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tegrations to compute the total cross section. Our pre-
liminary runs using Gaussian quadrature gave answers
which were too low by approximately 30%. Marinov et al.
(Ref. 4) seem to have run into the same trouble because
their answers are consistently 10% lower than those of
Czyz et al. (Ref. 3). In these problems mappings should
be made to reduce the peaking in the integration variables.
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Parametric dispersion relations which separately test complex scaling and Regge fits to
the inelastic structure function W, (v, ¢% are found and evaluated. The numerical results
indicate that precocious complex scaling is consistent with the present electroproduction
data. The sum rule for the Regge fits is very restrictive and eliminates many of the fits
proposed in the literature. The two fits which satisfy the sum rules are ones made by

Pagels and by Preparata.

I. INTRODUCTION

Recently Khuri'! has derived a new class of sum
rules, or parametric dispersion relations, for
off-shell Compton scattering. These sum rules
follow from analyticity in two complex variables
and complex scaling within the analyticity domain.
Khuri and the present author® have evaluated sev-
eral of these parametric dispersion relations; the
results suggest that the sum rules are consistent
with the concept of precocious complex scaling
and that they provide tests of the Regge fits to the
SLAC-MIT electroproduction data which go beyond
the constraints imposed by the FESR (finite-ener-
gy sum rules). However, while some of these
sum rules are more sensitive to the complex scal-
ing hypothesis.and others to the Regge fit used,

they do not allow totally independent tests of the
two.

The purpose of this paper is to find and evaluate
additional parametric dispersion relations which
will furnish more stringent constraints on the be-
havior of the inelastic structure function vW, and
which do not use both Regge behavior and complex
scaling in the same sum rule. As in I, the sum
rules we will consider also follow from analyticity
in two complex variables. We will divide them in-
to two classes. Those in class A will depend on
the hypothesis of complex scaling, but not on the
Regge fit used; those in class B will use only
Regge input and analyticity and will provide new
and rigorous restrictions on the Regge fits,

We have evaluated our sum rules using the
SLAC-MIT electroproduction data®* on vW, and
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our results confirm that precocious complex scal-
ing is indeed consistent with the data. The sum
rules of type A are satisfied to within 15%. Our
test of the Regge fits is very powerful and ex-
cludes all but two of the Regge fits studied. The
two which do survive were obtained using partial
information on the analyticity of the Regge resi-
dues in the virtual photon mass variable. Both
contain only Pomeranchukon and f-A, Regge con-
tributions and are dominated by the Pomeranchuk-
on; both have J =0 fixed poles with nonpolynomial
residues. We have also examined Regge fits which
have additional Regge contributions and polynomi-
al fixed-pole residues; none of these fits satisfy
our sum rule. Since all of the fits tested satisfy
the FESR in the scaling limit, it is clear that our
parametric dispersion relation provides new re-
strictions on the Regge behavior of the inelastic
structure function vW,.

II. NEW PARAMETRIC SUM RULES

It was shown in I that there exist analytic closed
contours, C, in the four-dimensional v-¢? com-
plex space such that

f v(2)T(v(2), ¢%(2))dz =0. @2.1)

The invariant off-shell Compton amplitude T, is
related to the inelastic structure function W, by
ImT,=7W,. ¢ is the virtual photon four-momen-
tum and v=q*p/M,, where p is the photon four-
momentum and M, is the proton mass; ¢®(z) and
v(z) are analytic functions of z. The contours re-
main inside the analyticity domain of T,, namely,
in this case the forward tube. They consist of
two parts: Along the first (which we call L), v
and q? are real, q? is spacelike, and T, is deter-
mined by the data on W, through the fixed-g¢? for-
ward dispersion relation. Along the second part
of the contour (which we call S), v and ¢? are com-
plex. We seek sum rules such that on S, v, and
q? lie either (a) in the complex scaling region or
(b) in the (complex) Regge region. :

In the sum rules we discuss, L will always be
the interval of the real axis between z =-1 and
z=1, and S the unit semicircle O<arg z<w. To
simplify our notation we define:

o [ = VWV, q%(x)
L=2 ,[1 dx V(x) Lt(x)dv ———V%—_—[Tj-(—;)—]—z— ’ (2.23.)

