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proached, the proposed experiment could provide
a fairly high lower bound to the mass of any neu-
tral IVB. In fact this bound may be very roughly
estimated at m~~" = W2E/v n when effects are ex-
pected at an n% level. For n=2/g and 2E= 6 BeV
we would obtain m~ ~ 30 BeV. In fact this aspect
considerably increases the interest of the proposed
experiment.

After completing this paper, we received pre-

prints of similar work by Love" and by Chung,
Mann, and Paschos. "
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A model of diffractive dissociation is proposed in which these reactions are regarded as
occurring through two stages: (i) coherent excitation of one (or both) of the incident particles
as a whole, and (ii) subsequent decay of the excited states which occurs independently of (i).
This assures the observed constancy of the average multipbcity of the dissociated systems
(n) as a function of the four-momentum transfer t. With an additional assumption of an ex-
tended-particle eikonal approximation in (i) and a statistical hypothesis in (ii), the model
describes satisfactorily all the essential features of diffractive dissociation.

I. INTRODUCTION

a+5-a+B (or A. +b)

A+8
(&)

(2)

Experimental data have accumulated' ' in recent
years indicating the importance of a class of pro-
duction reactions,

(where 2 and B are systems of particles), with the
following characteristics:

(i) b and B (and a and A) have the same intrinsic
quantum numbers, such as charge, isospin, bar-
yon number, strangeness, etc. Spin and parity
seem to satisfy, whenever they can be determined,
the selection rule that their changes are restricted
to0+, 1, 2+, . . . .4
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(ii) The differential cross sections at high ener
gies are strongly peaked in the small-angle region
and seem to be slowly varying functions of energy.
Actually, this is not quite well established yet, but

in all cases for which we have measurements of
d'o/dMdt, where t=(p, -p„)'[or (p, -ps)'] and
M' =ps' (or p„'),the shapes seem to be quite simi-
lar. Furthermore, the total cross section for sin-
gle dissociation, Eq. (1), in which the multiplicity
of B (or A) is fixed, is known to be constant. '

(iii) d o/dMdt exhibits a slope which is mono-
tonically decreasing with M. This behavior is seen
both for a definite system B (or A) as well as in

the case when the multiplicity and the kind of parti-
cles in B (or A) are not fixed. For instance, the

slope of II p-(2II II')p behaves, within the experi-
mental indeterminacy, in the same way as that of
m P X, P, where X, is the set of all systems of
particles (except w }with the same total quantum

number of II (see Fig. 1).
(iv) The mean multiplicity (n) of A (or B) does

not depend on I, and is a function only of M. Al-
though just one measurement of this kind (Ii p at
16 QeV/c, ABBCHW Collaboration') is known, we

believe that it is a general feature of these reac-
tions and we will assume that this is so.

As a function of M, (n) increases monotonically
with a functional form which is, however, not well
determined. For instance, the data on w P can be
fitted by straight lines.

(v) In its own c.m. frame, the set of particles
constituting the system B (or A) seems to be iso-

tropically distributed", the evidence for this
statement, however, is not yet conclusive.

Properties (i) and (ii) are usually considered to
be characteristics of a diffractive process, and
since Good and Walker' have predicted their ex-
istence, much work on this subject has been done,
both theoretical' and experimental. ' ' The term
diffractive dissociation, however, is, in general,
used in a somewhat narrower sense, whereupon B
and A in (i) and (ii) are actually taken to be some
known resonances or else some unknown ones,
which could, however, be classified in the usual
way. ' In the present paper, the term will be ex-
tended to include also a large part of the so-called
"background, "which is by no means negligible
(about —', of all the events of II p at 8 GeV/c').
Thus, we will consider that the main part of d'o/
dMdt in a process of type (1) for small [ t)I and

small M, in which B is allowed to be any system
having the characteristic stated by (i), is of dif-
fractive origin. There may, indeed, exist a real
background, but we believe that this is negligible
in the M, t region of interest for us (Ms 8 GeV,
)t (~1.6 Gev'}.

In the present paper, we shall fix our attention
mostly on the points (iii}-(v), and we will try to
understand the essential features of these pro-
cesses without the use of any sophisticated cal-
culations. Concretely, we propose a model for
these reactions, which can be described as fol-
lows: Diffractive dissociation occurs through two

stages. First, during the passage of the incident
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FIG. 1. Slope parameter A in d cr/dMdt' ~ exp( At'} at 16 GeV/c -fitted over the t'=IIt -tm~ ) region indicated, as a
function of the invariant mass M. The data form p —(2x 7I+)p and n p x (7r x+p) are taken from Ref. 2. Those for
7I p-X~ and 7I' p ~ XN are taken from Ref. 3.
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particles through each other, one or both of them
are excited collectively, the excitation depending
on the structure of the particles involved and on
the strength of the interaction. These excited
states decay, then, producing the final particles
whose distribution is independent of the first stage
and is determined essentially by the phase space
available. This model is clearly reminiscent of
the "compound nucleus" model of nuclear physics.
It is also very similar to that suggested by Takagi"
a long time ago in analyzing cosmic-ray data. It
bears also some resemblance to the fireball mod-
el,"although there are some differences, and we
believe that our statement is more precise in that
the domain of applicability is well defined here and
is restricted just to diffractive processes. We be-
lieve also that our work is in the spirit of the "lim-
iting fragmentation" hypothesis. " More recently,
Hwa and Lam" and Jacob and Slansky" have pro-
posed models which resemble the present one, al-
though our emphasis is quite different from theirs.

In Sec. II the constancy of the mean multiplicity
(I) as a function of t is .discussed. An example of
g distribution is given, to which simple heuristic
arguments may lead, but which cannot account for
the observed constancy of (n). Although this does
not prove our model, we argue that the idea of col-
lective excitation (such as we use it) is favored by
this example when compared to the existing data.

In Sec. III a formulation of our model is given
and, by fixing attention to the second stage of the
reaction (decay of the excited states), the mean
multiplicity (n) is calculated as a function of the
effective mass M in a way very similar to Fermi's

statistical model. " The consequences of this mod-
el are discussed by comparing our predictions with
the existing data on particle production induced by
m P.

A calculation along the lines of Chou and Yang"
is performed in order to obtain d'o/dMdt as well
as the experimentally observed behavior of its
slope with M. This is reported in Sec. IV.

Section V is devoted to discussions and comments
about our model, especially regarding the so-
called D resonances and the relation of our model
to other existing models. Finally, in Sec. VI, a
further outlook is given.

