.e., a potential V,~(r, ) de-
scribing the instantaneous interaction of particles
i and j separated by the distance r, ,j; they are not
restricted to be symmetric in the particle vari-
ables. The resulting form derived in Sec. III in-
cludes the form suggested by HS, which follows
from those exact variational principles considered
in H which are most closely related to the custom-
ary linear field theories, as shown in Sec. IV and
discussed in detail in Sec. VI."

Another question broached by their analysis is
whether any approximately relativistic equation
correct to order c ' and derivable from a Lagran-
gian must lead to the particular functional form
for the conserved total linear momentum associ-
ated with their generalized approximately relativ-
istic Lagrangian (which allowed their expressions
for the center-of-mass coordinate to be integrated
and hence expressed in terms of the particle vari-
ables). Section V uses the invariance methods of
HS on the approximate Lagrangian derived in Sec.
III to find the usual ten associated conserved quan-
tities. The resulting total linear momentum agrees
with that of HS for approximate Lagrangians sym-
metric in the particle variables; for those not
symmetric in these variables, it is still possible
to obtain a center-of-mass coordinate expressed
in terms of them.

Previous work on establishing the form of ap-
proximately relativistic Lagrangians' "proceeded
by starting from the Newtonian theory and then
generalizing to order c ' on the basis of invari-
ance considerations. Such an approach is not
unique. ' The attack used here is to start from
the Lorentz-invariant variational principle con-
sidered in H; the action principle is expanded and
terms are retained to order c '.' This method has
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the virtue of establishing the form of the approxi-
mately relativistic Lagrangian determined by the
assumptions rather than, as in previous work,
computing what could be consistent with those as-
sumptions. While previous work only considered
correction terms depending on the Newtonian po-
tential V~, (r, ,.), we find that, in addition, three
new functions of r, , may appear, which can be inde-
pendent of V,.&

. An interesting by-product of the
analysis is the proof that no terms of order c '
can ever appear in the Lagrangian (and thus in the
equations of motion) in any theory which is consis-
tent with the assumptions made.

In Sec. II the notation used is introduced, and it
is established that the approximate variational
principle can be obtained by direct approximation
from the exact one, rather than by integration of
the approximate equations of motion. The form of
the approximately relativistic Lagrangian is estab-
lished in Sec. III. Section IV exhibits two special
cases of approximate Lagrangians: the important
case of field-theoretically related Lagrangians,
and an example with a spacelike interaction. The
approximate conservation theorems are estab-
lished in Sec. V. The results obtained are dis-
cussed in Sec. VI.

II. LORENTZ-INVARIANT AND NEWTONIAN

VARIATIONAL PRINCIPLES

We shall be concerned with a dynamica1 system
consisting of N interacting yoint particles. In spe-
cial relativity it is convenient to describe the mo-
tion of this system in a four-space with coordinates
x" (p. =0, 1, 2, 3), where x' is the time coordinate.
Repetition of a Greek index implies summation
over this range. The metric of this space is

jth particle r,.(t) is parametrized by the absolute
time t; the three-velocity v, (t) and three-accel-
eration a,.(t) are

d r
v, (t) =. -', a,„.(t) =-

Actually, neither of these formulations is neces-
sary. A "three-plus-one" description of special
relativity is given in most relativity texts, "while
four-dimensional formulations of Newtonian me-
chanics" are also possible. However, the three-
dimensional form is chosen here for the Newtonian
case since we are interested in approximately
relativistic quantities, which are usually ex-
pressed in three-plus-one form. """The four-
dimensional form is chosen for the relativistic
case because the salient problem in relativistic
dynamics is the formulation of Lorentz-invariant
interactions; for these the four-dimensional form
provides a natural and direct mode of expression,
whereas an invariant three-plus-one formulation
is quite cumbersome.

The physically important invariance group is
the proper orthochronous subgroup of the full in-
homogeneous Lorentz group. In the following,
"Lorentz invariance" will always mean invariance
under this subgroup.

Lorentz-invariant equations of motion for point
particles interacting through two-body forces can
be obtained from a variational principle

5I=O, I=—I +I,
where I, is defined by

I, = —LLg,gff dv;. d,
. v,.A,.~(s",, , u", , v~),|C$ «OO «00

7)~q=0 lf p 4 vq
s(q -=a((r;) gq(rq), — (6b)

dr, —= (q„,dr~ dz,')". (2)

We define a four-velocity v~(r, ) and a four-accel-
eration a&~(r, ), .

dz". d' ~
(3)

so that

v =—(v" v )'"=1, v~a „=0.)p

On the other hand the space of Newtonian me-
chanics is the usual three-dimensional space with
Euclidean geometry. In this space the path of the

~00 y ~11 ~22 ~33

The world line of the jth particle, with coordi-
nates z~, can be parametrized by the proper time
7, , where

and I, will be considered below. The g, 's are the
"coupling constants" of the interaction, which are
introduced in analogy to the constants used in
electro- and mesodynamics. The form g, g&A,.~ im-
plies that the interactions are characterized by
only X coupling constants, but by ,'N (X -1)pos-—
sibly distinct functions A, , (not necessarily sym-
metric in i and j). A further generalization could
be introduced by considering different types of in-
teractions between a given pair of particles, each
similarly characterized. This would require a
separate index for each such type and summation
over all types; since it would not change any of the
subsequent calculations, but only introduce a
cumbersome notation, this will not be done ex-
plicitly. However, it should be understood that
the final result could be generalized to any number
of types of interactions as noted, and indeed use is
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BI=0, I= dtL ri t, v t, i=1, . . . ,N

L=T-V,
N

T-=-,'Qm, .v, ', (8)

made of this possibility in a particular example
discussed in Sec. VI.

Each A, j is assumed to be invariant under the in-
finitesimal transformations of the proper ortho-
chronous Lorentz group and to depend only on the
positions and velocities of the particles. Thus it
can be a function only of the two-body invariants
of the group, which will be given later. Since our
focus is on approximations, A, j is assumed to be
infinitely differentiable. Particular examples """
often can be written in terms of distributions"
which have this desirable feature by definition.

The variations of the components of each world
line z& are not independent, since Eq. (4) implies

vju5vj„= 0.

Thus the term 5I, is needed to maintain these con-
ditions. It is defined by

6I, = -c'g )— dr; M, (v;)v~6v, „, (6c)
Oo

where the M,.(r;)'s are Lagrange multipliers,
and a factor of c' has been introduced so that they
have dimensions of mass. It is not necessary to
define I, explicitly in this formulation. The minus
signs in (6b) and (6c) are chosen so that (6) has
the usual Newtonian limit.

The "usual Newtonian limit" means a variational
principle"

The g, 's are constants characteristic of the inter-
action and are included for convenience in com-
paring the limits of the relativistic case to (8).
The potential energy g, g, V, , (r;z) depends only on
the instantaneous interparticle separation. Forces
derivable from such potential energies are static
and central. The variational principle (8) is in-
variant up to a total time derivative under the in-
finitesimal transformations of the Galilei group.
However, it by no means represents the most gen-
eral Galilei-invariant variational principle. " Fur-
thermore, it does not even yield the most general
Newtonian point mechanics, nor is it the only pos-
sible limit of Lorentz-invariant variational princi-
ples. However, here we restrict ourselves only
to such interactions A„which lead to (8).

We note that, while the Newtonian variational
principle (8) is the nonrelativistic limit of the
Lorentz-invariant variational principle (6), there
are substantial differences between them. The
relativistic principle involves 4N coordinates and
N parameters in a four-space, while the Newtoriian
one involves 3N coordinates and a single param-
eter in a three-space. The Newtonian principle
leads to equations of motion which are written in
terms of a single time and depend at most on ac-
celerations, and thus describes a system of par-
ticles possessing 6N degrees of freedom. On the
other hand, the number of degrees of freedom of
particle systems described by relativistic equa-
tions of motion involving N independent parameters
has not been established. ' The two types of prin-
ciples (6) and (8) will be contrasted with approxi-
mately relativistic ones in Sec. 1II.

