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The Cabibbo-Ferrari two-potentials formalism is used to construct a representation of
the gauge-independent electrically and magnetically charged Mandelstam field. This repre-
sentation is applied to convert the Cabibbo-Ferrari-Coleman formulation of monopole theory
into a more conventional one in terms of gauge-dependent fields and potentials.

Mandelstam,® years ago, proposed an alternative
to the conventional ways of quantizing electrody-
namics which use potentials and suffer from dis-
advantages that result from constructing the theory
in particular gauges, as the indefinite metric of
the Lorentz gauge or the lack of manifest Lorentz
invariance of the Coulomb gauge. His formulation
of the theory entirely avoids potentials and gauge-
dependent quantities at the expense of attaching a
path dependence to the matter fields. Complica-
tions that arise from this path dependence are ar-
gued to be physical rather than a feature of the
formal apparatus and would directly reflect the
essence of the experiment of Aharonov and Bohm.

Soon after, Cabibbo and Ferrari? and Coleman®
noted that Mandelstam’s approach to ordinary elec-
trodynamics could be extended to allow for mag-
netically as well as electrically charged particles
and gave “en passant” an elegant derivation of the
quantization condition of Dirac.*®

Of course, although a gauge-independent formu-
lation of electrodynamics is nice and desirable to
have, our long acquaintance with potentials renders
them irreplaceable tools of any theoretical labora-
tory and makes it of much practical importance to
be able, at one stage, to eliminate the path depen-
dence and recover the conventional formulation of
the theory corresponding to a particular gauge.
While Mandelstam, to achieve this purpose, pro-
vided a representation of the path-dependent field
in terms of the auxiliary gauge-dependent field and
potential, the paper of Cabibbo and Ferrari was
lacking in this respect. They suggested the use of
potentials which should be appropriate to the case
in which both charges and poles are present, but
did not express in terms of them the gauge-inde-
pendent Mandelstam field. Our simple considera-
tions are aimed at supplementing the work of these
authors by exhibiting such a representation.

Let us recall the usual definition of potentials,

A and A, for the electromagnetic tensor F and its
dual F (Ref. 6):

o

A,,,,,—A,J,,,‘=F“,,, A-u,u—‘iu,v=i5uu . (1)
The group of gauge transformations,

Ay~ A+ Ay, A~ A+ A7, (2)
is determined by the solutions

Ay =A,, AY=A, (3)

to the homogeneous equations
A, -A,=0, AS -4 ,=0. (4)

In a world with both electrons and monopoles,

Fuyv=iu#20, Fu,=j,*#0, (5)

p

the two systems of partial differential equations
(1) will in general not be soluble everywhere. The
appearance of unphysical singularities (“Dirac’s
strings”) will be taken to suggest that a different
choice of potentials might be convenient.” Follow-
ing Cabibbo and Ferrari, we define the regular
potentials B and B:

B,,— By, +z€"°B, ,=F,, . (6)
The group of gauge transformations
Bp-—Bu"'BZ, B“»BM‘FE?‘ (7)

is now determined by the solutions of the homoge-
neous equations:

B, - B, +3€"°B] ,=0. (8)
These imply, by differentiation,
B?/,uv_ B(zl,uu =0 ’ (9')

while integration of the dual of Eq. (8), along the
direction » from infinity to the point x, in the axial
gauge n,B, =0, yields

s(x)
B} (x) =—§e“”p°f dsn,Bg, .

Equation (9’) and the generalization of the latter
constraint to an arbitrary gauge,®
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=_§€uvpof( ) d&,,B‘z,’p(E)+A.” , (97
P(x

are equivalent to the system (8); yet, they provide
a more immediate specification of the gauge free-
dom associated with B and B.

Next, we relate A and A to B and B:

x e

A, =B, =dew [ ag,Bo(O+n,, (109
P(x)
X

A, =B, +3e"° » )d&uBo'p(£)+A'“ . (107

Needless to say, since B and B do not in general
satisfy the condition of zero source (9’) and the
condition of zero source “dual” to (9'), Eqs. (10)
should not be regarded as gauge transformations.
However, the connection between the two sets of
potentials ¢s in general a gauge transformation
almost everywhere. Equations (10) show directly

how nonintegrable physical singularities of the po-
tentials B and B, at the position of pointlike mono-
poles and electrons, generate unphysical singular-
ity lines in A and A.

We are now prepared to generalize Mandelstam’s
treatment of electrodynamics to a world in which
dually charged particles exist, and the first step
is constructing the gauge-independent field of a
particle of electric charge @, and magnetic charge
Q.. This is readily done in terms of the gauge-
dependent matter field ,(x) and the potentials (1):

¥,(x, P) = (x) exp <-i f,, dE(@uA, +Qkfi,,)) :
(11)

Then, in terms of the Cabibbo-Ferrari potentials
(6), the Mandelstam field is seen, from Eqgs. (10),
to become a surface-dependent quantity:

s, 2) =y exp] i [ at, (@B, + 0B - b [ an, (@, - 5.,)] - (12)

The surface ¥ is determined by the integration
path P, which is part of the boundary of =, and by
the subintegration lines P(£). Not surprisingly,
however, such surface dependence is unphysical
and veduces to a path dependence if the quantiza-
tion condition is satisfied.