II. t DEPENDENCE OF THE AVERAGE MULTIPLICITY

Results of an analysis of the reactions

7l p 7T +Xjf

7I P P+X

at l6 GeV/c of the incoming pion in the lab system
have been reported' which show, besides the well-
known behavior of the m (or p} angular distribu-
tion as a function of the invariant mass M, a re-
markable constancy of (n), the average multi-
plicity of X„(orX„}with respect to f' =( f —f
Here X„andX are, respectively, the set of sys-
tems of particles with the same quantum numbers
of p and m . Figure 2 shows typical examples of
the data. Indeed, (n) increases with increasing M,
the invariant mass of X„(orX„),but the indepen-
dence of (n) on t', so long as t' is not too large
(t' s 2), contradicts the (naive) expectation that in-
creasing the momentum transfer may produce

rc+p —TI, +XN, l6 GeV/c

I.I GeV»MN~I. 35 GeV

(b)
TI, +p = n +X&, I6 GeV/c

I.35 GeV & MN & I.6 GeV
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FIG. 2. Average multiplicities, normalized to 1 at t'=0, of the system Lz for two different mass intervals indicated.
The experimental data (Ref. 3) for other- mass intervals, as vrell as for the dissociation of x (7r p Xm p), are similar.
The curves are those calculated by using Zq. (10), having fitted the data of Ref. 3 to Eq. (9). A comparison of Eq. (9)
with Eq. (5) gives us a restriction on &, namely n ~3.5 for (a) and ~ ~2.8 for (b).
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higher multiplicities (see, e.g., Ref. 12}.
The above property shows, we believe, that it

is unreasonable to assume that the angular distri-
butions of these processes are made up of ampli-
tudes corresponding to different multiplicities and
having different shapes. In fact, it can be easily
shown that distributions of the form"

(n) = Qnc„exp(-at'/n") 1V(te)

P c„exp(-at'/n") D(t') ' (6)

are inconsistent with the experimental data. To
show this, let us write the average multiplicity in
terms of the distribution given by Eq. (5) as

c„exp(
——') (c„& 0, a, n & 0)

(5)

Integrating the denominator of Kq. (6) from t' to
, over an appropriate transformation kernel, we
get

=~" -(-'-') &
- (-'-:) "-"

at' r(1/n) r(1/n) ~ at'
= rc„exp(-—.. .„„,= „„rec„exp——

n

(x=tj -t')

r(1/n) ~(t,)gl/a

oo oo at'
D(t, )(t, - t')"" 'dt, = Pc„exp——(t, - t')" 'dt,

t' gt

(7)

Using Eqs. (5), (6), and (7) we have

a" " d'o
( d

d'o
(t te 1/a-ldt

(8)

If one takes the ratio (n)(t')/(n)(0), the factor in
front of the integral in Eq. (8) becomes irrelevant,
so that the average multiplicity can be expressed
in terms of d'o/dMdt' and its integral, o. being
the only free parameter. In order to compare this
with the experimental data, the angular distribu-
tions of Ref. 3 have been fitted by sums of exponen-
tials as

A, =8.4 mb/GeV', B,=10 GeV ',
A2=1.6 mb/GeV', B2=3.2 GeV

for Fig. 2(b).
As it clearly appears, a good fit to the data could

not be obtained in a reasonable range of values of
the parameter z. Naturally the above argument
does not prove the exact equality of the shape of
the distributions for different multiplicities, for
more and more sophisticated t distributions could
be tried. We wiQ rather regard it as an indication
that, most likely, for diffractive processes the
angular distributions are actually independent of
the multiplicities, at least, so long as we are
merely interested in their structure.

, =PA. , exp(-B;t'}d'r
(B,. &0, A, ~Q). (9)

IH. COLLECTIVE EXCITATION MODEL

Putting this into Eq. (8), one has finally

Q(A;/B, " ) exp(-B;t')
n P A, exp(-B;t')

In Fig. 2, the multiplicities thus obtained are
compared with some of the experimental data. The
constants-A; and B; had been chosen in these cases
as

A, =7 mb/GeV', B,=12.8 GeV ',
A, =1.8 mb/GeV', B,=6.2 GeV '

for Fig. 2(a), and

A possible explanation of the results discussed
in the preceding section would be to regard dif-
fractive dissociation as a process occurring in
two stages as illustrated by Fig. 3. First, during
the interaction between the incident particles, one
or both of them are collectively excited. In this
process, states similar to the fireballs" are
formed. The angular distribution d'o/dldt' of the
leading particIe in Eq. (1) depends only on how
these excited states are formed (independent of the
final multiplicity). In the second stage, these ex-
cited states decay, independently of how they have
been formed. It is important to notice that our ex-
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cited states are in general different from the usual
resonances, which have definite decay modes giv-
ing definite (in general, low) multiplicities, but

tead we think the decay of our excited states isins ea w
determined essentially by the statistical wexg s
for each final channel. The independence of the
excitation and of the decay processes guarantees
the constancy of (n) as a function of t.

The present model is meant to describe just dif-
fractive dissociation, although it can be modified
to also include processes involving quantum-num-
ber exchanges (this will be discussed in Sec. VI).
Thus, in the first step when the incident particles
interact, we are just making a statement that there
is a finite probability that the particles are excited

mbers butwithout the interchange of quantum numbers, t
we do not plan to ascribe every possible reaction
to such a mechanism. For instance, pionization is
excluded from our model.

Another remark which would be appropriate at
this point is that the model is designed just to de-
scribe the gross features of these reactions, and
we cannocannot hope that it can account for the details
of the data. For example, as a consequence o
completely neglecting the usual resonances, the
model cannot reproduce exactly their peaks.
Nevertheless, in spite of the roughness of our ap-
proach, the agreement with the experiments is

quite good.
In the remainder of this section, we will con-

cern ourselves with the second stage of the reac-
tion (decay of excited states) and, by using purely
statistical arguments, try to obtain the experi-
mena ymt ll measured invariant-mass dependence of
the average multiplicity and relate differen a
among themselves.

A Average Multiplicity as a Function of the Invariant Mass

In Sec. II, the constancy of the average multi-
plicx y qn o't ( ) of X and X as a function of t' has been
discussed. As a function of the invariant mass M
0 X~ or m~ 0f X X however (n) increases monotonical-
ly (see Fig. 4). We shall now try to show how this
behavior of (n) can be accounted for.

Following Fermi's calculation, ' we write the
probability of X„orX„to decay into n particles of
masses st~, ~, . . . , m„as

n

P„'(M;m„.. . , m„) (, (2m, )(2m ) ~ ~ (2m„)

xR„(M;m„m„.. . , m„),
(11)

where

(12)

Diffraction
excitation

Decay

is the volume occupied by the excited state and

A

PIO

&n)

(

FIG. 3. Graphical representation of diffractive disso-
ciation, in which the incident particle a, b, or both
of them are dissociated.