S=—i f " d¢ ¢ PR(u(0), () . (2.2b)

For sum rules of type A,

F((8), %) =20(e") [ aw! xS g

(2.3a)

where w=2M,v/(-q?) and F,(w) is the usual
Bjorken scaling function defined by

lim  vW,(v, ¢%)=Fy(w) .
v—>; w fixed
For sum rules of type B,
F(v,q*)=R(v,q?%),

where R(v, ¢%) is the Regge fit to vT,. We can now
write our sum rules in the following form:

L=S . (2.4)

(2.3p)

To find the desired parametric dispersion rela-
tions it is convenient to define ¢ =g, and n=|4|,
in terms of which ¢?=¢% —n® and, in the lab sys-
tem, v=¢. With these variables the forward tube
is defined by Im¢ > | Imn|. If we also define
u=%(¢ +n) and v =3(¢ —7n), we see that u(z) and
v(z) must be analytic and satisfy Imu(z)> 0 and
Imv(z)> 0 within the contour C in order that v(z)
and ¢2%(z) lie in the forward tube. These require-
ments will be satisfied automatically if «(z) and
v(z) are chosen to be Herglotz functions.®

We first consider sum rules of type A. Bloom
and Gilman® have shown that the scaling limit of
the structure function vW, interpolates the be-
havior of the measured structure function vW, (v,
¢%) as a function of the variable w’=(2M,v+M,?)/
(~¢?) for fixed | ¢%| >1 BeV? in the resonance re-
gion. However, for | g%| <1 BeV?, vW,(v, ¢?)
drops below the scaling limit curve. To obtain the
strongest test of complex scaling we should there-
fore look for a sum rule such that v and g2 have
the following behavior along the contour C: (i)
Along L, v and ¢* start in the real scaling region
at z =-1, pass through the low-q2 (| ¢ <1 BeV?)

" part of the resonance region, and end in the real

scaling region at z=1; (ii) along S, v and ¢? lie
in the complex scaling region (| ¢%| large). In
Appendix A we prove that it is impossible to find
v(z) and ¢?%(z) satisfying these conditions and such
that within the contour C, v and ¢Z are in the for-
ward tube.

Nonetheless, we can find nontrivial tests of com-
plex scaling. It is easy enough to find sum rules
such that along S, v and ¢? lie entirely in the com-
plex scaling region and on L, v and ¢* pass
through the resonance region with | ¢%| >1 BeVZ.
The mass g2 is variable along the contours in our
sum rules, and the scaling limit curve does not
interpolate the behavior of vW,(v, ¢*) along all con-
tours through the resonance region. Clearly, con-
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tours along which ¢? varies rapidly compared with
v in the resonance region are most likely to give
nontrivial tests of complex scaling.

As an example of a sum rule of this type we
give the following:

u(z)=1.1z+1.2,
(A1) {U(Z)=1.1z-1.2, (2.5a)

with
q%(z)=4u(z)v(z) (in BeV?),
v(z)=u(z)+v(z) (in BeV) .

Here the integral L is effectively an integral of
vT, along the contour in the v-¢? plane for these
Fig. 1. Only the imaginary part of the sum rule
is nontrivial; the real part of L vanishes because
Re(vT,) is antisymmetric in v and the contour L
is symmetric about the ¢2 axis. To get nontrivial
sum rules for the real part of v7, we allow one
endpoint of the contour L to lie near the Bjorken-
Johnson-Low region (| g%| -« with |w| - 0) where
complex scaling is also expected to hold. Two ex-
amples of this type are

(2.6)

u(z)=0.552 +1.75 ,
“2) {U(Z)=0.552—0.65 (2.5b)

and

u(z)=0.6z+1.95 ,
(43) {U(Z)=0.62-O,'75 X (2.5¢)

Again, v and ¢® are given by (2.6). The paths of
integration along L in the v-¢? plane for these
sum rules are shown in Fig. 2. For each of these
contours, gZ varies rapidly as ¢ and v pass
through the resonance region. The path L in the

-q%(z) [in BeV’]

Resonance
/ region /

/ Scaling
region

Regge region

— -

P .