This conclusion is easily reached after comput-
ing the response 8%, to a change in the surface T
by an infinitesimal area at the point z off the
boundary line. Denoting by V, the infinitesimal
volume delimited by the two surfaces, Gauss’s
theorem and Maxwell’s equations entail

0%, =y(x) exp{-iV,[Qx (B, 1, - B, .)
- @ (B, — By}
=9(x) exp{=iV,[Q:], (2) - @i, ()]} . (13)
Hence, the vanishing of 6¥, is indeed equivalent to

the quantization condition, in the chiral-invariant
form of Zwanziger®:°:

Qe Qu— @ Q, =27 . (14)

The representation (11), or (12), defines the
path dependence of the gauge-independent field ¥,
and, as such, fully specifies the interaction of
electric and magnetic charges with the radiation.
The Lagrangian density of the system that one pos-
tulates is, in fact, just the sum of free-field La-
grangians for ¥, and F,

L=§:§k (i)”a— mk)‘l’k"f(F,w)z , (15)

T

with the interaction being completely buried in the
functional dependence of ¥, on F (Ref. 10), speci-
fied (11) or (12). In perfect analogy with the case
of ordinary electrodynamics, the equations of mo-
tion for ¥, and F,

F;u/,u =§Qk@k)’u‘l’k ’
Fuv.u = %}Q.k \fk')’p\pk ’ (16)

(iy-8~ my)¥, =0,

are then derived directly from an action principle
or from making use of more familiar techniques
and adopting the representation (11) as a mathe-
matical aid in the intermediary steps. Also in per-
fect analogy with Mandelstam’s case, all the com-
mutation relations between the gauge-independent
variables are obtained. These equations of motion
and commutation relations, together with the de-
pendence of the operators on the paths and the
quantization condition, give us the theory of
Cabibbo and Ferrari® and Coleman.?

With an explicit representation for the path-de-
pendent quantities, Eq. (12), we may proceed par-
alleling Mandelstam’s discussion to obtain a for-
mulation of monopole theory in terms of potentials.
The equations of motion are quickly secured by
putting (6) and (12) into (16) (Ref. 11):
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Bu,uu u,w yu 'I’k ’

Bv,uu u v

‘Il Yu‘llk ’

"M *’M

(am
{Yu[iau - Qk.<Bu - %euupo d&uéo,p>
P

- Qk(ﬁ‘, +3ehwo ., dng‘,,p)] - m}zp=0 .

Then, after picking a gauge in which to write ex-
pressions for the potentials in terms of the elec-
tromagnetic tensor F, one could use these, the
representation (12), and the commutation relations
between the gauge-independent quantities to deduce
the commutation relations for B, B, and y, in that
gauge. There are gauges in which B and B are
local and relatively local fields:

[B,(4,%), B, (¢, 0= [B,(t,%), B, 0)]
=[B,(,%), B,(t,0)]
=0, (18)
[B,(t,%), B,(t,0)]=[5,(:%), B, (t, 0)]
==-0,,0%(X) .

Notice, however, the nonlocal character of the
equation of motion for 3, peculiar of monopole the-
ory. It is true that by a change of variables, as in
(10), we could cast the equation of motion for the
matter into a local form and retain the locality of
the equations of motion for the radiation, but our
variables would then not be local fields. What
their commutation relations would look like may
be straightforwardly derived from (10) and (18):

[4,(5%),4,(,0)]=[4,%,4,(t0)]
=—i(gauy + LaMy)
x [ assi(-s),
- (19)
(4,69, £, 1, 0] =i v, [ °m ds6° (%~ is) .
These are the commutation relations which appear
in Zwanziger’s formulation of the theory.

Conversations about monopoles with Richard
Brandt, Nicola Cabibbo, Mike Creutz, Enzo
Ferrari, Peter Weisz, and Daniel Zwanziger are
gratefully acknowledged.

*Work supported in part by the National Science
Foundation, Center For Theoretical Physics, under
Grant No. NSF-GU-2061.

!S. Mandelstam, Ann. Phys. (N.Y.) 19, 1 (1962).

2N. Cabibbo and E. Ferrari, Nuovo Cimento 23, 1147
(1962).

33. Coleman (unpublished).

4p. A. M. Dirac, Proc. Roy. Soc. (London) A133, 60
(1931); Phys. Rev. 74, 817 (1948).

SMonopole theory has been discussed by J.‘Schwinger,

Phys. Rev. 144, 1087 (1966); 151, 1048 (1966); 151, 1055
(1966); Science 165, 757 (1969); 166, 690 (1969); T.-M.
Yan, Phys. Rev. 150, 1349 (1966); 155, 1423 (1967);
B. Zumino, in Theory and Phenomenology in Particle
Physics, edited by A. Zichichi (Academic, New York,
1968); D. Zwanziger, Phys. Rev. 176, 1489 (1968);
Phys. Rev. D 3, 880 (1971).

8We use rationalized units with #= ¢ =1, and a metric

&y = diag(l,1,1,-1). We define ¥, = i
where €*VP is the completely antisymmetric Ricei
pseudotensor, €1234=.

"We shall later find out that A and A are not local and
relatively local fields.

8We also generalize from straight lines to arbitrary
(spacellke) paths.

Schwmger and Zwanziger are actually in favor of the
stronger “integer quantization condition.”

Notice that the path for the representation (12) is an
infinite line going through the point x rather then a semi-
infinite line ending at the point x .

UNotice the invariance of the last equation under the
gauge transformations defined by (7) and (9). With such
requirement in mind, one could have guessed its form
directly from the corresponding equation in conventional
electrodynamics.