(GeV)

FIG. 4. Average multiplicity of X and XN as a func-
tion of their invariant mass Mm and MN. The experi-
mental points are from Ref. 3. The curves have been
calculated by a statistical model, taking the effective
radius of the excited states equal to 1.2 p~

~ and 1.1 p~ ~,

respectively. See text for the details of calculation.
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R„(M;m„ml, . . . , m„) R„(M;m„.. . , m„)

EI, —M, (13)
x g„,((M~+ m„'—2ME„)'";ml, ~ ~ ~, m, 1),

with

Ea =(Pa'+ m'}"',

is the invariant phase space of the n-particle sys-
tem under consideration, with total invariant mass
equal to M, expressed in terms of the c.m. vari-
ables.

The factor (2m, )(2m, ) ~ ~ ~ (Rm„)has been put in
Eq. (11}in order that the probability so calculated
coincide with that obtained by Fermi in the low-
enex gy limit. The main difference between oux
calculation and that of Fermi is, besides the use
of the invariant phase space instead of the nonin-
variant one, the use of a constant (i.e., not Lo-
rentz-contracting} volume Q. This is because we
are interested in the decay of a "particle" in its
own center-of-mass system and therefore there is
no contraction.

As is well kllowll, the 111'tegl'Rtloll 111 Eg. (13) CRI1

be easily performed for n=1 and n=2, giving for
the latter

Z, (M; m„m,)

, [[M'-(m, +m)'][Mm-(m, -m, )2]]'~2.

(15)
For higher multiplicities, use has been made of

the reeurx'ence formula

which has been integrated directly with the help of
a computer-.

In order to get the decay probability of a definite
isotopic-spin state into a number of particles with
definite isotopic spins, we must still multiply p„
as given by Eg. (11)by the isotopic-spin statistical
weight, which in our case is"

where v, n', and $ are, respectively, the number
of isotopic spin-& particles (nucleons), that of iso-
topic spin-1 particles (pions), and the total isotopic
spin of the whole system. %e are dealing with
9 =

& and 8 = 1 systems and, in our calculation,
only those final states consisting of one nucleon
with pions or of an odd number of pions have been
considered. The results are shown in Fig. 5,
where the only parameter g has been appropriate-
ly chosen in order to reproduce the experimental
{s)Rs explRlned below.

Qnce the relative probabilities

I „(M;m„.. . , m„)=Z„„,{S)Z„'(M;m„.. . , m„)

have been determined, the average multiplicity is
readily calculated as

O.l—

O.OI— O.OI—

O.OOI
I

O.OOI

FIG. 5. The statistical prediction for the relative probabilNy of dissociation of (a) a nucleon into a nucleon + (e- 1)
pions and (b) a pion into n pions as function of the invariant mass of the dissociated systems. The parameter r has
been taken as in Fig. 4.
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&")= p„&„/p&„
and this is plotted as a function of M in Fig. 4,
where a comparison is given with the experimental
points. It is seen that, despite the simplicity of
the approach, the model can reproduce fairly well
the existing data, with a physically reasonable
choice of the parameter r.

B. Effective-Mass Distributions of Dissociated

Systems

Having obtained the multiplicity distribution as a
function of M, we may ask ourselves what experi-
mentally verifiable predictions can be given which
make use of such a distribution. Qne such predic-
tion concerns the effective-mass distributions of
the dissociated systems for definite final states.
Several experimental results have been reported

on these kinds of distributions ' ' so that we
have at our disposal an immediate check of the
validity of our model

If we assume that diffractive dissociation through
the previous mechanism dominates a reaction of
the type of Eq. (1), the invariant-mass distribution
of a particular channel characterized by multiplici-
ty I [say, e.g., v P-(Sw) p with n=s] will be re-
lated to the total invariant-mass distribution
[w p- P(nv)p in the preceding example] through

da„dc',q.

(20)

In Ref. 3, measurements of do'„/dM have been
reported for both reactions (3) and (4). In both
cases, the mass spectrum of X„(orX ) is given
(i) for all events [curve (a) of Ref. 3], (ii) for
events having a leading proton (or m ) [curve (b) of
Ref. 3], and (iii) for events in which the proton (or
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w ) is the only backward (or forward) particle
[curve (c) of Ref. 3]. We can see there that for
small M the events (iii) dominate, whereas even
for quite large M values (-4 GeV) the events (ii)
are dominant, thus confirming that diffractive dis-
sociation dominates these reactions for small M.

Two sets of data on do„/dM for w p-induced re-
actions could be found which are useful for our
comparison. The first set' refers to vr p- w (w w'p) and - (2w w')p data at ll and 16 GeV/c,
and w p w (w'n) and - w (w'p) data at 16 GeV/c.
They are subjected to conditions which nearly (or
exactly) correspond to case (iii), previously men-
tioned. Thus, in computing dv„/dM with the help
of Eq. (20), curve (c}of Ref. 3 has been used for
comparison. Figure 6 shoms some of these data
together with the prediction of Eq. (20}. The data
at 11 GeV/c as well as those for w p- w (w'p) at
16 GeV/c are very similar to the ones presented
here.

The other set of data is from the ABBCCHW
collaboration, "where (Bnw) effective-mass dis-
tributions have been measured from the reactions
w P - w (flnw) at 16 GeV/c. In contrast to the pre-
vious set of data, all the events with the leading vr

(which is defined here as one having the smallest
)t, , (), considered as the surviving incident
particle, are regarded here. Thus, in computing
do„/dM, curve (b) of Ref. 3 has been used. Figures
7(a)-7(d) show the comparison of the data with the
theoretical predictions. It is seen that our predic-
tion for w P - w (2wN)' is too low for M~ 2.5 as
compared to the data of Ref. 20, and that for w p- w (SwN}' it is too high in the same M region.
However, in Ref. 20 it was assumed that for those
events for which there was no kinematic fit there
were only two neutral particles. This causes, ob-
viously, an overestimation of the w p- w (2wN}'
cross section, whereas the w p-w {SwN)' and- w (4wN}' events would be underestimated. This
fact is illustrated by Table I, mhere the statistical
weights predicted by the isotopic-spin invariance"
have been computed and tabulated up to multiplici-
ty five. An attempt to account for this deficiency
has led to a rough correction of the data, which is
reported in Fig. 7(b). The correction consists of
subtracting from the (2wN}' distribution —,and —

„

respectively, of the (SwÃ) and {4wÃ) distributions.
As can be seen, this improves the agreement of
our prediction with the data. Correspondingly, the
data for M(SwÃ} and M(4wN) will rise approaching
our prediction.

The conclusion which can be drawn from the
analysis of Figs. 6 and 7 is that, despite its naive-
ness, the model provides a fairly good description
of the existing data, as. long as we confine our-
selves to consideration of the general features of

TABLE I. Statistical weights, arising from the as-
sumption of isotopic-spin invariance (Ref. 21), for the
possible final states corresponding to the reactions in-
dicated by Eq. (3) with lowest multiplicities. The events
corresponding to those reactions indicated by arrows
have been considered in Ref. 20 as {2rN) events.