Variation of I, for arbitrary 6z", (7,.) which vanish
at infinity yields

QQAI4 V;V g
' Vvvv+

'
Vv",. + '~Vvqv) .~A. &A BA

&suj ' ~ v",
' 8vutj j

Rearrangement of terms and integration by parts give

BA j d BAij ~Aij d ~Aij
(10)

It is convenient to define the Lagrangian derivative

d 8
ju g~ u d7. Bv"j

then Eq. (10) can be rewritten as
OO oo Oo OQ

6I, =-+g; d7;6z;2;„Q g'g dr~A;q -Qg; dr;6z";gq„Q gq drqA~(
~00 ~ i ~oo j& g ~co
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d
5I, =+c'g d7;5z", [M, (7, )v; ].

oo i

We now define the "generalized potential"

V,.(d„()-=gd~ d AT, +gd~f dv~d~
j)i ~ c)o j&i 00

(13)

Then the equations of motion following from Eqs.
(12) and (13) are

(M, c'v;„)=g;2; V, , (15)

where the Lagrange multiplier M,. is as yet un-
known. Its form can be determined by contracting
(15) with v)i' and using (4), yielding

(16)

Using

d ~Vi ~ ~V
V, = 'v,. + 'a,. (17)

in (16) gives

where we have relabeled the particles in the sec-
ond term. Equation (6c) is changed by an integra-
tion by parts into

v, (t, ) v, (t;)
C

( )
dr, (t, )

cft ~

(21)

(n(d n )I/2 (22)

Equations (21) follow from (2) and from consider-
ing the particle's three spatial coordinates to be
functions of its zeroth coordinate z',. = ti. Until
some relation is established between them, ti is
independent of t/. Thus (21) is convenient in help-
ing to establish the connection between the Lorentz-
invariant variational principle and its approxima-
tions.

In view of the complication of the Lagrange
multiplier it might be thought that in order to cal-
culate approximate Lagrangians it would be neces-
sary first to approximate the exact equations of
motion and then to integrate the approximate ones.
However, it is possible to approximate the vari-
ational principle itself. This can be seen by using
an alternative variational principle to obtain the
exact equations of motion.

The alternative approach is to use an arbitrary
parameter T, (which may or may not be identical
to r, ), for which

dM, g dV; d ~V;
(18)

where 0,. is not necessarily equal to unity. The
variational principle (6) is constructed to be pa-
rameter -invar iant by choosing

from which we obtain

M; = mi +—,' V; - v,.

, -=(-gg ,. d)( df dT,.dT,. X, ,
i&j

(23a)

where m,. is an arbitrary constant of integration.
Inserting (19) into the equations of motion (15) gives

(23b), -:- g(f cdTM,. (T, )(e,."a,.J'",. , .
~ ~Oo

(23c)

(20)

Consequently, mi can be interpreted as the inertial
mass of the ith particle, and therefore should be
taken as positive. The development to this point is
essentially the same as that of H.

In calculating (20) from the variational principle
(6) it was necessary to introduce and evaluate the
Lagrange multipliers M,. because the variations
5z",. were restricted by conditions (7), which are a
consequence of having chosen the proper times for
parametrizing the world lines. The advantage of
the proper time over any other parameter for the
world line is its relationship to the particle's
three-coordinates and the time through

Then the quantity M,. turns out to be mi This is
seen by carrying out the variation (6a) using (23).
The variation of (23a) is trivial since the same
sequence of steps that lead to (12) is retraced
But instead of postulating Eq. (13) for 5I, , we
now must vary Eq. (23b), yielding

()(=- *Qf ; d(, T)M( T)d "*de,.„da', , (N)
i

which, subjected to a procedure identical to that
used on Eq. (Gc), gives

d Mic' 5,.„
d7' (i

(T )T/2 gi i)( i

instead of Eq. (15), where now
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B d B

Bg~q dT) Bb~q

I'([~l(T() &((T()]-=gg(
g(f

L.g,f aT, .„.
~ Oo

We now use Eqs. (26) and the derivatives of X(( or
A, ( following from Eq. (23c) (omitting the sub-
scripts on the A's and A' s)

(26)

BA. BA BA
(28)

Then Eq. (25) becomes

(M(v(") =~2
~ d ~

+v~( V( v(

(29)

Since the right-hand side of Eq. (29) is identical
to that of Eq. (20), if M, were calculated from (29)
it would result in m, , i.e., a quantity independent
of T, Thus indeed Eq. (6a) with (23) gives the
same equations of motion (20) as do Eqs. (6). This
means that for the purpose of directly approxi-
mating the variational principle itself, the alter-
native variational principle (23) can be written
with m, replacing M, , and the arbitrary param-
eters can be chosen to be the proper times. Thus,
once the variational principle is approximated and
put into the form of an integral over a single time,
the approximate Lagrangian L can be read off the
approximate variational principle

5I=O, I= dtLr, t, v; t, i=I, .. .,N.

(80)

The argument of A,.& in (6b) was assumed to be
Lorentz-invariant. This invariance can be made
manifest by choosing the argument of A, z to depend
only on the following independent. invariants"
formed from the four-dimensional separation s~„
and the corresponding four-velocities v~ and v~~:

2 — P Il
S8g = 'g~~S gg S gg ~ Qpf; =vgvyp p

Ki VIALS&~ t Kj Vj„S
(31)

which are a complete set of independent yolynomial
invariants formed from the particle variables con-
sidered.

BA, yg BA
n „A+'I) ~ QJ ~ 5 n( —Q. u(„Q,. ]

(27)
in Eq. (25), and let T(-r(, so that &((' v((', n( v,.
(-1 after the variation has been performed), and

}t„=((,=—-y, [ct, .--' ', (t, ) ~ r„(t,, t,.)],

~
—= c(((~ —= +/~[et(~ c v((t() r(((t( p t()] (

where

"6 =- [I c v((t() ' v((t()l (82b)

It is not obvious at this point why the set (32) has
a static Newtonian limit while the set (31) does

III. THE APPR, OXIMATELY RELATIVISTIC
. LAGRANGIAN

The meaning of Lorentz-invariant variational
principles and their Newtonian limits was given in
Sec. II. Here the meaning of approximately rela-
tivistic variational principles wiD be delineated
and the approximately relativistic Lagrangian will
be calculated.

As noted earlier, in taking the Newtonian limit
of the Lorentz-invariant variational principle the
equation changes from one involving 4N coordi-
nates and N parameters in a four-dimensional
syace to one involving 3N coordinates and one pa-
rameter in a three-dimensional space. This limit
corresponds to the limit c ' 0, and can be ob-
tained by putting the Lorentz-invariant variational
principle into the form of an integral over a single
time and then letting c '-O. ,Instead of going to
this limit the variational principle will now be ex-
panded in powers of c ', retaining terms only up
to some designated power of c ', yielding an equa-
tion of the form (30); this will be called an ap-
proximately relativistic variational principle to
that designated order, and its integrand an ap-
proximately relativistic Lagrangian to that same
order. Thus the approximately relativistic prin-
ciple involves an integration over a single time
yarameter, as does the Newtonian variational
yrinciyle, but it retains some of the information
of its relativistic progenitor, and hence lies some-
where between them.

