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From the linear wave equation for small-amplitude sound waves in a curved space-time,
there is derived a geodesiclike differential equation for sound rays to describe the motion of
wave packets. These equations are applied in the generic, nonrotating, homogeneous
closed-model universe (the "mixmaster universe, " Bianchi type IX). As for light rays
described by Doroshkevich and Novikov (DN), these sound rays can circumnavigate the
universe near the singularity to remove particle horizons only for a small class of these
models and in special directions. Although these results parallel those of DN, different
Hamiltonian methods are used for treating the Einstein equations.

I. INTRODUCTION

The present-day universe can be described very
well by the Robertson-Walker cosmological mod-
els. The extrapolation of these models for the
early times of the universe gives rise to the prob-
lem of particle horizons. ' A particle horizon at a
particular epoch bounds each finite part of the uni-
verse which could have been spanned by a causal
signal during the time available since the initial
singularity. Since the Robertson-Walker models
possess particle horizons, only a finite part of
such universe could have been causally connected.
Thus, we are faced with the observation of the mi-
crowave background radiation having precisely
(&0.2%%) the same temperature' in widely different
directions even though the regions of plasma which
scattered the radiation last had no prior causal re-
lationship. The Robertson-Walker models there-
fore are too simplified to describe the early phase
of the universe. Here we would consider a more
general model of the universe —the nonrotating
Bianchi type IX model. It has a very different sin-
gularity behavior, '4 but it could evolve into the
closed Robertson-Walker model at the present
epoch. Misner' first pointed out the possibility of
mixing by light in these models.

Doroshkevich and Novikov' (DN) quote the results
of their investigation of the propagation of light in
the mixmaster universe. Doroshkevich, Lukash,
and Novikov' in a recent report apply these results
for finding the likelihood of horizon vanishing and
find it to be very low. Our results are in substan-
tial agreement with theirs. In a future paper, we

will show how our formulation and treatment of the
problem gives us a natural probabilistic estimate
for horizon vanishing. Here we will derive the
equations for rays of high-frequency sound waves
in these generic models and study their behavior

in a certain class of solutions to Einstein's equa-
tions. The Hamiltonian methods which we use to
obtain information about the relevant solutions to
Einstein's equations are quite different from the
ones employed by Belinski et al. ' or Doroshkevich
and Novikov. ' Also we do not reject the application
of our calculations to epochs where quantum ef-
fects could enter. We look forward to calculations
in which quantum effects might be included and
would meaningfully modify the interpretation of
these small perturbations.

The metric of the Bianchi type IX for an aniso-
tropic nonrotating universe can be written as

ds'=-dt'+(6 )v'e '"(e'8);, v, v, ,

where

v, = singd8 - cosP sin8dg,

v, =cosgd8+singsin8dg,

v, = -(dP + cos 8 dP)

satisfy do; = —,'c;fpoj~ 0), and are differential forms
on the three-sphere parametrized by Euler angles

g, 8, &f with 0 & P & 4v, 0 & 8 & w, and 0 & P & 2v. The
quantities 0 and P;& depend only on time, with Q
determining the volume and P&~ a diagonal trace-
less 3&&3 matrix

18 = diag(P„P„P.)

governing the anisotropy (shape). Note that for P;,
=0 this metric is one form for the positive-curva-
ture Robertson-Walker metric. As two indepen-
dent shape parameters choose

0 =(ti, —P, )/2~~
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which is valid in the sector
~ P ~

( -W3P, . The
corners of this triangular potential are flared
open; for instance if p, -~ with

~ p ~«1, one finds

V(P) -16P e + +1.
The evolution of the universe is described by the
motion of the system point p=-(p„p ) as a function
of the time coordinate Q. When P is mell away
from the potential walls, the universe point moves
with velocity

dp dp ' dp

of unit magnitude in straight lines and it can be
parametrized as

p+ u +u 2

dg u2+u+1 '

d p W3(u+ —,')
dQ u2+u+1 '

(1.6)

FIG. 1. The equipotentials of Vg+, P ) for large "P".
(Figure courtesy of C. Misner).