4.0 5.0 6.0 7.0
v(z)

[in BeV]

FIG. 1. Path of integration in the v—¢2 plane for
sum rule (Al).

(K=

v-gq? plane for sum rule (Al) is equivalent to the
path for sum rule (A2) combined with its image in
the ¢? axis. The evaluation of these sum rules is
presented in the next section.

We would now like to mention some of the theo-
retical motivations for exploring the Regge be-
havior of vT,. The high-energy behavior of both
on- and off-shell Compton scattering seems to be
well approximated by a fairly simple Regge para-
metrization. T, is usually considered to be dom-
inated by the Pomeranchukon and f-A, trajecto-
ries. In addition, there is evidence for the exis-
tence of a right-signatured fixed pole at J =0 in
the on-mass-shell Compton amplitude,” and this
fixed pole is also expected to be present in the
off-shell amplitude. In the scaling region, the
residue of this fixed pole should be nearly linear
in ¢2, and it should vanish with ¢2 in the limit
q®~0. If in the scaling limit vW,(v, ¢?) is dom-
inated by the Pomeranchukon and f-A, trajecto-
ries for w>12, then the sign of the fixed-pole res-
idue in this limit is opposite that found for the on-
shell amplitude.*® This behavior seems rather
undesirable; in fact, if the fixed-pole residue is
a polynomial in ¢Z, as has been suggested theoret-
ically,'® then it must be linear in ¢2 for scaling to
hold and it could not change sign between the low-
and high-¢? regions. Therefore, either the fixed-
pole residue is not a polynomial in ¢2, or the as-
ymptotic expansion including only the Pomeran-
chukon and f-A, trajectories is too simple. If
there is a substantial nonleading Regge contribu-

-q? (2) [in Bev?]
9.0+
8.0r , Resonance
/ region y
7.0 /
/
/
60 /
/
/
5.0F /
/
40 Scaling
region
3.0F
2.0+
1.0 —-—————-——-:—;—_-—-'——-
- Regge
region
o 40 50 60 70
v(z)
[inBev]

FIG. 2. Paths of integration in the v-¢° plane for
sum rules (A2) and (A3).
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tion to the asymptotic behavior in addition to the
conventional leading Regge form, then it is pos-
sible to have a fixed pole with residue linear in
q? and with the same sign in both the g%~ 0 and
scaling limits.®

The possibility of a fixed-pole contribution to
vT, and the question of the behavior of its residue
make it especially important to find ways of dis-
criminating between the various Regge fits to
vT,. All of these fits have been constrained to
satisfy the FESR, so additional tests must be
found. To that end, we look for a parametric dis-
persion relation of type B, namely, such that
along the contour S, v and ¢? lie in the complex
Regge region (which we take to be defined by | w|
=|2M,v/q? >12, with | ¢®| <1 BeV® and | v|
>2 BeV). An example of this type is

u(z)=4.52-2.5,
(®) {v(z)= (¢ - 1)/8(4.52 - 2.5) . @7

Here v and ¢Z are defined in terms of % and v by
(2.6). The path of integration along the contour L
in the v-¢® plane is shown in Fig. 3; note that it
passes through the interesting low-¢? part of the
resonance region and that on the entire contour C,
q? varies in the range | ¢%| <1 BeVZ2. Since v(z)
has a pole at z=2.5/4.5, we must make an infini-
tesimal distortion of the contour L around the
pole. However, vT, is assumed to be finite as

v -, so this infinitesimal distortion will make a
negligible contribution to the integral. To the ac-
curacy of our evaluation (and of the data), the in-
tegral L is completely determined by the data on
the structure function vW,. Sum rule (B) therefore
allows us to compare the integral S, which de-
pends only on the Regge fit, with a number com-
puted directly from the data with no assumption
about real or complex scaling. This parametric
dispersion relation provides a very severe re-
striction on the Regge fits. Its evaluation is also
presented in the next section.