Since we are concerned only with those varia-
tional principles which lead to the "usual" Newto-
nian limit of a static potential (8), this restriction
will now be built directly into the Lorentz-invari-
ant variational principle. (The alternative to this
restriction will be discussed in detail in Sec. Vi. )
Unfortunately, not all the two-body invariants in-
troduced in (81) [following H] possess a static
limit. However, an equivalent set of invariants
can be used which does have this property, as will
be shown later. This set is

c(~ —= c s(~ —=c (t( - t~) —~r((t() - r~(t~)~

-=c t(~ -r,.)2(t(, t~),

v, (t, ) v((4)
(d&& =- v~&v&& -—p&p& I—
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not, since this cannot be seen until some connec-
tion is made between the two independent times t,.
and ti in the double integral of (6b) in a form suit-
able for taking the nonrelativistic limit, i.e., a
form which would result in only one time. This
will be done in the actual calculation and discussed
in detail in Sec. VI.

In view of the change of argument for the inte-
grand of the double integral it is appropriate to
use a new notation

6I=O, I=I, +I

t=-gag, ,g,J J aa, . a
«QO oot&f

d T, m, c'(v&v, „.)'". .
~ Qo

(34a)

~X.
tf

i j i j

(34b)

(34c)

I, can be expanded easily by changing the vari-
able of integration from 7, to t, using . Eqs. (21) and
then expanding in a Taylor series, to obtain

OO v 2

I,=-Q dt, m, c' 1+ —,
'. .

QOt

'*r,' (- '*) '" (35)

Here t,. is an ordinary integration variable, rather
than a path-dependent parameter as is r, . Thus
the subscript is superfluous and can be deleted,
yielding

g, g,. A„.(s~„v~, vs)=cg, g,U, , ( „,Qr...X„,K;,),

(33)
where the factor c is introduced for convenience
so that g, gfU, f has dimensions of force and the
nonrelativistic limit of the Lagrangian can be made
to correspond easily to well-known examples of
relativistic variational principles. "" It is under-
stood that U;,. does not involve c except through the
invariants indicated. Then Eqs. (6a) with (23) be-
come, putting T,. =v, , and consequently 5,. = v, ,

As noted before, the two integrations of I, must
be connected in order to be able eventually to
write all quantities as functions of a single time.
This is accomplished by changing variable from
7, to I, and then to g... which turns Eq. (34b) into

dK, , 1 v,. (f,) v;(t;)=cPf 1 —
2

= cg (3Vb)

The variable change from t,. to g, f is monotonic,
since (3Vb) is manifestily positive definite. In

fact, g,.&
is the only invariant from the set (32) for

which a change of variable from t,. to an invariant
is monotonic across the entire range of integration.
While calculating (3Vb), t&, being independent, is
unaffected by the t,. differentiation. In order to
complete the change of variable, all t,. 's must be
replaced by the appropriate function of g, f from

t. =t 1 v r (t, t)
t j c tj f c (38)

which came from Eq. (32). If the Newtonian limit
of Eq. (3V) were the only form desired, it now
could be obtained from Eq. (38) by going to the
limit c-~. However, since an expansion in pow-
ers of c ' is needed here, the substitution (38)
must be completed and followed by an expansion.
Unfortunately, Eq. (38) is an implicit relation for
t,. since it occurs on the right-hand side of the
equation within an unknown function.

The standard method of handling implicit func-
tions" of the form (38) is Iagrange expansion. "
Since results are desired to order no higher than
c ' it is appropriate to make a Taylor expansion
of the y,.

' in (38) to that order, resulting in

1 vi. r(t, , ti) (39)

r gg=g-, g,J at, rt 'J r,-'tt„„-
t&f «OO «00

(3Va)

where

I,=++ dt -m;c'+ —,
'

m, v,. 2(t)
«OOt

v't
+ gm, v. '(I)

c (36)

where the convention has been introduced that un-
less otherwise specified

(40)

Then I, can be written in the form

(41)ii( ia r ir r Xii r fig)U ~P- cu-
1 t f f ~f co

t&j «OO «QO ff +

where ~, means that the expression is to be evaluated with t, given by (39). In order to simplify the nota-
tion the subscripts i and j will be omitted from U;i and the invariants [in analogy to Eq. (40)], and
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U(t)I. -=U(o ~ x t)l. (42)

is defined. Equations (32) show that both u and x contain t, 's, w. hich must be replaced using (39), result-
ing in

2
o'l, = c' —

g +-v~ ~ r(t, , t, )—,v,.' r'-(t„ t, )

Xl,= -y,. g+-v~ ~ r(t, , t, ) — 2v~' -- v, (t, ) .r(t, , t, )
+

The quantity (dl, can be expanded in a Taylor series as follows:

tv(, =I( ~, Iv, (t, ) v, (t,)I'-2c

Thus Eqs. (43) allow (42) to be written explicitly as

U(g)l, =U &2-r2(t;, t,)+ —v~ r(t;, tz)+ —
2[v& r(t, , t&)]2 2-v&—2&2

1+ 1 .(v(t )-vt(tt)I', -I:+-lyly(tt) v (I )l'v(tt tt)+ 1 lvt vt (tt)l

(43a)

(43b)

(44)

Consequently (41) becomes

I, =-ygdtd, .f dtyJ, .dI,. I'(ytyt)
' I- ' ', U(1)I

s&f

A Lagrange expansion must still be made of Eq. (45) using"

(45)

(46)f (t;, t&)l, = f (t;, t,)+g „, „, (", + —
v&

~ r(t„ t~) —,v~2

where f (t, , t, )is any . infinitely differentiable function of t, . The factors to the left of U(g) in the curly
brackets of (45) are the reciprocal of (43b). Therefore, the terms containing t, 's are already of order
c ', and only the first term of (46) is needed for their Lagrange expansion. Thus they are independent of
g, and (45) becomes

I, =-ggd, „f dttI1 —1,(v;(tt) —vt(tt)]' —d, vt'(t, )If dIU(1)
i&f

(47)

Equation (44) shows that U(g)l, depends exPlicitly on c ' through ol„(dl„and xl„and imPlicitly on c '
through (39). Consequently, U(g)l, first will be expanded in a Taylor series in c to second order, and
then a Lagrange expansion made to the same order. The Taylor expansion of U(g) is

,
( )

dU(f) „( )
d U(f)

d (c 1) I d (c-1)2

(48)

where the superscript zero represents explicit c-'-0, so that

'U(r. ) = U[K' '(t-, t, ), 1,-K, k] -=U['o-, ' 'X C].
The first derivative is

U' =U,o'+U ~'+U„y',

where

(49)

(50a)

~U
U -=— ~U

U =——
(d

~U
U = —.

X (50b)

The derivatives of the invariants in (50a) are given by
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(7 =2/v~' r+ —[(v~ r) —vg r ])

(u' = —(v,. -v, )', (50c)

X'= (v, -v, ) ~ r+ —(v,.'-v, '),
t

using the values of o, ((), and y given in (44). Thus '[U'(g)] is

0[U'(g)] -='U' ='U 2&v r+ 'U„(v,. -v,.) ~ r,
using (50). Similarly, the second derivative is

U" (g) =U,o" +[U„o'+U, u&'+U, „y']o'+U 0)"+[U,cr'+U (0'+U „]t']&a'

+ U ]t"+ [U„oo' +U„~oo' +U„„]t']]t',
where

&x" = 2[(v„. r)' —v~2(2],

(0" = (v, —v,.)',
y" =K(v, '-v ),

as a consequence of (50c). Then (50) and (52) give

'[U" (( )] =—'U" = 2 'U, [(v,. ~ r)' —v, 2(2] + 4g "U„(v,. ~ r)2+4( 'U, „[v, r v,. r —(v,. r)']

+ 'U (v,. -v, )2+ r 0U„(v,.2 -v. ,2)+ 'U„„[(v,-v,.) r]'.
Using Eqs. (48)-(53) in (4V), we obtain

(51)

(52a)

(52b)

(53)

I,=-gag, .g,
t j ~OO

dt, 1 —,(v. , -v,.)'—1, 1

+ —2$ U~vj I+ U„,-v,.