The variational principle for Einstein's equations
5I=O with

I=(16m) 'J A(-g)'~'d x

can be cast into a canonical form to obtain' the
8amiltonian

/ =t p +p +e 4o(y 1)]~~2

p, and P are the momenta conjugate to the field
amplitudes P, and P, respectively, with 0 as the
choice for the independent (coordinate time) vari-
able. An equation giving 0 as a function of the
cosmic time t is

dt=--, —e 3 dQ.2 1 -3Q
K (1.3)

+ p ~ oo-s8 (1.4)

The "anisotropy potential" V(P„P ) arises due to
the anisotropy of the curvature of the three-dimen-
sional space sections of the universe. The poten-
tial walls rise steeply away from P =0, with the
equipotentials asymptotically forming equilateral
triangles in the P, P plane as shown in Fig. 1. One
of the three equivalent sides of the triangle is de-
scribed by the asymptotic form

where the parameter u goes from -~ to ~. The
potential walls move outward with velocity (in the
sense of dP„~/dQ) —,'. The system point P would
thus move in one direction with unit velocity till it
comes close to one of the walls and feels the po-
tential and would then bounce off the wall changing
its direction. Furthermore, Belinski and Khalat-
nikov' have shown that all solutions would come
arbitrarily close to the values u=-2, -1, ——,', 0, 1, ~
after rattling back and forth between the walls.
These values of u correspond to the system point
moving parallel to the three corner axes.

When the system point is well inside the walls,
the potential V can be neglected. But V=O just
gives the Einstein equations A„„=O for Bianchi
type I. One finds then' that these epochs parallel
Kasner solutions using 0 = --,' logt+ constant as the
independent variable; the Kasner metric being giv-
en by

ds = dt +It (f-~ld~~ + f ~2dy + f +3dz )

where the exponents p„p„and p3 are connected
by the following two relations:

Py +P2 +P3 Py +P2 +P3

Thus the P point shifts from one Kasner-like mod-
el to another at each collision with a potential wall.
For the Kasner solution with pg p2 0 p3 1,
there exist no horizons for causal propagation in
the z direction. ' Similarly, there is absence of
horizons in the other two directions for Kasner
metrics with p, =p3=0, p, =1 and p, =p, =0, p, =1,
respectively. This motivates us to study the
epochs of Bianchi type IX model which approximate
these Kasner solutions for a long period of time.
These epochs can be seen to be the ones when the
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system point is moving parallel to one of the axes
of the equipotential triangle and is either running
towards a corner or following an inclined wall.
When the system point is running towards a corner
on the P, axis, the parameter "u" designating the
direction of the velocity is asymptotically ~ and

P, is very large; ( P («1 giving the universe a
pancake-shaped anisotropy corresponding to a rel-
ative compression of the 3 axis (P axis) with the
other two axes approximately equal. While near
the inclined walls, say for P, -~, the anisotropy
is cigar-shaped with the stretching of the 1 axis
relative to the others. So we expect the null geo-
desics in the g direction to go around the universe
during the u=~ epochs.

In Sec. II we will derive the equations for the
propagation of high-frequency sound waves and in
the following sections we will study their behavior
during the epochs when u is very large. It will be
seen that there exists a set of initial conditions for
which the special Kasner-like behavior persists
long enough for these sound waves to go around the
universe in the P direction. This possibility of
communication either by sound waves or light rays
along a certain direction during the evolution of a
universe will be called the removal of horizon in
that direction for that universe.

(g""+u"u') p', „—e'„„u"u" =F, (2.5}

H = ,'(g"—'+u" u') p„p, —,——,
' u" u'p„p,

S
(2.7)

as a particle Hamiltonian. To obtain the corre-
sponding Lagrangian, we solve for P„ from one
set of Hamilton's equations:

dA, 8P
= (g"'+u" u') p ——u~ u'p

S
(2.8)

where x"—= (t, 6, Q, g).
Noting that u =B/Bt for comoving coordinates, we

can invert (2.8) to obtain

where I' is a scalar function which contains the
high-frequency perturbations e', P', and u'" only
up to their first derivatives.

