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By introducing a variable corresponding to the Leader-Pennington variable, we are able
to write dispersion relations which are an extension of boundary dispersion relations to the
interior of the physical regions.

In a recent article' we showed hom dispersion
relations could be written, for certain inelastic
processes, which wouM include both t-channel and
s-channel contributions, the latter evaluated on
the contour representing the boundary of the s-
channel physical region. For the elastic scattering
case, these boundary dispersion relations (BDR)
become the ordinary backward dispersion rela-
tions. BDR are limited however in that they in-
corporate information only from forward (Z, = 1)
and backward (Z, = -1) scattering or production
data. Dispersion relations mhich could be written
for contours interior to the boundary curves, i.e.,
using data away from the forward or backward di-
rections, mould be quite useful, especially as the
data in the region somewhat off the scattering po-
lar axis are often more numerous and reliable. In
this note, we wish to demonstrate how such an ex-
tension of BDR away from the boundary curve can
be effected.

%e are concerned, in particular, with reactions
of the type

a+5 c+d,
where mb =m„. Reactions in which m„=m, we term
elastic (irrespective of quantum-number exchange);
others (m, wm, ) are inelastic. BDR are obtained
by applying the Cauchy theorem in the complex t
plane for a suitable amplitude at fixed sin6, =0.
This is equivalent in the regions of interest to fix-
ing the Kibble boundary function

y =4t(p, p', sin8, )'

at zero. (See Ref. 1 for kinematical details. ) The
resultant contour consists of the entire boundary
curve for the s-channel physical region, a contri-

bution extending from the lowest two-body t-chan-
nel threshold, t„ to the threshold of the t-channel
reaction

a+c-b+d,
and the branch of the t-channel boundary corre-
sponding to cos6, = -1. This choice of fixed and
dispersion variables is convenient in that it allows
qs to remove easily contributions from kinematical
cuts. There are no kinematical singularity contri-
butions for amplitudes A with even s-u crossing
symmetry, i.e., 4 =4 for even amplitudes and
A/(s -u) for odd amplitudes.

As was mentioned above, the BDR for elastic re-
actions are backward dispersion relations, i.e.,
dispersion relations at fixed angles 6, =m. For in-
elastic reactions, 6, is piecewise-fixed around the
boundary. Fixed-angle dispersion relations are
convenient because data are usually taken at fixed
angles. There is as yet no way of writing fixed-
angle dispersion relations for angles away from
the polar axis, from which kinematical singularity
contributions can easily be eliminated and which
do not involve unphysical contributions from a
double-spectral function.

As an alternative, we introduce the variable

(4)

which we will fix in order to write dispersion re-
lations. (This is essentially the Leader-Pennington
variable' for t-channel reactions. ) An advantage
in working with fixed C is that in the Mandelstam
plane the physical scattering regions are charac-
terized by positive values of Q and thus of C, and
the unphysical regions by negative values of Q and
C. This ensures that a fixed-C curve passing
through the direct-channel physical region will
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also pass through the crossed-channel physical
region. From the relationship

s-u=4p, p,z, = v,z,

we can write

C = [v,2 —(s-u) ]2/t. (6)

It now remains to discuss the contours of inte-
gration for fixed C. From (7a) and the expression

v, ' = (Z —t)' —4(m,' —m, ')(m, ' —m, ')

—4m '(m ' —m ')'/t

Thus,

2s = Z —t+ (v, ' —Ct)'/',

2u = Z —t —( v, ' —Ct)'",
(7a)

(7b)

V=S -u
(v. 2 Ct)l/2 (8)

Therefore, one may write fixed-C dispersion re-
lations for amplitudes, 4, which are even in v,

i.e., are even under s-u crossing, without con-
tributions arising from kinematical singularities.

I

where s+t+u =Z. Here we have adopted the sign
convention which reduces to thai for the BDR when

C =0.
We may now, as before, ' write the invariant am-

plitudes for the process (1) as functions of t and

s —Zs+(m. —m, )
2 2 2 2

S+ gC

4sp, '
(elastic) .s+ gC (10)

In either event, for positive values of C the s-
channel unitary cut maps onto the negative t axis,
-~& t& 0. Figures 1(a) and 1(b) show these con-
tours for various values of C in the Mandelstam
diagrams for elastic zN scattering and mN-gN,
respectively. The fixed-C dispersion relation is
thus written

we find that the equation for t(s, C) is a quadratic;
it reduces for elastic reactions to a linear equation
with solution

A(t s(t C))=A (t s(t C))
1 dt, ImA( t', s(t', C)) 1 dt'™A(t',s(t', C))

t' —t t' —t
2

FIG. 1. Mandelstam diagram for (a) xN AN, (b) zN gN, showing curves of fixed C; dashed lines are boundaries
of physical regions which do not contribute to C =0 dispersion relations (BDR).
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where s(t, C) is given by (7a) with the assistance of
(9).

In the region f, & t& t~(C), s(t, C) is complex;
here the vertical path in the figures indicates only
the range of the t variable. [t~(C) is that value of
t at which, for given C, v =0.] Other than this,
however, all curves with C & 0 lie within physical
regions. Double-spectral functions are not en-
countered. 4 In this region t is, of course, real and
one can use a t-channel partial-wave expansion of
the appropriate t-channel reaction for the ampli-
tude. In such cases, one must establish whether
or not z, is contained in the large Lehmann ellipse
of the reaction.

Curves within the s-channel boundary all pass
through the threshold point s = (m~+m, )' for the
elastic reaction and approach s= as t-0 in the
inelastic case. In both cases, the curves are as-
ymptotic to u = ——,'C as f- s~. [Following the phase
convention in Ref. 1, we have v &0 as t- ~.]

We show in Fig. 2 the variation of Z, with t with-
in the s-channel physical region for the reaction
wN- gN. We see that for any value of C, other than
zero, knowledge of the amplitude at all angles is
required. The results of analyses using fixed-C
dispersion relations are therefore likely to be very
sensitive to differences in phase-shift solutions.

It should be mentioned here that it is not neces-
sary to use the variable C to avoid the introduction
of double-spectral-function contributions. An ob-
vious alternative extension of BDR is provided by
constant-P contours. Unfortunately, at least for
elastic reactions, fixed-Q dispersion relations
lead to much more complicated kinematics than
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FIG. 2. Z, as a function of t for various values of
C for the reaction ~N gN. The units of t are (nucleon
mass)2.

afforded by Etl. (10). In particular, whereas all
fixed-C curves pass through the physical threshold
point, fixed-Q curves do not.

Finally, we mention the possibility of writing
dispersion relations with the variable C' = Ct fixed.
This variable offers some advantages in simplify-
ing kinematical calculations but there are encoun-
ters with the double-spectral region for sufficient-
ly large -C'. C' also does not have the advantage
of being always positive in physical regions and
negative in unphysical regions [see the discussion
following Eg. (4)].
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