III. EVALUATION OF SUM RULES

Our evaluation of the sum rules described in the
last section has been somewhat different from our
evaluation of Khuri’s original sum rules in II.
First we discuss sum rules A. In the imaginary
part of L, the v’ integration is trivial and we have
only to evaluate a single integral over vW, along
the paths shown in Figs. 1 and 2. The structure
function was obtained from the electroproduction
data using the interpolation program (SEARCH)pro-
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FIG. 3. Path of integration in the v-¢% plane for
sum rule (B).

vided by the SLAC-MIT collaboration. The real
part of L involves a principal-value integration of
VW, over v’ which we cut off at v’ —v,(x) =20 BeV;
the real part of L did not vary more than 1% when
this cutoff was varied between 20 and 40 GeV. We
also evaluated L using the fits to vW, used in II
and found that to within the accuracy of the data
the results agreed with those found using the inter-
polation program. Both the real and imaginary
parts of S were determined using the dispersion
integral (2.3a) with F,(w’) given by>*:

Fp(w)=2.33(1 - 1/w)* - 2.67(1 - 1/w)*

+0.91(1 -1/w)®, 1<w<4
Fy(w)=0.35, 4<w<s
(3.1)
Fp(w)=0.369 — 0.0033w, 6<w<12

Fz(w)=% lim ImR(q3,v), w>12.

—q 2o, w fixed

The integral over w’ was cut off at w_,, =20; the
results were insensitive to both the cutoff and the
Regge fit used. Table I contains the results of
sum rules (A).

To evaluate the integral L in sum rules (B) we
used the same procedure as in sum rules (A) for
|| v] =v,(x)| <12 BeV. However, for || v| -v,(x)|
>12 BeV, we replaced the dispersion integral for
vT, with the Regge fit to vT,; this region makes a
negligible contribution to L, and to the accuracy
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TABLE I. Results of evaluation of sum rules (A).

o

TABLE II. Parameters for Regge fits 1-7.

Sum rule ReL Re S ImL ImS Fit [ B Y 4 u (BeV) m (BeV)
(Al) 0.00 0.00 0.24 0.22 1 0.12 0.462 4.02 1.0 0.37 0.22
(A2) 0.43 0.47 0.24 0.22 2 0.06 0.618 4.64 1.0 0.37 0.22
(A3) 0.37 0.42 0.14 0.13 3 0.05 0.645 4.75 1.0 0.37 0.22

4 0.07 0.663 3.67 0.0 0.37 0.22
5 0.17 0.113 3.42 1.0 0.44 0.44
. . s s .28 1 . -0.6 . .
of our evaluation, the integral L is independent of 22 g 28 g 12 g g (1) 0 g g 8 55)
which Regge fit is used. The integral S is now a 72 0.11  0.68 0.0 -1.25 0.316 0.316

single integral of the Regge fit R(q?, v) to the off-
shell Compton amplitude vT,. The Regge fits we
tested were all of the form

R(q?, v)=iB, (%) + G — 1)By(g >~/
+@+1)B5(g% w32 +Bre(g®t.  (3.2)

Here B,, B,, and B; are the residues of the Pomer-
anchukon, f-A,, and effective nonleading trajec-
tories, respectively; B, is zero in some of the fits.
Bgp is the residue of the J =0 fixed pole. With one
exception the Regge residues for these fits have
the form

2

Bl =,
bala =27 _‘fu ( “’23}:”2 )mﬁ : 3.3)
Bl =i (2 7
Pu(a®)=-ma® <—qzoilmp2 +—qzoile2 ) ’

. -mq? <—qzy+lmp2 +—q2yiM,2 +ML22> 1
Fala") = mys(=q%/2M )%, | q%|>2 BeV?
Bs(g®)=0,

BFP(qz)zqzél/Mp-

This fit was made by Preparata'? using the formal-
ism of mass dispersion relations and light-cone
dominance for large masses. The constants for

fit 8 are tabulated in Table III. The fixed-pole
residue for fit 8b is that determined by the FESR
in the g%~ 0 limit™®; that for fit 8a was calculated
by us, following Elitzur,® using the FESR in the
scaling limit.