1
+ 2[ 0U, (v~ r)2-2g"U, v,.2+4g2'U„(v, . ~ r)'+4g'U, „[v,. ~ rvj ~ r+(v, ~ r)']

+ 'U„(v,. -v, )2+g'U„(v,.'-v,.')+ 'U„„[(v,. -v,)r]'].
(54)

Here, a Lagrange expansion of all of the terms which are already of order c ' can be trivially made from
(46) by the simple substitution of t, for t, . Howeve. r, those of order c' and c ' require more effort. The
Lagrange expansion of the term of order c' is

1 1 & U(g)] 1 [&,& U(g) )0U(t)I, =U(&, ~)+ — K+-v, .r +
-) t.=t.-=t

where the notation U(g, 2 ) means precisely

U(C, 2)-='U(r)I, ,=,,—,-=U[C'-r'(t, t), 1, -C, t],
where 0U(g) was defined in (49). The derivatives necessary for (55) are

U(&) 0
y'

s20U
=-2[0U (a,. ~ r+v, ')+v,. ~ r(-2v, r) U„],

(55)

(56)

(57)

so that (55) becomes

( )],= 0(() 0—'((( ~ —,. r}( v; r)+20, -( (-2)[0 (2; 2+i ')- (v,. 2)2'0„]. (58)
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In (58) quantities which are coefficients of, e.g., U, should also have bars over them to indicate that
t,. =t~ =t. But since every term contains a U with a bar, and in order to prevent the notation from becom-
ing unnecessarily cumbersome, it is to be understood that henceforth all quantities which are coefficients
of a U are evaluated at t,. =t~ —= t. In a similar manner the Lagrange expansion of the terms of order c ' is

—'U'~, = —[2gv; r'U, + (v; -v,.) r'U»]l,c c

1=-2)v rU +-(v -v. ) ~ rUc ~ ' c ' ~ x

+,(4)v, v7U, —8gv,. rv& ~ rU„—4[(v, .r)'-v, rv& r]U„,+2(a, r+v, '-v, v, )U }t. .
2c

Using (58) and (59) in (54) and simplifying, we obtain

(59)

I,=-gag, .gj dt]I dg U(g, r)+ —(v, -v&) ~ r(U»-2)U, )

+
2 2((v] -v;)'(U -U+gU» —2t'U, ) —v, 'U+ (v~. ~ r)'2U, - vrv, . ~ r4U,

+[(v, -vr) r]'(Urr-4(Ur 42 U+) ~ K& r(,2(U„-24'U)]I .
The c '-order terms constitute a total time derivative, since

1 r — dr d ""' r——(U —2&U )—(v -v ) ~ r= —(U -2&U )—= — dr —(U -2&U )c x ' r ' ' c x ~ dt dt c x

(60)

(61)

and thus can be omitted from the variational principle.
The acceleration dependence of Eq. (60) can be renioved by an integration by parts,

JI dt a, . r(2(U„-2g'U, ) = -Jt dtv, —[r(2)U„—2g'U, )]

dt -v,.'+v, ~ v,. 2&U„-2('U, + —v, ~ r '+v, ~ rv~ ~ r ——2&V„-2g U,

(62)

where it is assumed that U and its derivatives vanish sufficiently rapidly at infinity that the integrated
term can be omitted; a similar assumption will be made for the integration (70) below. Inserting this into
(60) gives

QQ( UZd() r4,2 U((r) —,v,. , v ((, r) r—Uv, v r(U(r)
i&g ~00 ~4)o 2c2

+ v~'U (g, r) + (v, —v,.)'[U(t, r) —U r.U„+2t'U, —]

+[v,'-v; v, ](2&U 2f, 'U, )+2[(-v;-v~) r]'(2&U„—2g'U, ),

+[(v, r}2-v( rv7 r] ——(2gU„-2g'U )

+[4v, rv, r-2(v, 2)']U, —[( , - )2r]'(7v„r„
I

. (63)

Using the relation

dU(r, r) d'o
(64}

where U(p, r) was defined by (56), and rearranging terms turns (63} into
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2, = QEg;gf , « f d(U(gr),
~oo ~oo

g g;g, J dt f dt v; Vrr(l,, r) -v; v, r—1 " " — 1 dU(r, r)
c(j

+ (v; -v, )'[U(k, r) —U —0U„+2VU ]

+ (v, ' —v; ~ v, )U(r.. , r) +(v —v, ~ v,.)(2&U„-2f'U, )

+[2v ~ r v. ~ r —(v. r)'~ —v r v ~ r] — (—2&U —2PU )X a

(65)

Comparing (36) and (65) to the Newtonian variational principle (8) makes obvious the identification

V;,(r) =— dCU(t, r), (66)

so that g; g, V;, (r) is th. e Newtonian two-particle energy.
In order to relate terms in (65), we now prove the identity

dC(2KU„-2VU. ) =- V„(r)+W,,(r), (67a)

where

W, ,( )r dt's(U„+U, ). (67b)

Using the "chain rule" on t'dU/dr yields

g —= g [2f U, + 0 —Uz + U& ] .dU
(68)

Rearranging and integrating, we obtain

(69)

But when the last term of (69) is integrated by parts, there results

dt'g „—= dr U= V;,(r),d

~
~~

~

~
~

~ ~~
~I j j

dU

OO df

as long as CU(t, r) goes to zero fast enough at infinity. Using (VO) in (69) proves (6Va). Using (66) and
(6V) in (65) yields

I,= -g~;gt f dt Vt;( )
4 (g

QQ dV]j
+ 2, gag;g~ dt v; v~V;, (r) ~-v; ~ rv, . ~ r—

(70)

+(;—;)'f dt[U —U +tll —(2('U„—22'U„, )]

+ (v~' -v; v,.) V, ,(r)+(v —v; v,.) [V;,(r)+ W~,.(r)].

1 dV;,.+[(v. ~ r) —v; ~ r v. ~ r]—j j r dr

—[(v,. r)' —(, rv, )] ——(V„+Wt) -[(;—v ) ]'f d(U
I

(21)r
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The coefficient of (v, -v&)' in (71) can be rearranged, using (66) and (67), as

U —U~+

FAUX

—(V + g Ux + g U[ ) = -U~ —fU~ .

Using (72) in (71) and combining terms appropriately gives

t, = -QQ g,.gtf dt Vt(r)
j&g

v, QQ g~fg., dt v; v,. v~(r) —irrv, . ,.i "'-+(v,. —v, )' Vt(r) f +d( tU —-tg„t)
t&j

—[(ir-v, ) r,.]' dgU„„+(v, ' —v; v, )W, (r) —[(v,. r)'-v, rv, r]-

(72)

(73)

We define

g„( r; )tf=-d-t(U +tgt) (74a)

and

V„(r„) -f dt U„„.=

By comparing (36) and (73) to (30), the approximately relativistic Lagrangian L can be identified as

L=L —V+I

where (following the notation of HS)

(74b)

(75a)

(75b)

V is the Newtonian potential energy as given in (8), and the "post-Newtonian" interaction I~„ is given by

1 dv;,I „=,gag, g, v, .v, V, ,(r„)-v, r„v, r„— "+(v, -v, ) [V„(r„)+X„.(r„)]PN 2g 3 3 i f y
j&j

~ [(v, —vt) r t]'V t(r t)+(v, ' —v, v)Wt(r t I —[(vt r t)'-v, . v, r tv]
—'

&i

(75c)

where for clarity the ij subscripts have been returned to x The last t.wo terms of (75c) reflect, in order
c ', whatever asymmetry in y„and g„. exists in U„(o„,ar, ~, X,~, g, ).