Final states
Statistical

weights

(rN)+

(2vrN)+ pvr ovro

pvr'r

nr+r0

1
3

3

(3rD)+ pr0vr 0r 0

pr 0vr+r-

nvrorovr+

nr+r+r

0.2

1.8
0.8
1.2

(4rP7)+ pr0r0r0r0

p r0r0vt'r-

pvr+r+r r
nr'r'r'r'

n r0r+ r+ vr

0.2

2.8

0.8

the data in the smaLL-M region. The discrepancies
occurring in the region of larger M values may be
attributed to different causes, one of which has al-
ready been mentioned in the preceding paragraph.
Qther reasons would be, for instance, contribu-
tions coming from nondiffractive processes, such
as pionization, to which the model cannot be ap-
plied, and the ambiguity in the definition of the
leading particle; that is, different definitions of
the leading particle mould lead to different data.

Another aspect which the model cannot reproduce
satisfactorily is, as expected, the detailed struc-
tures of the distributions, which are due to the
"usual" resonances. This will be discussed later
in Sec. V.

C. Particle Distribution Within the Dissociated Systems

Let us now consider hom the particle distribution
of the excited states mould look like in their own
c.m. system. Concerning the angular distribution,
no constraint is provided by the model to aOow any
asymmetry, since in a strictly statistical approach
a spherically symmetric distribution is expected.
Although it would be possible to introduce addition-
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al constraints to relax this prediction, in the fol-
lowing we will work in the simplest scheme with-
out introducing any new hypothesis.

Consider a system of n particles with total in-
variant mass Iand assume that these particles
are the decay product of an excited state, say B.
According to our model, the probability of finding
one of these particles, labeled 1, in a infinites-
imal volume d'p around p with energy F. = (p'+ m, ')"'
is in the center-of-mass frame of the whole sys-
tem of particles proportional to

is produced) is obtained by multiplying P(M, p) by
the differential cross section d'o/dMdt' and inte-
grating over the appropriate M and I,' intervals.

The possible existence of identical particles will
contribute just a proportionality factor. Thus, the
probability of having particle 1 with momentum p
is given by

d 0'
P(p) = dM dt'P(M, p) d

(22)

If there are no restrictions on t', aside from the
trivial ones due to energy-momentum conservation,
the above integral can immediately be integrated
in I,", giving

xg3 p, g g, -M g p, -p P(p)= fdMP(Mp) ~M, (23)

II„,(—[(M —E)' —p']'"; m„m„.. . , m„),

(2l)

From the above distributions, the longitudinal-
momentum distribution is immediately obtained by
projecting p on the incident direction and perform-
ing the p~ integration:

where the same notation of Eq. (13) has been used.
The over-all distribution of particle 1 as origi-

nated from the decay of the excited state B (in a
reaction in which a fixed number of particles, n,

I 1 I l
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FIG. 8. Longitudinal-momentum distributions of m+

and z produced in a subset of collisions x p Sm 2n+p
at 16 GeV/c in the (5x) rest frame (Ref. 7). The subset
is defined by p li '(proton) & —1.944 GeV/c. The curve is
a prediction of our model, calculated by using Eqs. (23)
and (24), where experimentally measured (Ref. 3) do/dM
has been used.

0--—
0 I

P„ IN ( p4 ~) (GeV/c)

FIG. 9. Longitudinal-momentum distributions of p, ~+,
and nonleading r produced in a subset of collisions
x p 3x 27r+p at 16 GeV/c in the rest frame of 2m 2~+p

(where 7r are the nonleading ones) (Ref. 7). The subset
is defined by —0.864 GeV/c&pll' ' (proton) &0 and pli

'

& 1 GeV/c for the leading (i.e. , most forward) negative
pion, where p'l'j

' denotes the longitudinal momentum in
the over-all c.m. system. The curves are the predic-
tions of the model.
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=2m dM dt' d, P Mp pjdp

and

m'p -p4m'3m

~'p- p4~+3~-~',

(25)

and the results show an approximate spherical
symmetry in the distribution. These results, how-
ever, cannot be conclusive because, in a high-
multiplicity and relatively low-energy experiment,
most models favor spherically symmetric distri-
butions. This becomes clear looking at another
graph shown in Ref. 6, where the plot is given in

rt p = (5rc) p, l6 GeV/c

200—
x P5 UNCORRECTED

DATA

--—CORRECTED 8Y THE
CONDITION

P„' '(proton) ~ —1.944 GeV/c
C,rA.

IOO—

50-

I I

1.0 2.0
M (5Tt) (GeV)

FIG. 10. Invariant mass distribution for the reaction
~ p p (57i) at 16 GeV/c, which has been used in the cal-
culation of P (p II) for x . The curve is

f(M) =100(1.9M+100e 4" —2.97) (1-e 5 4~~ '9))

I

2.51.5

Actually we have used f(M)/P&(M), where P5(M) is de-
fined by Eq. (18), as do./dM in Eq. (23). See text for
details.

(24b)

Let us look now at the experimental situation.
Among the bulk of experimental data, we could find
two sets of data of interest to us. One is the set of
data on the eight-prong w'p at 8 GeV/c, ' where the
angular distributions of pions have been measured
in the c.m. frame of the p's.

The reactions which have been studied are

the over-all c.m. system. Here too the distribu-
tions are nearly symmetric. Moreover, no separa-
tion of diffractive contribution from the remainder
was given in Ref. 6.

The other set of data are those of the Aachen-
Bonn-Berlin (Zeuthen) -CERN-Cracow-Warsaw
Collaboration, ' in which the reaction g p - 3g 2p'p
at 16 GeV/c is studied. Using the longitudinal-
phase-space technique, the diffractive events have
been separated to give: (i) the v and w' distri-
butions in the c.m. system of (3v 2v') (see Fig.
8), and, similarly, (ii) w, p, and p distributions
in the c.m. system of (p2v 2m+) (see Fig. 9). The
angular distributions have not been measured, but
what is important is that the (longitudinal) momen-
tum has been measured. Thus, a test of our mod-
el can be more satisfactorily obtained by a com-
parison with these data. To this aim, one must
perform the integration in Eq. (24a).