These Regge fits were all determined for real
spacelike ¢? and large values of v/(-¢?%). We use
the same functional form for complex g2 and
| v/q? large with | ¢%| <1 BeV?2.

The results of sum rule (B) evaluated with each
of these Regge fits are tabulated in Table IV.

—i75’
(MP)I/Z

70 0.11  0.68 0.0 1.0 0.316 0.316

The fixed-pole residue was assumed to be linear
in g2 over the range | ¢%| <1 BeV?2;

Brp(g®)=q%6/M,. (3.4)

The constants «, 8, v, 8, 1, and m for these fits
are listed in Table II. Fits 1-5 were obtained by
Close and Gunion.? 'Fits 6 and 7 were made by
Pagels'! for large ¢Z and extended to low g2 by us.
The fixed-pole residues for fits 6a and 7a were
calculated by Elitzur® using a FESR for large ¢2;
fits 6b and 7b have fixed-pole residue deter-
mined by the FESR in the ¢% -0 1imit.*® Fit 6 cor-
responds to 0,/0,=0.18 and fit 7 to 0,/0,=0.
These fits are discussed in more detail in II and
in the original references.

We have also tested another Regge fit which has
residues of a different form; namely,

| g% <2 BeV?
(3.5)

IV. DISCUSSION AND CONCLUSIONS

From Table I we see that sum rule (Al) is sat-
isfied to within 10%. As pointed out earlier, this
sum rule depends only on complex Bjorken scal-
ing; it shows that complex scaling is valid to the
same accuracy and down to the same low values of
| v| and | ¢?| as is real Bjorken scaling. Sum
rules (A2) and (A3) require complex scaling in
both the Bjorken scaling region and in the Bjorken-
Johnson-Low region. Both real and imaginary
parts of these sum rules are satisfied to within
15% of the magnitude of L. In addition, sum rule
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TABLE Ill. Parameters for Regge fits 8.

Fit o a, " Yo M, (BeV?)  v3 6, m, (BeV) M (BeV?)
8a  0.424 —0.124 0.0412 0.0088 50.0 0.07 =—0.38  0.765 2.0
8b  0.424 —-0.124 0.0412 0.0088 50.0 0.07 1.0 0.765 2.0

(A2) shows that on each half of the contour L the
real part of sum rule (Al) dominates the imagi-
nary part in magnitude. However, the antisymme-
try of the real part of v7T, causes the real part of
L to vanish., Only the imaginary part of sum rule
(A1) is nontrivial, and its accuracy is even better
than we had a right to expect. We reiterate that
the parametric dispersion relations (A1), (A2),
and (A3) are by no means fixed-g* sum rules. In
each case, ¢? varies rapidly compared with v as
L passes through the resonance region, and it
would be surprising indeed if the scaling limit
curve provided a reasonable approximation to the
inelastic structure function vW,(v, ¢%) along these
contours through the resonance region. We there-
fore feel that these parametric dispersion rela-
tions provide clear and nontrivial confirmation
for the concept of precocious complex scaling.
The results of sum rule (B), listed in Table IV,
show that this parametric dispersion relation is
very sensitive to the Regge fit used and that ana-
lyticity in two variables provides further restric-
tions on the Regge residues. For Regge fits 6b
and 8b the agreement is by far the best; both real
and imaginary parts of the sum rule are satisfied
to within about 13% of the magnitude of L. These
fits were made by Pagels and by Preparata, re-
spectively. With each of the other fits the sum
rule fails by more than 25%. Fits 6b and 8b con-
tain only the Pomeranchukon and f-A, Regge tra-
jectories and have fixed-pole residues determined
by the FESR in the g%~ 0 limit. The same Regge

TABLE IV. Results of evaluation of sum rule (B).