The term P,.(-m, c ) in (75a) is constant and thus irrelevant for the equations of motion following from
the variational principle (30). It thus could be omitted (and indeed must be before we can go to the Newto-
nian limit). However, we prefer to retain it both for ease of comparison with HS and to obtain the correct
approximation to the relativistic energies of the individual particles as well as to the relativistic Hamilto-
nian in Sec. V; indeed, for the canonical formalism retention of this term is essential.

As noted in Sec. II, there may be more than one type of interaction in the interaction term I, of (6). This
would lead to appropriate summations over the various types of interactions within V as well as I,N in
Eq. (75).

IV. SPECIAL CASES OF APPROXIMATELY

RELATIVISTIC LAGRANGIANS

The form of the approximately relativistic La-
grangian appropriate to Lorentz-invariant varia-
tional principles which allow definition of "adjunct
fields"" "can be obtained as a special case of
the general approximate Lagrangian just derived.
Such special cases are of interest, since, as noted

before, both classical and quantum field theory
have been emphasized during the last half-century.

Furthermore, for the purpose of comparison, a
special case with a spacelike interaction will be
calculated using the form (75). This case is useful
here since the form of the interaction is sufficiently
simple so that the derivation can be done alterna-
tively by integrating the variational principle (34)
exactly and then expanding in powers of c ' (rather
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than expanding under the integral as in Sec. III).
The results agree as required.

The special case of theories possessing adjunct
fields can be obtained from the principles (6) or
(23) provided a generalized potential V( can be de-
fined which can be separated into a sum of terms
which are products of two factors, one of which de-
pends on particle i only through its coordinates z", ,'
then this factor, with the dependence on zji' re-
placed by x", can be considered as an adjunct po-
tential defined at all points in space and determined
by sources, as customary in field theory. However,
unlike customary field theory, there is no single
field, but the field adjunct to particle i involves
as sources all particles other than i; on the other
hand, this is precisely the property needed to
avoid infinities for point sources. Furthermore,
for macroscopic applications, i.e. , for sources
consisting of a very large number of particles, the
difference between the various adjunct fields is
negligible.

The desired separation is possible for all i and

j provided that U;,. consists of a sum of terms each
of which contains v;J only in the form e,",~, and w;

and x, (or equiva. lently &t(, and g;J) in the forms &(,. (&

and &(, » (or &((;sd' and g,.j(), where l;, (= 1&;), m;&,
and m&, are nonnegative integers. If all particles
are to behave as if they were field sources
which are similar except for the strength of their
coupling (described by the g,.'s}, we must have m(&

=m&, , and these numbers as well as the l;~ should
be independent of i and j; thus the subscripts are
no longer needed. (For simplicity, we exclude the
possibility of sources which differ in some respects
such as their multipole structure. ) We have then

( im) g p py~i &Zi~ i~ in ia Vik. in'Via' Vi jI

X yss8' & ds'8' ~ ~ ~

p( p)

cussed above. Its essential property which justi-
fies considering it as a field quantity is precisely
its being a function of the xP alone, as mell as its
implicit dependence on "sources. " The question
of the existence of suitable (partial differential or
other) equations determining it directly from the
source distribution is secondary, and of no direct
concern for a theory which considers a variational
principle of the type (6) as basic. Nevertheless,
it is of importance for the interpretation of the
theory to be able to establish a connection with
known field equations in some cases. In particular,
this is possible if m=0 and if the (t)",,", considered
as functions Gz of x —z& rather than s~&, are Green
functions of some linear partial differential equa-
tion, i.e., if

ZG, [&i~(xP z~P)-(x' z,")-]= 4((5'(xP —z~~), (77)

where g is a linear differential operator and 5' is
a fourfold product of Dirac 5 functions. Then

( )=S gdsf. d~s s vs vs 5'[s —*s(vs)]
Jxi

~ na ~ ~ ~ X

where j,. 8'" is the source density of the adjunct
field of the ith particle. Special cases of theories
of direct particle interaction which allow such as-
sociation with known field theories are Fokker's
principle of electrodynamics" ' ' (l = 1, G~ = 5), and
the principles of scalar or vector mesodynamics"
(l=0 or 1). However, more complicated associa-
tions with field equations, even for mc0, are also
possible. '4

Thus, for interactions corresponding to the gen-
eralized potential (76) which can be related to a
field theory, the exact variational principle (23)
takes the form

~IX 8 ~ o ~ X at'8' ~ ~ fl (76)
=-ZZddf ~ d d 's'

«CO «OO

X l(m ~m y( &(&(m) (7ga)

dsf d; s v, v;ss,. ss,. ~ ~ s, ssdv (,.s),e 8. . . X n' 8' }tI gg (gffi)

ao
I2= -P d~;m;c'v(.

i
(7gb)

where (I)",J8"'" 8 "'"is of rank l+m. These equa-
tions are of the appropriate form (14) used before,
except that for purposes of defining a "field" quan-
tity a common term depending only on v;p was fac-
tored out from U;,. and U~;; clearly this has no
effect on the calculations of Secs. II and III.

The adjunct potential Q,
'" " "'"(xP) is ob-

tained from (t),
8" ~ 8 '""(zp) by replacement of

zP by xP everywhere in the integrands, as dis-

In order to calculate the approximate Lagrangian
appropriate to (79}we need

II ((m&
( g) ~mme(lm&(g2 r2)

U (l m) ~U(l m) ~U ( lm) ~ U (1m)

gU(lm) ~U(™)
X

II(&m& m(m I)( ~)m-2~m~(&m&(g2 r2)

(6O)

which ean be used in (66), (67), and (74) to yield
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V (»»&)(r ) )t @( t) pm'(»&2)(g2 r 2
)

WI» (r,») =0, X,»™(r,») = —(I+m)VII™,(81a)

m(1 —m) 1 dV» (r»»)
2m —1 yj& dhj&

The relation between F,&
and V;& follows most

easily by direct differentiation of V;,'. and com-
parison with the definition (74b}. Inserting Eq. (81a)
into Eq. (75c}we obtain

IpN—=I(™=
2 gag»g» [ (1 l -m)-(v, -v»)' +v, v, ]V,»™(r»»)2c

m(1 —m). . .2 1 dV»,
'

v j r j&v& rj&— (81b)

For the particular case m =0, which may allow field equations of the form (78), we have (omitting the
superfluous index m)

(82)

where f,, is an arbitrary analytic. function of its argument. Its spacelike quality is due to 5(g»»), since it
follows from Eq. (32) that g,.»

vanishes whenever

(r)
I ' =,gag»g» [(1- l)(v, —v»)'+v» v ]»V; »(r„) —v, r»»v». r»»— (81c}2c rj~ drj&

The relation of these results to the general form of the interaction suggested by HS is discussed in Sec. VI.
An example of a spacelike interaction follows from a Uj& of the form

'; 6(X; )f; [(- )"I,

t»» = —,v»(t») r»»(t»& t») .
C

(83)

This should be contrasted with the case of electrodynamics, where the interaction involves 5(v,.»), and thus

1
t, »

= + —r, »(t»& t») (84)

whenever o j~ vanishes.
In order to evaluate Eq. (75c) for the interaction (82), we need

II =- «(-g)f, [(r' —g')"], II,=o,

(85)

)II = —( f [(r2 —g2)l/2]
d5 g II — ( ~) f [(r2 t 2)l/ 2]

which can be used in (66), (67), and (74) to yield

V»»(r;, ) = ff, (r»»), X,»(r»») = l V»»(r, »), —

Y,»(r, ») = .*'—
, W,»(r, ) = V,,(r, ). .