Writing p'=Re'~, where Q is a rapidly varying
function, and setting the dominant terms in Eq.
(2.5) equal to zero, we obtain

Bc(g""+u"u")P „P,— —P „P,u" u"=0,
S

(2.6)

where v, =[(BP/Be),]'i' is the sound velocity. The
Eq. (2.6) is a Hamilton-Jacobi equation corre-
sponding to

II. THE PROPAGATION OF HIGH-FREQUENCY
SOUND WAVES

dx"
pp = [gpss+ (1 —v~ )u~ up] . (2.9)

Let e, P, and u" be the energy density, pressure,
and the four-velocity of the fluid, and let e', P',
and u'" be the small amplitude, high-frequency
perturbations on the above solution. The propaga-
tion of the disturbance is governed by the energy
equation

Thus, we get the Lagrangian L as follows:

dx"
L, =P -8

~ dx

dx" dx'
[gpss+(1 —v~ )uq uv]

e „u"+(p+e)u".„=0
and the Euler equation

(p+e)u".,u"= (g"'+u"u'-)p „

(2 1)

(2.2)

, dx" dx'
[g~ p + (1 —vq )u~ u„]

, dx" dx'
[g~q+ (1 —vq }u~ uq] .

(2.10)

(2.11)

Substituting P =P+p', c = e + i', and u =u+u' in Eqs.
(2.1) and (2.2) and linearizing we obtain

e'„u" +e „u'"+(e'+p')u". „+(e+p)u'".„=0
(2 3)

(e+p}(u".,u'"+ u'".„u') + (e '+p')(u". „u')
= -(g"'+u" u")p', —u'" u' p „-u" u"p „.

(2.4)

Differentiating Eqs. (2.4) with respect to p, and
substituting for u'".„ from Eq. (2.3) we get

The propagation of rays is then given by the La-
grange equations

d dx 2 dx dx~ dx. Bgp
d 'g"d '"'-""""d. = d. d

(2.12)

Consider a possible set of solutions with 6= con-
stant and P = constant. Then the Lagrange equa-
tions reduce to

(2.13)



HIGH-FREQUENCY SOUND WAVES TO ELIMINATE A HORIZON. . . 3393

dA g~~dA
=

dA 8

(2.14)

(2.15)

(2.16)

Writing P, =-2P, =-2(P, +0) in Eq. (2.20), we re-
express the equation of the sound-wave propagation
in the P direction as

d4—= v'6m v e'&e28

cos8 e ' e'~3 —= 0-2o
dA, dA.

(2.17)

Since g&& is a function of t only, Eq. (2.14) is iden-
tically satisfied, while (2.15) and (2.16) reduce to

Using Eq. (1.3), the change in g can be given in
terms of the variable 0 as

dg dg dt
d0 dt d0

2 280
sII (3.1)

—e-2 e»3 —=0-o
dA. dA.

(2.18)

or

For 8=constant, (2.17) reduces to (2.18). So the
Lagrange equations now reduce to Eq. (2.13) and
Eq. (2.18) which can be solved for dt/dX and dP/dX.
Putting H =0 in Eq. (2.10) we obtain

dx" dx"
[g„„+(1—v, ')u u„] =0

(3.2)

Substituting Eq. (4.3) in Eq. (3.2), we obtain

Hence, the change in P along the sound wave be-
tween the epochs 0, and 0, is given by

&I(=
Jf

d4'

o2 2
vs H

f "2 2 6 d0=v, Jt e"„—dp, .
Qg 0

+g33 + 1 —Vs = 0 (2.19)

for & =constant, P =constant class of solutions.
From Eq. (2.19) we obtain

2 n

b, p= ——v, j e ~odpo
n,

(3.3)

(3.4)
v g 86mv, e e

gg33
(2.20)

By putting v, = 1, we get the law of propagation for
light going in the P direction.