Regge fit ReL ReS ImL ImS
1 0.05 -0.37 1.30 1.65
2 -0.57 1.57
3 -0.61 1.55
4 -0.90 1.28
5 -0.33 1.73
6a -0.39 1.02
6b 0.08 1.29
7a -1.23 0.63
b -0.55 1.01
8a -0.21 0.93
8b 0.21 1.16

fits, but with fixed-pole residues determined by
the FESR in the scaling limit (fits 6a and 8a) fail
badly. This is not surprising given that our para-
metric dispersion relation requires the fixed-pole
residue only for low | ¢2|.

While we have assumed the fixed-pole residues
for fits 6—8 to be linear in ¢ for | ¢%| < 1 BeV?,
they cannot be polynomials in ¢Z for all ¢ if scal-
ing is to hold; the fixed-pole residues must change
sign on passing from ¢%=0 to the scaling limit.
The fits made by Close and Gunion (fits 1-5),
which do have polynomial fixed-pole residues, do
not satisfy our sum rules; the errors for these
fits are more than 35% of the magnitude of L. Our
analysis assumes of course that the real part of
vT, is determined from the Regge fit to vW, by the
standard Regge signature factors, and it is possi-
ble that this assumption is not applicable to the
effective v~%/2 term in the fits of Close and Gunion.

We also point out that Regge fits 6 and 8 have
much larger Pomeranchukon contributions than
any of the other fits tested. The ¢Z behavior of
the Regge residues for fits 6 and 8 is, however,
quite different. We have also evaluated sum rule
(B) using fit 6b, but varying the masses u and m.
We found that for 0.4 < <0.6 and 0.4<m < 0.8
the sum rule is still satisfied to within 15%; this
is about as wide a variation of these masses as
the data in the low-g2 part of the Regge region
allow. These results suggest that, while our para-
metric dispersion relation is very sensitive to the
relative magnitude of the Pomeranchukon contri-
bution and to the fixed-pole residue, it does not
depend on the precise form chosen for the ¢ be-
havior of the Regge residues. Our tentative con-
clusion is, therefore, that the correct Regge fit
is dominated by the Pomeranchukon, with relative-
ly small contributions from the f-A, and any oth-
er Regge trajectories. This would of course re-
quire that the fixed-pole residue have nonpolyno-
mial behavior in ¢2.

It is interesting to note that analyticity in g2
was used to obtain both fit 6 and fit 8. Pagels'!
obtained fit 6 by using the analyticity properties
of the partial-wave amplitudes in the virtual pho-
ton mass, which follow from the Froissart-Gribov
definition of these amplitudes and from the DGS*?
(Deser-Gilbert-Sudarshan) representation, to ex-
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trapolate the high-energy behavior of the total
photon-proton cross section to the electropro-
duction region. Preparata'? employed relations
between photoproduction and deep-inelastic elec-
troproduction derived from light-cone dominance
for large masses and mass dispersion relations
for Regge residues to derive fit 8.

While our parametric dispersion relation does
not solve the intriguing problem of the existence
and g2 behavior of a J =0 fixed pole in the off-
mass-shell Compton amplitude, it does severely
limit the allowable Regge fits to the inelastic
structure functions vW,. Of the fits we have
tested, the only two which satisfy our sum rule
must have fixed poles with nonpolynomial resi-
dues. It would be interesting to see if Regge fits
can be found which do have polynomial fixed-pole
residues and which satisfy the parametric disper-
sion relation.
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APPENDIX A

We prove here the assertion made in Sec. II that
there exist no parametric dispersion relations
such that: (i) within the contour C, consisting of
the interval (L) of the real axis from z=-1to z=1
and the unit semicircle (S) O<argz<m, ¢% and v
lie in the forward tube; (ii) on the contour L, ¢2
and v are real with ¢® spacelike and pass through
the low-¢q2 (| ¢%| <1 BeV?) part of the resonance
region; (iii) on the contour S, ¢ and v lie in the
complex scaling region (| ¢?| large).