1 dV;, (r„)
jj

Inserting this in Eq. (75c), we obtain

Ip»»
=

2 p g g» g» [(1 l)(v» V») +V» ] V»» + [(v, r, »)2 —2v, r»»v» r»»]-
i& f jj df jy

(86a}

(86h)

In general, it is not necessary that W»» (or X»» or Y»l} depend on V»»; it just happens to be so for the parti-
cular interaction kernel (82).



3436 H. W.- WOODCOCK AND P. HAVAS

This kernel was chosen as an example of a spacelike interaction because it is sufficiently simple to al-
low an exact integration to be performed. The exact expression then can be expanded to obtain the same
Lagrangian (75) with (86b).

Using (82) in (34b) gives

I = -QQg. g ') c(f7 [f7 5(X;,.)f,,[(-o;,.)' '](d),'q,
~ ~ j +~00+ Qo

which, by virtue of Eq. (32) and the properties of the 5 function, can be written
d)O p OO

=-gP g;g;J ' 7; &;6([[;)f;;[(-c;;)'"j~';;.
$&j

A change of integration variable from v j to ~,. involves

cfK$
( V i S~igt) Mid. t

Tj Tj

which changes Eq. (88) to

t, = gag, .g f dr;f dr;ll(K;) [f;,[(- v;,
)"* [r!,-')l; =t, ...,. r,

.-
~ Oo ~00

The ~, integration can be done immediately, resulting in

t, =-gg, ,f d, [d„[(-;,)"'I-!;')I .
$&j

where
~

now means evaluated with t~ given by

(87)

(88)

(89)

(9o)

(91)

t, =f, ——,v, (.t, )r, , (.[t, , .t, )., .
C

(92)

which is the same as (83).
In Eq. (91) the quantity in curly brackets can be expanded in a Taylor series as

~

~

using the convention (40). A Lagrange expansion can then be made, resulting in

I

C

(93)

(94)

(95)

(96)

This is indeed the required integral of —Iy'+I»of Eqs. (75), as given by Eqs. (86).

Using this in Eq. (91) yields
ao r t

L(L ,. gdgtyf, , (r)+rv,.,. ,r. v',. r " —(v,. i)' ", +, (v, —v,. )'d, ;( )I,
$&j

which can be written, expanding y, and omitting the subscript i from the integration variable, as

I, =PI ggtf dtI f„)+(r, ( [lt)(v, . vt)'f (r) 'f tt(r)++[v(v-,. r t)'-2v, r tvt r t] —f' (r))I. t

V. THE APPROXIMATE CONSERVATION THEOREMS

The exact variational principles (6) or (23) are invariant under the full ten-parameter Lorentz group and

thus, according to Noether's theorem, "imply ten exact conservation laws. Using the method of Dettman
and Schild, "these conservation laws were determined in H."

Since the approximate Lagrangian (75) is clearly invariant under a group consisting of the time and space
translations and rotations, Noether's theorem similarly establishes the form of the conservation of energy,
linear momentum, and angular momentum, respectively. These forms are '
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dE -0, + —= ZR 'v&
BL

pg= ev (97a)

dP =0, P-=Zp;, (97b)

dJ =0, J=—Pr, xp, (97c)

Equations (97}apply equally to Newtonian and approximately relativistic Lagrangians. However, the latter
are not exactly invariant under either the usual Galilei transformations or the Lorentz transformations
relating different inertial frames. Such transfarmations generate, via Noether's theorem, the center-of-
mass theorem for Galilei- and Lorentz-invariant particle systems.

But, as noted in Sec. I, such a Lagrangian is invariant under another three-parameter set of infinitesima)
transformations which lead to a center-of-mass theorem, '4 given by

dG E
=0, G=——R- Pt, (97d)

where R could be calculated from

C
R(t) = — dt P[r,.(t)] (98a)

or
' —P[r, (t)]R(t}= c' dt

[ (
—)], (98b)

along with the equations of motion which follow from the approximate variational principle. Equations (97)
and (98) will be used to generate the forms of the approximately conserved quantities associated with (75).
These forms agree with those approximated directly from the Lorentz-invariant conserved quantities. "

The canonical momentum of the ith particle is

BL I
p. = =m, v. +—,(-, mv. )v,j

i

+
2 2+Kg,. v, Vq&

—(v,. r, , ) r, ,— ' +2(v, -v;)(-1)(V,, +X,, )

+2[(v, -v';) r, , ](-r&;)Y,.; —v W, , —[2(v,. r, , ) r~, -(v,. ~
r&,.)r~,.]- df gf

+,gg&g, v&VJ —(v,. r,&)r,, "+2(v, -v,.)(V;, +X;,)+2[(v; —vz) r, &]r,,Y,,

1 dW,',.
+ (2v, -v,.)W, ~

—(-v~ . r, ~) r,~.J'g dt's

Using this in (97b) and simplifying the results gives

P —= Pp;= m, +—,m,.—, v, +,Z Z g, g,. (v, +v~)V~ —r z(v;+v, .) r z-
fj fj2

+,~~g;g& (v, -vz)W„. +r,&(v, -v,.).r, &2c y
(100)

and consequently P does not depend on the X,~ or Y„.. Equation (66) shows that V, ~ depends on i and j only
through its argument ~„, which is inherently symmetric in i and j. Thus with the usual definition

V,;—= V;, ,

Eq. (100) can be rewritten as

P=—P +P

(101)

(102a)
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is the total linear momentum given by HS and

I
pw—=

2 2M' Ag'y (v~-vg)Wgy+rg;(vg -vg) 'rgg2c K2J

dR';,
(102c)

The total energy can be calculated by using Eq. (99}in (97a), yielding

+
2 2+kg;gy 2V; ' vg V~ —2v; ' r;~vg' rg~

' +2(v1-v~) (V1+Xgg)+2[(vg v~)'rg~] Fg~

+2(v) -v1 'vq)W~ ~ —2[(v r(g) -v( '
rg~v~

' r(.] ij 2j

Substituting Eq. (75) and combining terms yields finally

(103)

dV;,+ ZZ &sky V~J(1'a~)+ 2 go&1 v1 ' vg Vc~ - v~ ruvg ' ru + (va vi) (Vo+Xu)

+[(v, -v.) ~ r„]'F,. +(v, '-v .v )W.

d%';,—[(vg ' rgg) vq
' r(~v~ ' r(~] d J'~~

This can be rewritten in terms of the canonical momenta (99) to yield the Hamiltonian

II =Q m, c'+ ' --,', +Pgg; g„V;,(r,,).2m; 8 c'm3

I ~~ P,. P; P, r,-;P, r„1 dV, ~

fj fg

+ ~P'-~P' (V +X. )+ P -P~ r . V. .
m -m gJ U m. -m 4i

i j j
2

Pt Pt'Py ~ PJ . Pg
' &zpg'

Using Eq. (99) in (9Vc) and rearranging we obtain the total angular momentum

V2J = fpgz + & ppgz 2 r& xv&

I+,QQ g, g~ (r,.xv,. +rjxv, )V„+r,xr, (v, +v,..) r, ,—.
2c A"gy

+2r, ~
x (v; -v,.)(V;, +X~)+[r, & (v; -v~)+r;&&&v; ]W„

I de.
4 XU

%'hlch does not dePend on l;&.
As indicated by HS, either one of Eqs. (98) could be used to calculate R in terms of the particle vari-

ables. However, HS found that for all of their examples the form (98a}was sufficient. This is true here
also.