Therefore, a change of 4v/v, in e'eo/K would give
a change of 4v in p. Since p =Z,(2eso/K), which
for small K goes roughly as

III. THE REMOVAL OF HORIZONS
or

cos —4&

[see (4.8)]

where Z, is the Bessel function of order zero. K
is a constant and P, is defined as

Po=—P, -0.
The variation of P, is given by

dpo . K
d0 II [see (4.3)]

Let us now study the behavior of the above high-
frequency sound waves during the u=~ epochs.
First consider the axial case when the system
point is very close to the P, axis and is running
towards the corner. This is the case which Belin-
ski et al.' call the case of small oscillations. The
appropriate solution to Einstein's equations as de-
rived in Sec. IV is

K . 2e

P would go through four cycles as its argument
changes by 8m. Thus setting v, =1, we see that the
light ray would circumnavigate the universe in the
P direction during four cycles of P . This corre-
sponds to the DN result of N, = —,

' N . For radia-
tion-filled universe, the velocity v, of the sound-
wave propagation will be I/M3; as a result these
waves would go around the universe in the g di-
rection during seven cycles of P . Similarly,
when the system point is running towards the other
two corners, the causal and the high-frequency
sound wave influence would circumnavigate in the
other two principal directions.

Next consider the off-axial case with u very
large and P &1. The appropriate solution to Ein-
stein's equations as derived in Sec. IV again gives
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dPo K
d0 II ' [see (4.11)] ea=(v, —,e'e'e) e '"'e ' ')

while the total change in P, during one bounce with

the inclined potential wall for large Q is given by

2
ug e + wall.4 (3.7)

Therefore, for all solutions for which at the begin-
ning of the series of collisions with the inclined
wall, the value of Q is such that

ap, =
Q~

[see (4.17)]
Ms

2v
where Q; is the value of Q before the bounce. The
change in g along the high-frequency sound wave

ray going in the P direction is again given by Eq.
(3.3)

e22pdP .2vs
K 0'

(28) [1 2 (8)]
K

vs 2= —'(e'")—
K 'Q;' (3.5)

where the subscript i denotes the values of the
variables before the collision. The value of the
constant K can be obtained in terms of Q; and H;
from Eq. (1.6): .

dp~ Q +Q —2

d0 Q'+ Q+ 1

and Eq. (4.11)

dP0 K
d0 H

Then b.P is given in terms of the initial values as

2Q +Q+1, », 1

2 828
3v, Q for large Q;. (3.6)

As the system point evolves, consider the epoch
when the system point had its first collision with
the inclined wall for large Q. So the system point
has just bounced back off the vertical wall and is
going towards the inclined wall at say 0 =0&. The
position of the potential wall is then given by

4obp(p)'
3 + mall

&2 ~b e 8 ~ 80&wu
3

So during one collision with the wall, the change in

g would be

IV. Q= %) SOLUTIONS OF EINSTEIN EQUATIONS

In this section we will derive the relevant infor-
mation about Q=~ solutions which we used in Sec.
III. First consider the axial case when the system
point is very close to one of the corner axes and is
running towards the corner. For the corner on the

P, axis, the asymptotic form of the potential is

V(P)-16P 'e' ++1, P, -~ and ~P («1.
Then the Hamiltonian of the system is

H = (p, '+p 2 + 16p 'e ' "e48+)"' . (4.1)
' To get a time-independent Hamiltonian, substitute

in the action integrand

(d =P,dP++P dP -Hd0

to give

&u = p+ dp, +p d p —(H -p, )dQ .

then the high-frequency sound wave communication
has an open channel in the g direction. Since (P, )„~
is negative (it goes as: P, = --,' 0+ constant), we

find that there exist small sectors around the lines
parallel to the P, axis such that when the system
point is running along these sectors at 0„ahori-
zon is removed in the g direction during the next
bounce with the inclined potential wall. The angu-
lar extent of these sectors depends upon 0 and it
goes to zero as 0 goes to ~.

One concludes, therefore, that at each epoch
there exist certain subsets of initial conditions

[P„P;u(A)], such that some rays of high-fre-
quency sound waves and null geodesics will proceed
to circumnavigate the corresponding universe. It
will be shown in a future publication that the uni-
verse point wanders about in a truly ergodic fash-
ion and that by finding a measure on initial condi-
tions, one can compute the probability for a typical
solution to have no horizon along one axis.