A few preliminary remarks, however, can be
made immediately without any calculation. First,
the forward-backward symmetry [especially in
case (i)] of the particle distribution and the simi-
larity of the m and m' distributions are features
which can be expected from our model. Even the
slight asymmetry which appears in the case (ii) is
consistent with the experimental restrictions (on

p ~~) imposed for these data.
In case (i), the condition p ~~& -1.944 GeV/c in

the over-all c.m. system has been imposed on the
proton, in order to guarantee diffractive dissocia-
tion of the w . From this constraint and from the
threshold condition (M~ 5p, „)the M interval could
be determined and, by using Egs. (23) and (24a),
P(p ~, ) has been obtained. This is plotted in Fig. 8.
For this calculation, dc/dM has been taken from
the measurement at 16 GeV/c [curve (b) of Ref. 3],
corrected near the upper limit of integration [con-
sistently with the boundary condition p'„' '(proton)
& -1.944 GeV/c], by assuming that in that domain
the t' dependence is given by the experimentally
measured d'o/dMdt', in the interval 2 GeV & M
& 2.5 GeV. This is illustrated by Fig. 10.

A similar calculation has been performed for the

p, n and v distributions in case (ii). Here the
presence of the p and the experimentally imposed
conditions -0.864 GeV/c& p ~; (proton) &0 make
the calculation more complex, although straight-
forward. In the preceding case, Egs. (23) and

(24a) have been used. Here, instead, Eg. (24b)
has been used, where the M dependence of d'g/
dMdt' has been taken as f (M)/P„with f(M) given
by Fig. 11 and P, given by Eq. (18), and the t' de-
pendence has been taken to be (throughout the en-
tire M interval 2 &, M& 4.45 GeV) the one measured
experimentally' in the interval 2.5-3.0 GeV, which
was parametrized as
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= 3.1 exp(-9.8t') + 3.2 exp(-3.8t')

+ 0.34 exp(-1.2t') .
Although this last assumption is not entirely justi-
fied by the experimental data (see Fig. 14), we be-
lieve that the error is quite small.

The results of above calculations have been
plotted in Figs. 8 and 9 and compared with the ex-
perimental data. As is seen there, the agreement
of our predictions with the data, in both cases, is
excellent.

IV. ANGULAR DISTRIBUTIONS

In Sec. III some of the consequences of our mod-
el have been discussed regarding the second stage
of the reactions, . that is, the question "Once the
excited states are formed, how do they decay into
the final outgoing particles?" I.et us now turn our
attention to the first stage, that is, let us see how
one can compute d'o/dMdt' as a function of t' and
M, for any given initial state.

As usual, the existence of a strong forward peak
in d'a/dMdt' [property (ii) of Sec. I] is attributed to
the diffractive nature of the reaction. According-

2

,, = ~[a(M, t') P~(M), (2&)

where

a(M, t') = a(M, b) J', (b v t')bdb
0

(29)

ly, the structure of the angular distribution will
be essentially determined by the extension and dis-
tribution of the hadronic matter inside the inter-
acting particles. Instead of starting from a funda-
mental interaction between particles, we take the
very simple approach of describing elementary
particles by means of the extended-particle model,
which was proposed by Yang and collaborators in
connection with elastic" and charge-exchange scat-
tering" and which has also been applied to diffrac-
tive dissociation. '

We argue that the existence of a sharp forward
peak in d'o/dMdt' which seems nearly energy-in-
dependent' is indicative of the possibility of co-
herent excitation of one or both of the interacting
particles, with a finite probability even when s
~ OO ~

Neglecting spin dependence, the differential
cross section is written [for simplicity, we will
concentrate on the case of single dissociation only,
Eg. (1)]as
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and 7(M) is the final-state density. In Eq. (29),
a(M, b) represents the total amplitude for coherent
ly exciting one of the particles (say, b) during the
propagation of the other (say', a) with an impact
parameter b. For simplicity, we consider only
particles with spherical symmetry. Figure 12 il-
lustrates the process, where for the sake of clari-
ty one of the particles is taken to be pointlike.

As shown in Fig. 12, particle a may coherently
excite b in one, two, . . . , n steps, and all these
"partial" amplitudes. sum up coherently. Thus the
total amplitude a(M, b) may be written as a series,
each term of which corresponds to a definite order
of excitation:

IGI

FIG. 11. Invariant mass distribution for the reaction
~ p . 7t (p4m) at 16 GeV/c, which has been used in the
calculation of P (p 11) for p and 7t . In order to facilitate
numerical computation, f (M) (represented by the curve)
has been used instead of da&/dMN shown by the histogram.
However, we believe that the details of f(M), such as the
exact coefficients in the exponential, are irrelevant for
the final distribution in Fig. 9, See text for details.

I 2 ...
Porticle o

FIG. 12. Kikonal description of diffractive excitation.
The points 1, 2, ..., n along the path of particle a repre-
sent multiple steps of coherent excitation of particle b.
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a(M, b) = Q a„(M,b) .
n=1

(30)

(33)

where we have defined

4 0
(1 e "')Z,(but'-)bd-b. (34)

Assuming that a„(t')is purely real (purely imagi-
nary with the usual convention), we have computed
I((b) by inverting Eq. (34).

g, (M) in Eq. (31) is the probability amplitude per
unit hadronic matter along the path for coherently
exciting particle b into a state of mass M. When
multiplied by y(b) it will give the total probability
amplitude at a fixed impact parameter 5.

Probably, in the present case, to approximate
y(b) in Eq. (31) with the elastic eikonal pha, se is
less justified than in the case of charge exchange.
Nevertheless, in the limit of very high energy, the
interaction time is so small that as a first approx-
imation we may assume that the hadronic matter

In order to calculate each term of Eq. (30), we
will follow the argument of Byers'and Yang. In
Ref. 22, however, the excitation consisted in
charge exchange, baryon-number exchange, etc.
Here, instead, we are interested in excitations
which change the mass of the interacting particles.
We will assume, for simplicity, that the mass
may vary continuously; that is, a continuous spec-
trum of excited states with a density T(M) will be
assumed. Another major difference between the
present calculation and that of Ref. 22 is that in
the latter paper only the first term of Eq. (30) was
taken into account, whereas higher-order terms
will be included here. These terms, in fact, will
turn out to be important in the present case, as
we will see below.

As in Ref. 22, we write for the first term of the
series

a, (M, b) = g~{M)y(b)e-x( )
~

where y(b) is approximated by the elastic eikonal
phase given by

"
d. ){'d x

J oo

xp,(b„-x', b„-y', z)p, (x', y', z'),
(32)

p, and p, being the hadronic matter densities of the
two incident particles. Actually, instead of calcu-
lating y(b) by assuming some distributions p (for
instance, proportional to the charge distributions),
we have used the experimentally measured elastic
cross section

remains essentially constant during this short
time.

Let us return to Eq. (30) and examine the other
terms. It is easily realized that if the first term
is given by Eq. (31), the second term will be given
by

a2(M, b) = f~(x)f,(DM —x)
"0

2 b)xv(M +x)dx e "('~
0

bf (gM) X ( ) -x(b)

where Mp is the mass of the particle 5 and

fi(b M)= fi(M- Mo) = —gi(M) . (36)

The relative phase between a,(M, b) and a,(M, b) as
well as those among the successive terms are not
determined. As we will see later, however, a
good fit with experiments can obtain if we choose
g, (M) or f, (bM) purely imaginary.