Their procedure consisted of "guessing'* (E/c')R to be
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2
v~ 1

m, + —,m, -++ „,Qg, g&V& r, ,
f', C 2C

(107)

and then showing that its total time derivative is the total linear momentum [as demanded by (98a) and

(97d)], making use of the Newtonian approximation to the equations of motion.
The form (102) of the linear momentum shows that here this procedure is not sufficient, since the

"asymmetry potential" 8', , does not occur in Newtonian order. However, the additional momentum P~
given by Eq. (102c) is the total time derivative of

1
2 Z Z g ggW'iyrry ~ (108)2c '

4&
~

Since HS showed that P», given by Eq. (102b), is the time derivative of (107), in our case the appropriate
form for (E/c')R is the sum of (10V) and (108).

Equation (107) has the form of a sum over contributions directed along the N position vectors r, . Since
a definition of W, , for j&i has not yet been given, it is possible to put Eq. (108) into a similar form by de-
fining

W) =—-W]~, i& j
for then

gag, g,W, , (r, -r, ) g. g-=g, g,w„. r, . .
s&g

(109)

(110)

Using this in Eq. (108) and adding (10V) we obtain
~ 2

(111)

Thus the conserved center-of-mass quantity G is given by Eq. (9Vd) with (111)and (102); explicitly it
equals

G= m,. + 2m, 2 + 2, Q g, g~(Vo+W, q) r,
C 2C

1 ~~ 1 dW),
+ 2, Z, Z, g;g& (v, v~)W, ~+-ro(v, -v&) r,&-

2c r
Thus it does not depend on the X,, or Y,, .

(112)

VI. DISCUSSION

The main result of this paper is Eq. (75), which

is the approximately relativistic Lagrangian asso-
ciated with Lorentz-invariant variational principles
depending at most on the velocities of point parti-
cles interacting through two-body forces. The in-
teraction is not necessarily symmetric in the par-
ticles' variables and is constructed to have a New-

tonian limit. In previous work it has been taken
for granted that the relativistic corrections would

involve only the static Newtonian potential. How-
ever, the Lagrangian (75) includes the possibility
of three new functions of r;~ for each relativistic
particle interaction; none of these is necessarily
related to the Newtonian potential. Of these three,
W;, (r,, ) may b. e the most interesting, since it
shows for the first time that effects of a nonsym-

metric Lorentz-invariant interaction" can be evi-
dent in order c '. While the result (75) and the
functions appearing therein refer to a single type
of interaction for a pair of particles, generaliza-
tion to an arbitrary number of such types is imme-
diate, as noted in Secs. II and III.

It is noteworthy that there are no nontrivial con-
tributions of order c ' in the Lagrangian (75), and
thus none can appear in the equations of motion;
such terms either cancel out by time symmetry,
or, for nonsymmetric interactions, add up to a
total time derivative (61). The absence of any op-
tical effects of order c ' (which were expected as
a consequence of the supposed absolute motion of
the earth) was of some historical importance be-
fore the development of the theory of relativity. "
Our results show that there is a similar absence
of mechanical effects of that order (which because
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of their velocity dependence might be similarly
misconstrued), given a Lorentz-invariant dynam-
ics as a starting point (analogous to the Lorentz-
invariant optical theory avai1able to the prerela-
tivists).

The expansion used is designed to give equations
which are functions of a single Newtonian time.
Furthermore, since Eq. (75) will lead to at most
acceleration-dependent forces, the number of de-
grees of freedom of a particle system described
by this approximately relativistic Lagrangian is
the same as for its Newtonian limit, i.e. , 6¹
Since, as was noted in Sec. II, the number of de-
grees of freedom of the exactly relativistic case
is unknown, it is likewise unknown whether for any
given type of relativistic interaction a possible set
of non-Newtonian solutions is being lost by virtue
of the approximation procedure. " Qn the other
hand, the restriction to Newtonian-type equations
allows both the integration of the classical equa-
tions of motion by the usual techniques, and their
quantization by standard methods, ' thereby lead-
ing to possible quantitative and qualitative predic-
tions which might be compared to experiments. In
quantum theory, an independent study of possible
effects of order c ' in nuclear physics is being
carried out by Coester. " In classical theory, a
possible application is in the realm of gravitation.
There has been renewed interest in alternative rel-
ativistic theories of gravitation, and the various
effects of order c ' predicted by them, especially
in celestial mechanics. ' The variational principle
(6) allows a new class of theories of gravitation,
with new post-Newtonian effects based on the ap-
proximate Lagrangian (75), which are currently
being investigated. "

Our results also imply an immediate generaliza-
tion of the results of Ref. 22. This paper showed
that an apparent paradox in magnetism ' can be re-
solved on the microscopic level "for any field
theory (classical or quantum) described by a local,
Lorentz-invariant Lagrangian. " The authors' de-

tailed calculations were based only on the validity,
to order c ', of the laws of conservation of momen-
tum and energy and of the center-of-mass theo-
rem. '4 Since all of these are valid for the general
approximate Lagrangian (75) (as discussed in Sec.
V}, the restriction to local field theories is not
necessary, and the paradox is also resolved on the
microscopic level, to order c 2, for all interac-
tions described by the exact variational principle
(6) or the resulting approximate Lagrangian (75).

It should be noted that the types of interaction
allowed by the exact relativistic variational prin-
ciple (6) include not only interactions between par-
ticles with null or timelike separation, which are
familiar from electrodynamics and mesodynamics,
but also spacelike ones. No conceptual difficulties
are introduced by such interactions as long as a
closed system of particles is considered, ' a re-
striction inherent also in the Newtonian mechanics
of particle systems. Section IV gives a particular
example of Eq. (75) applied to such a spacelike in-
teraction. Also, this example is sufficiently sim-
ple to allow obtaining the exact Lagrangian by di-
rect integration from the variational principle;
expansion of this Lagrangian serves as a consis-
tency check on Eq. (75) for this example. It also
has the virtue of not being symmetric in the parti-
cles' variables, and thus is an example of a case
in which the W„. "potential" appears. On the other
hand, this particular example is so simple that the
W, &

"potential" happens to equal the Newtonian po-
tential. This is not necessary, however.

Section IV also includes a very general form of
relativistic interaction (79a) which allows definition
of adjunct fields, leading to the approximate inter-
action terms (8lb) or, for the special case closest
to the familiar linear field theories, to (81c}. As
mentioned in the Introduction, it was noted in HS
that all approximately relativistic Lagrangians
discussed there could be put into the form (75a),
with [Eqs. (67) and (68) of HS]~'

V=-,'QQV, (r, ,)+ V,(~,,) (113a}

, Qgg, g, [A(v; -v,.)'+v,"v, ]V„v,'r, ,v, r,-,4c' t, j f j J ~ sg j cj~ yy
(113b)

where A is an integer The term V, i.n (113a) appears only in the approximate Lagrangians following from
general relativity, and thus does not concern us here. The question was raised by HS whether all approxi-
mate interactions must be of the form (113b). Comparison of (113b) with (81b) and (81c) shows that all in-
teractions (81c) following from the field-related interactions (79a) with m=0 [which include those interac-
tions which allow the field equations (78}]are indeed of this form, with
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A=1 —/. (114a)

(114b)

Thus in both cases A is an integer.
These identifications hold for the special case of a single type of interaction. However, as noted in Secs.