The simplest way to proceed is to conformally
transform the interior of the unit semicircle onto
the upper-half plane. This is accomplished by the
transformation z’=2z/(1 +2%), which maps the in-
terval —1 < x <1 onto itself and the unit semicircle
onto the remainder of the real axis. The condi-
tions (i)—(iii) translate to the following: (i’) In the
upper-half z plane, ¢? and v lie in the forward
tube; (ii’) on the interval —1<x<1, ¢® and v are
real with ¢2 spacelike and pass through the low-
q? part of the resonance region; (iii’) on the rest
of the real z axis, | ¢?| is large. Conditions (ii’)
and (iii’) imply that for z on the real axis, | ¢?|

o

takes its minimum on the interval —1<x<1. We
will show that (i’) and (ii’) are not compatible with
this requirement.

As in Sec. II we define

g'__q()x
n=lql,

u=é‘(€ +71),
v=3(-n).

The forward tube is defined by Im¢>|Imn|, or
equivalently, Im«>0 and Imv>0. We must now
show that it is not possible to find two functions
u#(z) and v(z) such that: (a) u(z) and v(z) are ana-
lytic for Imz > 0 and continuous for Imz > 0, ex-
cept possibly at isolated points on the real axis
outside the interval =1<x<1; (b) Imu(z)> 0 and
Imv(z)> 0 for Imz>0; (c) on the interval —-1<x<1,
q2(z)=4u(z)v(z) is real and spacelike; (d) | ¢2(z)|
takes its minimum, for real z, in the interior of
the interval —-1<sx<1.

Conditions (a) and (b) imply that #(z) and v(z)
must be Herglotz functions. This immediately
allows us to show that ¢ cannot have a zero on
the interval —1<x<1. To see this, note that Her-
glotz functions can have only simple zeros on the
real axis. Mow (c) implies that if ¢2 has a zero
on the unit interval, it must be of even order; it
must in fact be of order 2 and both # and v must
have simple zeros at some point x, with —1< x,<1.
Since u and v are Herglotz functions, for z near
x, they must have the form

w(z) = alz - x,),
v(2)=b(z - x,),

with @ and b positive. This requires that ¢%=4w
be positive on both sides of x,, which violates con-
dition (c).

Now we will prove that | ¢%| cannot reach a non-
zero minimum on the real axis in the interval
-1<x<1. Consider the functions u’(z) = -1/u(z),
v'(z)==1/v(z), and ¢"”?=4u'v’. u'(z) and v’(z)
are also Herglotz functions. We must show that
| ¢”%| cannot reach a maximum on the interval
-1<x<1, If it did, then | ¢”?| would be bounded
by a constant on the entire real axis. Since a Her-
glotz function cannot have any singularities in the
upper-half plane and cannot blow up faster than
| z| as | z| == in complex directions, we can apply
the Phragmén-Lindelsf theorem to show that | ¢
would be bounded by the same constant throughout
the entire upper-half plane. Using the Schwarz
reflection principle, we can analytically continue
the function ¢’?(z) into the lower-half plane where
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TABLE V. Results of sum rule (A) of Ref. 2 evaluated
with m2=10 BeV?, b =2.5, ¢,2=1.0 BeVZ,

Regge fit
1 2 3 5
ImL 0.20 0.20 0.20 0.20
ImC 0.17 0.17 0.17 0.13
ImCp -0.02 —-0.02 -0.02 -0.06
ReL 0.17 0.17 0.17 0.17
ReC 0.08 0.06 0.06 0.08
ReCp 0.03 0.01 0.01 0.03

it would be bounded by the same constant. This
would require that ¢%(z) take its maximum at a
point interior to its region of analyticity, which
violates the maximum-modulus theorem. There-
fore, sum rules of the type desired are impossi-
ble.