In general, the nth term of Eq. (30) is written as

(37)

where

fOo

f„(nM)= ' f„~(x)f,(nM x) v(M~+ x)-dx.
~o

(38)

It is clear from Eqs. (28)-(31) and (37)-(38) that
the model predicts a forward peak in d'o/dMdt'
and, moreover, if one chooses g, (M) [or f,( nM)]

energy-independent (i.e., dependent only on M), we
also have energy-independent angular distributions,
in agreement with the experimental requirement
(ii) mentioned in Sec. I.

Let us see now how property (iii) of Sec. I can be
accounted for in the present model. Evidently,
this will require an appropriate choice of the as
yet undetermined functions f,(bM) and T(M)

In Sec. I we have simply stated that d'o/dMdt'
shows a slope monotonically decreasing with in-
creasing M. It is now necessary to examine the
experimental data somewhat more closely. Look-
ing at Figs. 13 and 14, one notices immediately
that, excluding the very small t' region (where
there is a dip for x dissociation), d'o/dMdt'
shows a two-component structure which is espe-
cially evident in the small M intervals. One com-
ponent which is much steeper than the other, with a
slope parameter A- 12 GeV ' (when fitted by e "'

)
for both m and p dissociation, dominates the small
t' and M regions and seems to decrease as the ef-
fective mass increases. The other with A-3 GeV '
increases with increasing M and becomes dominat-
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ing for sufficiently high M. The highest M data
available show even a stronger flattening of the
distribution.

Equations (28)-(38}do give multicomponent struc-
ture for dmo/d Mdt', and each term in Eq. (30}
gives a flatter and flatter contribution to the differ-
ential cross section. To illustrate this, we have
plotted in Figs. 13(a) and 14(a) the contributions
coming from the first two terms, neglecting their
interference with the remaining ones. It is inter-
esting to note that the first term agrees quite well
with the steeper component of d'o/dMdt', whereas

the second term reproduces the flatter one, and
this is of course independent of the choice of f,(bM)
and r(M} .Thus, we would like to interpret these
two components as due respectively to the first
and the second orders of coherent excitation.

The function f,(~), i.e., the density of the prob-
ability amplitude of one of the particles for coher-
ently exciting the other, must vanish with increas-
ing hM:

(39)
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FIG. 13. DouMe differential cross sections d o./dMdt' for ~ p ~ XN at 16 GeV/c. The experimental data are from
Ref. 3. In (a), the contribution from single excitation and that from double excitation are also shown.
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The reason for this is that the larger the mass
change, the harder it will be for. the particle to
maintain itself as a whole, without fragmenting.
Here we will assume that

P and o being two real parameters to be deter-

mined. (This exponential form is not necessarily
expected to be valid for large bll/I but is a conve-
nient way of cutting off the mass spectrum. ) As
mentioned earlier, the phase of f,(MZ) is not known
a Priori. We took it equal to w/2 just in order to
agree with the experimental data on d'o/dMdt '.
When the phase is zero, the interference between
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FIG. 14. Double differential cross sections d2o/d j/Idt' for x P —X~ at 16 GeV/c. The experimental data are from
Ref. 3. In (a), the contribution from single excitation and that from double excitation are also shown.
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the first- and second-order terms becomes impor-
tant and it is not possible to reproduce the apparent
two-component structure exhibited by the low-3f
distributions. Similarly, if the phase is equal to
m, interference dips appear and, even neglecting
these dips, the agreement becomes poorer.

The other function to be fixed is T(M), the density
of excited states as a function of M. This is cer-
tainly an increasing function Of M, at least in the
M range of several times the initial mass M, . As
we have no way to determine this function for the
time bej.ng, we have chosen the simplest functional
dependence,

T(ME) =NUM, (41)

V. DISCUSSIONS

A. Summary of the Results Obtained

In the preceding sections, a model of diffractive
dissociation has been proposed which reproduces
quite well the existing experimental data. The
model describes these processes as occurring
through two stages: (i) coherent excitation of one
or both of the interacting particles, and (ii) sub-
sequent decay of the excited states. Stage (ii) is
assumed to occur independently of stage (i). The
main results obtained with these assumptions are
as follows:

(a) The average multiplicity (n) of the dissoci-
ated system as 3, function of t is constant, at least
in the. region dominated by diffractive dissocia-
tion.

(b) A pure statistical calculation leads to (n) in-
creasing with the effective mass of the dissociated

where N is some constant.
In fitting the experimental data with the above

formalism, we have retained only the first two
terms of Eq. (30), because our main purpose here
is to show that a simple formalism such as that
described above does work. Actually, the higher-
order terms become too large for the present
parametrization, but choosing some other parame-
trization, it may be possible to suppress these ab-
normally higher contributions. Also, we have: not
attempted the best fit of the data.

The free parameters in the present calculation
are P, 0, and N, which had been chosen as follows:

P=0.147, v=1.2 GeV ', N=57.6 GeV '

for proton dissociation, and

P=1.2, o =0.5 GeV ', N=0. 5 GeV '

for pion dissociation.
The results of these calculations are plotted in

Figs. 13 and 14 together with the experimental
data.

system and, by fixing the only parameter r = 1.1-
1.2 p.„',it is possible to reproduce the experi-
mental data on n' p at 16 GeV/c (Fig. 4).

(c) With the same assumption as in (b), the
mass distribution for the dissociation of a particle
into 2, 3, . . . , n final particles can be related to the
total du/dM (Figs. 6 and 7). Given the crudeness
of the model (based on statistical arguments only)
the results are quite satisfactory (at least for np'
at 16 GeV/c).

(d) The particle distribution of the dissociated
system is well reproduced in the reactions r P
-P5v (Figs. 8 and 9).

(e) An extended-particle model within an eikonal
approximation describes appropriately the essen-
tial features of the coherent excitation and gives
d2o/dMdt') as a function of M and t', quite satis-
factorily. The multicomponent structure of d'o/
dMdt' is interpreted as a manifestation of the dif-
ferent orders of excitation.

Although the comparison with the experimental
data has been carried out, in practice, using m p
data at 16 GeV/c, we believe that the same con-
clusions will continue to hoM at other energies
as well as with other incident particles. Our be-
lief is based on the similarity of the existing data
for different experimental situations.