II and III, the variational principle (6) may contain different types of interactions, leading to Eqs. (75) and,
in the case under consideration, Eqs. (81), with appropriate summations. We now consider interactions
which are such that they all have the same coupling constants g, and imply the same functional form of the
Newtonian potential V&& independent of the values of / and m, such that

V! =a ' V(r ), gpaI'~ =I (115)
m

where V„ is the total Newtonian two-body potential, and the aI,' l are constants. Then Eq. (81b), summed
over l and m, can be written

Ip„=,gQ g;g& [A(v; —v&)'+v, v&]V.,&(r,,.) —[v; r,&v&.r, &
—B((v, —v&) r,,)~]—

$j 4j
(ii6a, )

where

Furthermore', the more general field-related interactions (79a) also lead to this form, provided m= 1; then
Eq. (81b) shows that

(116b)

m 1 -m (Em)
2m- 1

l m

(116c)

which are not necessarily integers. Eq. (116a) is precisely of the form of the most general interaction con-
structed by Breit, ' which is characterized by two constants a and b, related to the ones introduced above by

a=1 —2A, 5 =1+2'. (116d)

Breit's result, which was based on considerations of invariance and simplicity alone but not on any particu-
lar model of a relativistic interaction, thus is equivalent to a combination (115) of field-related interac-
tions. The form (118b) of HS, which was gleaned from the form of approximately relativistic Lagrangians
following from particular field theories, follows from Eq. (116a) for all combinations of interactions (115)
for which B vanishes. '

Other interactions may allow forms of I» including functions other than V&&,
. but even if all four functions

appearing in Eq. (75) can be reduced to a single function and its derivative, as is the case for the interaction
(82), the resulting expression is not necessarily of the form (116a), the expression (86b) following from (82)
being a case in point.

It might be thought that this difference is a consequence of the non-field-theoretical character of the inter-
action of our example. However, taking instead of the form (82) the symmetric relativistic interaction

(1i7a)

we obtain from the calculations of Sec. IV instead of the nonsymmetric post-Newtonian interaction (86b) the
symmetric one

IpN g gg g;g~ [(2 —l)(v —vg) +v('vy]V g
—(v('r yvg'r(y —2 [(v —vy). r;~]']'— (117b)

which is again of the form (116a), with A=-,' —I and B= &. Indeed, this same Jp„can be obtained from inter-
actions of the form (115), with a single (arbitrary) integer value of /; a possible set of coefficients is given

by

(fo)1+(fy)g($)2+1(g)
2n(1-n)' '~ 2n(1-n) ' '~ 2n(1-n)' (118)

where n is a fixed, but arbitrary integer (-2). Thus two different relativistic interactions, one of which

cannot be related to a field theory, can lead to the same approximately relativistic Lagrangian to the order
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considered here (and, incidentally, infinitely many different field-theory related interactions can lead to
the same approximate Lagrangian).

The difference between expressions (86b) and (116a) should likewise not be blamed on the spacelike char-
acter of the separation in the interaction (82). The field-related interactions (79a), even with m =0 [lead-
ing to Eq. (81c)] and with field equations of the form (78), do not necessarily imply separations which are
not spacelike; indeed, field equations with Green functions implying spacelike separation have recently
been studied extensively in connection with the tachyon problem. Thus, to order c, the knowledge of the
form of the approximate Lagrangian alone is not sufficient to allow us to decide whether the fully relativis-
tic interaction involves timelike, spacelike, or null separations between the particles. '

The approximate Lagrangian (75) implies ten approximate conservation theorems, which are found from
invariance considerations in Sec. V; they can also be obtained by directly approximating the exact Lorentz-
invariant conservation theorems. " Each of the approximate theorems contains a contribution from interac-
tions which are not symmetric in the particles. Just as in the field-related cases considered in HS, it is
possible to find a center-of-mass theorem (112), with a center-of-mass coordinate defined in terms of in-
dividual contributions proportional to the position vectors of the particles [as shown in Eq. (111)].

It is worthwhile to note what has not been considered. The assumption of a static Newtonian limit is tra-
ditional, but by no means necessary. A Newtonian theory with interactions depending on velocities and
their derivatives is not at all new, "and it is easy to devise a relativistic interaction which would reduce
to such a theory in the nonrelativistic limit, as shown below. However, preliminary exploratory calcula-
tions of such cases showed them to be acceleration-dependent both in order c ' and in order c '. Since
only Lagrangians depending at worst on velocities were desired in both the exact and approximate realms,
the nonstatic cases are not considered here in detail.

As noted in Sec. III, it is the particular choice (32) of the set of invariants which is ultimately responsible
for the appearance of a static Newtonian limit. This is most clearly seen from Eq. (44), whose leading
term depends only on g;,. [which is an integration va.riable in I„given by Eq. (45)], and r(t;, t&), where in
lowest order t; = t, , according to Eq. (38). Thus in lowest order I, involves only the static Newtonian poten-
tial (66). If we had desired to obtain a velocity-dependent Newtonian limit, we could, e.g., have chosen a
set

tr... (, (),, =4, ,'(, , —1}-='Iy,. yr 1 — , (1) v (rr) ——1I,,

(„-=c'(((, + ~4)
-=c't, , (y, —y, ) + (y, v, (t ) y, v, (t .—)] r„(t,, t, )

(119)

instead of the set (32). Then we could proceed with the same change of integration variable as in Sec. III,
but would be led to

~2 3-
&(K) ~, = U &' —r'(t;, t, )+ 2 v, r(t, , t, )+ ,—[v,.r(t„ t,.)]'-—

—,'(v,. —v )'+4, [(v, —v )' —4(v,. v )'+ 4(v,.'4 vr~')], (v,. —i ) r ——(,.' —vr') ~, v, '(v, —v ) r

(120)

instead of Eq. (44). The lowest-order terms of
this equation involve [V,(t) —v~(t)]' and

[v, (t) —v&(t)] r,&(t), in addition to r,&and g, &, and.
thus the Newtonian limit of I, is not static.

While the sets (32) and (119)are not the only
possible ones, the set (32) is the only one which
gives a static Newtonian limit, and the set (119)
contains the most general velocity-dependent New-
tonian limit, encompassing the limits of sets such
as (o;» (4),„,$;&, t;~) and (g;~, Q,.J, X,.&, &,&) as special
cases. However, for the terms of order c ' or
higher the set (119) is not all-encompassing, but

different functional forms are obtained from the
different sets mentioned, as can be seen from the
Taylor and Lagrange expansions of the individual
invariants.

In the above, "Newtonian limit" means |."-~ as
well as t, = t&, the latter condition was required
here, but is not necessary for Galilei invariance,
and thus more general Galilei-invariant theories
are possible, as discussed in H.

The exact variational principle is postulated to
be exactly Lorentz-invariant. This assumption is
not necessary. It would be sufficient to allow it to
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be invariant up to a divergence in order to apply
Noether's theorem and retain the advantage of par-
ticle systems having ten exactly conserved quanti-
ties. The Lagrangian of ordinary Newtonian me-
chanics is invariant only up to a divergence (i.e.,
in this case a total time derivative) in the non-
relativistic limit. Consequently, there is no rea-
son for excluding such a possibility in the Lorentz
case. However, this possibility has not been ex-
plored in the literature.

The Lorentz invariants (Sl) or (82) are not the
only two-body invariants of the Lorentz group, but
they are the only independent quantities which are
polynomials in the positions and velocities of the
particles. However, the Lorentz group is interest-
ing and physically relevant precisely because

there are other invariants specifying the charac-
ter of the separation between points. In particular,
the sign of z, -z& for null or timelike separations
is invariant under the Lorentz group; other such
invariants can also be constructed. " Unfortunately,
for any invariants which are not polynomials in the
particle variables the expansion method used here
is not applicable.

Possible future uses of the formalism developed
here, apart from those mentioned before, include
an approximation of variational principles describ-
ing particles with intrinsic angular momentum, as
well as dipole and higher multipole interactions,
and a generalization of the results of Refs. 91 and

23, using the Lagrangian (75}; some of these prob-
lems are currently being investigated.
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