APPENDIX B

In this appendix we would like to reevaluate
some of the sum rules of Ref. 2. The Regge fits
obtained from Ref. 4 in II had an error in the
fixed-pole residue. In that paper the normaliza-
tion of R, the coefficient of q? in the fixed-pole
residue, defined in the text is not the same as the
normalization of R, used in tabulating the fits.
The relevant factor is 1/7M,. As a result, in
Table I of II the constant 6 should have units of
BeV™! (notice that the definition of 6 in the pres-
ent paper differs from that used in II) and, for
Regge fits 1-3 and 5, 6 =1 should be replaced by
6=1/1M,.

We have reevaluated the sum rule (A) of IT with
this correction for the Close and Gunion fits. The
results are found in Table V of this paper. The
results for the other Regge fits tested remain un-
changed and are found in Table II of Ref. 2. Clear-
ly some of the conclusions drawn in II are no lon-
ger quantitatively correct for the fits 1-3 and 5.
The imaginary part of the sum rule is still rough-
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ly independent of the Regge fit used and is satis-
fied to within 25% of the magnitude of L for each
Regge fit. This still gives qualitative support for
the concept of complex scaling. However, the
real part of the sum rule is no longer satisfied
for fits 1-3 and 5. There are two possible rea-
sons for this failure. One is that these particular
fits are bad. The other is that this sum rule uses
the Regge fits for relatively small | v| (| v|<2
BeV) and | ¢2| <1 BeV? and only part of this do-
main is in the Regge region.

To distinguish these possibilities we evaluated
the same sum rule, but with ¢,>=1.0 BeV? re-
placed by ¢.%=0.5 BeV2, -That is, on the unit semi-
circle we used complex scaling for | ¢%|> 0.5 BeV?
and the Regge fits for | ¢2| < 0.5 BeV2. With this
choice of ¢ the Regge fits are still used at times
for smaller values of | w| than we would like, but
not at the very small values of | w| where they
were used in II. This new choice of ¢ also re-
quires that we assume complex scaling extends to
even lower values of | ¢| at least in an average
sense, and this sum rule should provide a stron-
ger test of the precocious nature of complex scal-
ing.

We have evaluated this sum rule with all the
Regge fits examined in the present paper. The re-
sults are presented in Table VI. The imaginary
part of the sum rule is satisfied to within about
15% of the magnitude of L, independent of which
Regge fit is used. This provides further confir-
mation for the concept of precocious complex scal-
ing. The real part of the sum rule is satisfied to
within about 20% for all of the Regge fits, which
is about as good as can be expected given that we
are extending our use of complex scaling and
Regge behavior beyond their expected ranges of
validity. Therefore, while the integral on the unit
semicircle does depend on which Regge fit is used,
we cannot use this sum rule to exclude any of the
fits. However, the qualitative conclusions drawn
in IT are correct. These sum rules suggest that
complex scaling is good and that parametric dis-

TABLE VI. Results of sum rule (A) of Ref. 2 evaluated with m =10 BeV?, b =2.5, q,>=0.5 BeV?. Regge fits are
those described in the present paper.

Regge fit

1 2 3 4 5 6a 6b Ta 7b 8a 8b
ImL 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
ImC 0.17 0.18 0.18 0.17 0.16 0.16 0.16 0.17 0.18 0.16 0.16
Im Cp -0.01 -0.01 -0.01 -0.02 -0.03 -0.03 -0.03 —0.01 -0.01 -0.03 -0.03
ReL 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
ReC 0.12 0.12 0.12 0.12 0.12 0.12 0.14 0.15 0.17 0.11 0.12
ReCp 0.03 0.03 0.03 0.03 0.03 0.05 0.06 0.08 0.02 0.03

0.03
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persion relations can be used to discriminate be-

tween Regge fits.
Tables ITII-V of Ref. 2 also contain the same er-

ror for the fits of Ref. 4 and should be ignored.

We have not reevaluated these sum rules here
because the sum rules presented in the present
paper are more powerful, and the results pre-
sented in this paper supersede those found in II.
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