B. "D Resonances"

Recently Morrison has suggested the existence
of the so-called "D resonances" which would be
formed only through diffractive dissociation. '
These are, e.g., A„A„iQ, L, and N*(1300),
and have so far been observed only in the effec-
tive-mass distribution of few-particle systems
produced by diffractive dissociation. We think that
at least part of these "resonances" are, actually,
just kinematical effects due to the phase-space
volume available for each final state [the one given
by Eq. (13) (see Fig. 5)], combined with the dy-
namical difficulty of coherently exciting the inci-
dent particle as the mass increases [simulated in
our calculation by the function f,(AM)]. Figures
6(a) and 6(b) show broad enhancements around 1.1
GeV and 1,3 GeV, corresponding, respectively, to
A, and N*(1300). Although we have not performed
any explicit calculation, we believe that also Q
has a similar origin.

Some of these resonances (A, and Q) have also
been found in reactions with various nuclei in
which the incident m or K are diffractively dis-
sociated into 3v (Ref. 23) or (Kvw) (Ref. 24).
These results are consistent with the present
model.
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It must be emphasized that, in the above dis-
cussion, we are considering only broad enh'ance-
ments in the mass distributions and not the narxow
peaks which appear in some data. These may
aetuaHy be resonances, but their contribution
compared to the over-all number of events is
small. No explanation is provided by the present
model for A, and L,.

C. Normal Resonances

The present model does not treat the usual reso-
nances one by one. Rather, by statistical argu-
ments we are treating them on the average. The
model is intended to account also for the continu-
um (sometimes called simply background), which
is by no means negligible, since it represents
the main bulk of all the processes (about —', of the
total in many cases'); for this purpose we think
that our model is well suited. An additional inclu-
sion of some resonances may evidently improve
the results by giving the fine structure, but this is
outside the scope of thi. s paper.

It must be noted that some of these resonances
have wrong" quantum numbers, that is, different
fxom those of the incident particles, or else the
spin and parity do not satisfy the xule 6J ~

=0, 1, . . . . This is the case, for instance, of
b, at M= 1250 MeV in the ¹distribution [Fig.
6(b)l, which should be removed before comparmg
with the theoretical predictions. Contributions
coming from these resonances decrease with the
incident energy.

D. d~ajdNdt' in Diffractive Dissociation and

Charge-Exchange Distribution

In See. V D, an eikonal formalism for diffractive
dissociation has been developed, in close analogy
with the one proposed for charge-exchange reac-
tions. 2' Accordingly, the Bessel transform of the
amplitude a(M, f) has been approximated in the
lowest order by Eg. (31). A consequence of this is
the identity between the slopes of d'e/dMdt' in
diffractive dissociation, at relatively small M and
f' values (say 6M&0.5 GeV, where AMis the
variation in the mass and f' s 0.3 GeV'), and that
of the charge-exchange reactions, initiated by the
same particles. The validity of this prediction
can be seen, for instance, by comparing the data
on Figs. 13 and 14 with the corresponding ones on
n P -m'n reaction. "

As a by-product, also the slopes corresponding
to dissociation of particles a or b [Eq. (1)J must
be the same in the M, t' regions specified above.
The extent to which this is so follows by compar-
ing Figs. 13 and 14.

E. Convergence of the Multiple-Excitation Series

In order that the expansion of the partial-wave
amplitude in a series of multiple-excitation terms
[Eg. (30}]have physical meaning, it is necessary
that it converge. In See. IV, we have neither
summed all of the series nor attempted to prove
its convergence for our particular choice of the
functions f,(EM) and 7'(M) W.e believe this is not
essential in the present context, for both f, (LM)
and r(M) are, apart from the properties we have
discussed in Sec. IV Quite arbitrary. If a pax'ti-
cular choice of these functions leads to a divergent
series (especially for large t'), we think there
will be many ways to make it convergent without
modifying much the px evious results. Physically,
it is hard to imagine that higher-order terms give
eonsidex'able contributions. Let us stress once
again that the essential features such as the multi-
component structure of d'v/dMdt', the value of
the slope for EM=0 and f'= 0 (A=12 GeV ',
d'v/dMdf'- e "' ), and the decrease of the slope
with M are in general independent of the choice
of f,(h M) and T(M), provided they satisfy the
property represented by Eq. (39) and that preced
ing Eq. (41).

F. Relations to Other Models

The present model is in:the same spirit of the
limiting-fx agmentation hypothesis. " In fact, when
the incident energy increases sufficiently, it leads
to a constant particle distribution in the labora-
tory (or projectile} frame, consistent with the
limiting-fx'agmentation hypothesis. We have picked
up only those final states with the property (i) of
Sec. I, but these are precisely the events which
are expected to dominate the small-P „distribution
(in the lab system) at sufficiently high energies.

The model bears resemblances to the isobar
model" (proposed for cosmic-ray jet analyses) as
well as to the fireball model. " It is, however,
more precise in the sense that, instead of apply-
ing the model to all high-energy reactions, as in
Hefs. 11 and 12 (which was probably due to the
limited amount of experimental data), we restrict
its applicability just to diffxaetive dissociation,
which imposes a constraint on the quantum-num-
ber exchanges [condition (i) of Sec. I].

Other differences as compared with Ref. 12 are
that, while only meson fireballs are considered in
Ref. 1.2, nucleon excitation is also considered
here and that in the present model the incident
particles may or may not survive, but if one
"fireball" is produced there will be just one sur-
vival, and if there are two "fireballs" thex e will
be no survivals. This is not in contradiction with
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1
+—Ep]ts Let )(3)Jig]- ~ ~ ~ (42)

where

4 = JtLFg, ~g)Eg q (48)

(44)

where F, and E~ are the form factors of a and b,
and E&» is the transition form factor from b to
B. (3) denotes the convolution integral. The am-
plitude given by Eg. (42} corresponds to the first
term of the expansion of our Eg. (20), which is
certainly dominant, for small M, in the small-t'
interval. The factor 7(N) in E'q. (28) is absent in
Ref. 9, where only the transition to a particular
resonance is considered, while we are concerned
with a group of excitations. Furthermore, E&~ »
has been approximated by const x E~ in the present
work.

More recently, Hwa and Lam' and Jacob and
Slansky" have proposed models which are very
similar in spirit to ours, although our emphasis
is quite different from theirs. While, by assum-
ing the diffraction dominance, they are mainly
interested in discussing properties such as the
multiplicity and the inclusive cross section in a
hadron-hadron collision considered as a whole, we
are concerned with diffractive dissociations them-
selves. Thus a careful comparison to the experi-
mental data has been done in our work, by taking
the quantum number rules as well as limitations
in the t and the M ranges into account. Although
we agree with them that diffractive dissociations
may dominate at high energies, we think it is by no
means trivial that these processes themselves
occur in the way we describe (as also assumed
by them), especially when the final particles are
not correlated in the usual way. We think the t inde-
pendence of (n) is a very strong argument in favor
of our description.