Substituting the expression for H in Eq. (3.6) and

dropping the subscripts, we get

So the new Hamiltonian is

(p 2 ~p 2 + 1 6P 2e48p)1/2 p (4.2)
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The corresponding Hamilton's equations give

dpa BK

dQ Bp+

-1= p+
K+p+

K

dp+ -BK
dQ BPO

-32P '
4g

dp -BK
dQ BP

-16P e4 '
11

(4.3)

(4.4)

(4.5)

(4.6)

Then the Hamiltonian of the system is

[p 2 +P 2 + 1 8 4os4(84+w28 )]1/2 (4.9)

Substituting P, =P, +Q in the action, we get the
time-independent Hamiltonian

[p 2 ~p 2+1e48pe4~38 ]I/2 p (4.10)

The Hamilton's equations give

dpo BK

dQ Bp~

p
E+ +p+

positive. Then from Eq. (4.3) Pp is always de-
creasing, so Eq. (4.8) is valid starting from some
initial value of P, until Po decreases to the point
where the argument of the Bessel function gets
small and P gets large contradicting the iP )« I
assumption.

Next consider the off-axial case (p )1). When
the system point is almost parallel to the P, axis
(large u) and is following one of the inclined poten-
tial walls, the asymptotic form of the potential is

I/(P)
1 4(84.+MS 8 )

dK BK

dQ BQ

=0 (4.7)

K (4.11}

Equation (4.7) tells us that K is a constant while

Eqs. (4.3), (4.4), and (4.6) can be manipulated to
give

dp p
dpo K '

dp dp dpa

dj80 dQ dQ

16P e~so

K

dP BK

dQ Bp

BE
BPo

g4 (Bp+ W3 8 )

3 II

dp -BK
dQ BP

(4.12)

(4.13}

Hence

d'p 1 dp

dp~ K dpo

-16P 84~0

K

or

dK BK

dQ BQ

=0

4(60+~38 )

H
(4.14)

(4.15)

which has the solution

(4.8)

From Eqs. (4.13) and (4.14) we get

v 3 dp, dp
dQ dQ

or

where Z, is a Bessel function of order zero. Note
from Eqs. (4.1) and (4.2) that K and H are strictly

1( 3 p4 —p =constant

(4.16)
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let us say. Substituting for P, and P in Eq. (4.16)
from Eblis. (4.11) and (4.12) we obtain

or

dII
H = -6(HI -H)(H H-~).

dQ

Also from Ell. {4.15) K =H —p+ =H(1 -dp+/dQ) is a
constant. These two constants of motion enable us
to find P+, P' after the bounce in terms of their
values before. Let u; and u& be the values of the

parameter u, characterizing the velocities of the
system point well before and well after the bounce.
Then the constancy of K H(1 —P,') and v 3 p, —p
=H{MSP,' —P') give, respectively,

Hence

E
6(H,. -H )(H -H, )

'

A lower limit on the change in Po during the colli-
sion can be computed as

n (Po) = (H I Hy)(mlnlmum vahle of dP0/dH) ~

The minimum value of dp, /dH is at that value of
H where d'P, /dH' vanishes, i.e., at

H=-,'(H,. +H, ).

~H . uy +up+ I
H- u +u" +1

and uf =-u„whereII; andH& are the values of H
before a.nd after the bounce, respectively.

During the collision with the wall,

p o+p 3+ e-qQ & ey(8+y~38 )

82 f + +83 f - +e4& &@4(8++~38 }
dQ dQ

So the etiuation dH/dQ = BH/BQ gives

2K'("=
3(H,. -H, ).

{H, H~) =vK[(-u '+u, +1)—(uq'+uq+1)j

= TEu»»

since u& = -u&. Hence,

(4.17)

Uslllg this 1'eslll't alld solvillg fol' dP /dQ dP /dQ
in terms of H, K, and e, one obtains

K K e 2 1 dIIH'=H' 1-— +H2M3 1-———--H—
- II II H 2 do
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