In Refs. 14 and 15, there has been no attempt to
explain the t distribution, while in the present
paper an intuitive and simple picture is given in
terms of the particle dimensions, level density,
and excitation probability.

Another difference between the present model
and those of Refs. 14 and 15 concerns the way the

the small inelasticity observed at high energy, for
we are considering just one class of reactions.

Starting from Glauber's multiple-scattering
model, Byers and Frautschi have discussed dif-
fraction dissociation, and by considering, for in-
stance, a reaction given by Eq. (1), have showed
that9

1
a(M, f')=~e 1-~„+—,~„3~„

particle distribution inside the dissociated system
is treated. As seen in Sec. ID C, we obtain this
just by considering the phase space. The result
is, as can be seen in Figs. 8 and 9 (there, the dis-
tribution has been integrated in M and P ~), an ap~
proximately Gaussian distribution.

In Ref. 15, this distribution is assumed to be ef-
fectively Gaussian, exp[-(g „'+P~')/K'], with K
= 800 MeV (which has been fixed in order to give
slope 9 for p~m distribution}. HOwever, at least
for n=5, this gives aP]] distribution which is too
narrow, definitely in disagreement with the data
in Fig. 8. It is true that when n increases, the
phase-space calculation gives a narrower P,~

dis-
tribution, and perhaps n= 5 is too small to apply
the statistical considerations they use.

In Ref. 14, moreover, besides the Gaussian dis-
tribution such as one used in Ref. 15, the phase
space is explicitly taken into account, whi. ch
causes an even narrower P~~ distribution. We think
that the parametrizations given by Refs. 14 and
15 can serve just to obtain quantities such as in-
clusive spectra, which are results of many averag-
ing processes and, as observed in Ref. 14, are
not very sensitive to the details of the particle dis-
tribution.

VI. FURTHER OUTLOOK

A. What Are the Excited States?

In the previous sections, a consistent descrip-
tion has been given of the main features of diffrac-
tive dissociation in terms of intermediate excited
states, but just what these excited states are we
have not yet discussed.

One could think they represent an average de-
scription of normal resonances, as their density
increases and the width becomes larger. How-
ever, if one looks at the list of the presently known
resonances, one concludes that these resonances
are not sufficient to give all diffraction dissocia-
tion. As mentioned earlier, after subtracting the
probable effects of these resonances, the "back-
ground" is still considerable [about —,

' of all events
for v p at 8 GeV/c (Ref. 1)]. Besides, these reso-
nances decay in general into a rather small num-
ber of particles. Our excited states are thus more
similar to fireballs than to the usual resonances.

One could also think that the excited states are
just a language for describing the inany-particle
final states. But, in this case, the coherence of
the survival particle (forward peak) becomes hard
to understand.

Bather, it is tempting to say that they actually
exist in the same sense as the collective excita-
tions in nuclei, but with very short lifetimes.
This, however; is not conclusive at our present
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state of knowledge. In short, the question of what
the excited states are remains without a definite

the model may be attempted. Consider, for in-
stance, a reaction

answer. a+5- a*+B, (45)

B. Momentum Spectra in Inclusive Reactions

Once d'o/dMdt' and P„(M)are determined and
spherical symmetry is assumed in the decay of
the excited states, one can compute also the mo-
mentum spectra for different types of particles
produced by diffractive dissociation. These cor-
respond to parts of the total inclusive spectra, but
it is expected that near the kinematical boundary
(x=+1), where diffractive dissociations dominate,
they coincide with the total spectra. With regard
to the transverse-momentum distributions, a
rough estimate may be made, by noticing that
this is given as a superposition of distributions
corresponding to different M and different multi-
plicities. Due to the rapid decrease of d'&r/dMdt'

as a function of t' and the smallness of the pion
mass (let us consider just the m distribution) com-
pared to M, the centers of all these partial distri-
butions are practically at the same point x=0. On

the other hand, as discussed in Sec. V F and seen
in Figs. 8 and 9, each distribution corresponding
to a particular multiplicity is nearly Gaussian.
Thus, we expect that the transverse-momentum
distribution is roughly given by a sum of Gaussian
distributions, which may account for the observed
rapid decrease as p, increases. It will be interest-
ing to verify it explicitly.

C. Double Dissociation

In the present paper, we are discussing both the
reactions (1) and (2), but due to the lack of experi-
mental data we have been mainly concerned with
the simple dissociation in our comparison with
the experiments.

Indeed, all the results discussed previously re-
main valid also in the ease of double dissociation,
with a remark regarding the double differential
cross section d'o/dMdf'. The experimental data
seem to indicate that douMe dissociation occurs
much less frequently than simple dissociation.
This suggests that double dissociation can be
regarded as a succession of two simple dissocia-
tions, or in other words, the amplitude approxi-
rnately factorizes. Accordingly, the second term
in Eq. (30) is expected to dominate this class of
reaction, giving a much flatter peak than in the
simple dissociation case.

D. Extension of the Model to Other Reactions

Although the present paper is concerned with
diffractive dissociation, some generalization of

K'P -If'+X'" at 8.2 GeV/c

and

K P -Jf'+ X' at 10.1 GeV/c

(46)

(47)

are given. These distributions seem to be ap-
proximately reproduced by P„ofFig. 5(a). If we
take S= ~ for X", the agreement becomes, as
expected, better.

The same paper reports d2o/dMdt' for a num-
ber of M intervals. The one for the lowest M in-
terval (M&2 GeV), for both the reactions, is con-
sistent with the distribution given by the second
term of Eg. (30).

Although the exponentially increasing do/dM,
as reported in Ref. 28, could not be obtained, the
second term of Eq. (30), with the same f, (nM) and
T(M) used for proton dissociation in the present
paper, reproduces on the average do/dM for re-
actions given by Eqs. (46) and (47) up to M= 2 GeV.
The inclusion of higher-order terms of Eg. (30)
may improve the results, but this will be at-
tempted on another occasion.
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where the leading particle in the right-hand side,
a+, differs from aby a charge exchange, and B
is any system of particles with the appropriate
quantum numbers. If our model is combined with
that of Byers and Yang, ' one expects that there
is a finite probability of producing coherently the
above reaction. If this happens, the relative prob-
abilities of producing B with different multiplici-
ties will be given by P„ofEcl. (18); if an argument
similar to that in Sec. VC is used, one expects
that d'o/dMdt' is given by Egs. (28)-(30) with
dominant a, (M, b); and as a, (M, b) becomes dom-
inant in this reaction, the effective-mass distribu-
tion of B is expected to become more important at
higher M values.

We could not find data on nP-z''X~ (or -X n)
which could let us test these conclusions. How-
ever, charge-exchange K'-producing reactions
have been reported, "where the effective-mass
distribution for different multiplicities of X'+ and
Xo from
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