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An infinite sequence of direct-channel resonances is explicitly summed by the Sommerfeld-

Watson method. This is quite different from the problem heretofore considered of summing

t-channel resonances and requires different physical assumptions. In fact, the "parabolic"
mass trajectory pz~ J and a slow growth of width (on resonance) I'zcc J as J—~ are neces-
sary to reproduce in the Regge limit the form const xJ&&(Rv'-t ), R =—interaction range, 4X
—= total helicity change, for the imaginary part of this (nondiffractive) part of the c.m. two-

body reaction amplitude, in agreement with experiment, and Harari's qualitative theory, for
~N and KN entrance channels. The above width ansatz is of central importance in the deriv-
ation and is also experimentally supported. Linear and parabolic mass trajectories in the

direct channel are compared. Small s-dependent deviations from fixed crossover -t = 0.2
(GeV/c) and first dip -t = 0.6 (GeV/c) points are predicted.

I. INTRODUCTION

Harari, synthesizing much previous work, has
recently formulated a qualitative theory" of had-
ronic two-body reactions at high energy which ex-
plains the detailed t structure of both elastic and

inelastic cross sections remarkably well. The
imaginary part of the c.m. scattering amplitude

f is supposed to consist of two parts:

Imf =Imfl+Imf

where f» is the diffractive part ("Pomeranchukon
exchange"), which has a structureless ( depen-
dence, and f, is the sum of nonexotic resonances
(or of nonexotic exchanges, in the sense of dual-
ity) with t structure contained in Bessel-like func-
tions,

Imf ( (s ) t ) = P(s) el )gy (
(R~f)" . (1.2)

"J~&,&, ~(z)" has zeros, maxima, and minima in the
same places as J t~z~(z); here nA is the total helic-
ity change nX =- X, —A, —(X, —X,) for the reaction
ab-cd, R is the "radius of interaction"=1 F —= 10 "
cm, and the s dependence of P(s) is not specified in
detail except that asymptotically it goes like const
(elastic case)' while Imf « = 0(Ws).

Our purpose is to derive the form (1.2) by ex-
plicitly performing the sum over resonances by
means of the SW (Sommerfeld-Watson) transform.
A parabolic (mass)' trajectory' p~~ J rather than
the usual linear one p~'~ J for the resonance
families of interest is assumed, as already sug-
gested in Refs. 1 and 2. But far from neglecting
the widths, as previous work has done, we find that
the particular width-spin relation assumed is of
central importance; and in fact the "parabolic"
width trajectory I'~~ J asymptotically is strongly

suggested. A more precise form of (1.2) is derived
in which p(s) is specified and there are small s-de-
pendent corrections to the argument of J |~),j

which
should allow an experimental check of the crucial
width- spin ansatz.

In addition the linear and parabolic mass trajec-
tory cases will be contrasted.

II. SUMMING THE RESONANCES

Start with the partial-wave expansion of f, (drop
the subscript thereafter)

f (s, t) =—Q (2J+ 1)fI (s)Pz (cos 8),
1

J
(2.1)

fz(s) =8m
I'~

p,, —ir, /2 —Ws ' (2.2)

where pz and rz are mass and (total) width of the
resonance of spin J, and

P~(cos8)- —,
' [P,(cos8) +rP~(-cos8)]

in (2.1). rz and 8~ have a tacit s dependence which
will usually be suppressed for notational simplic-
ity.

The ansatz (2.2) has Breit-Wigner form if 8~

=(xz x&8)", where x~, =—r~ /r~, r~ =partial width
for channel a, and a and P are entrance and exit
two-body channels. " If o. =P, 6~=xI is called the
"elasticity" for the elastic channel a. But we leave
the precise form of 8~ open for these highly rela-

s:—4(k'+M'), t =-2k'(1 —cos8), where we shall
treat spinless external particles of equal mass M
for mathematical simplicity, but expect the result-
ing s and t dependence to be realistic. Now assume
that f is the sum of the nonexotic resonances of a
recurrence family of signature v'.
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330 R. L. INGRAHAM

tivistic hadron resonances. The assumption of a
Breit-Wigner denominator for each resonance at

any energy, while admittedly crude, is explicitly
made here for simplicity and because we can do no

better.
Next one must assume a relation between the

mass and width and the spin. Following Harari,
we take

~(r&u/2k')'
~

neglected. (2.8)

2 ~——sinva Q (cosB) (2 9)

The background integral will be briefly discussed
below. From now on f shall mean f „,.

Use the identity""

P (-cos8) =costa. P„(cosB)

=4(J+ ) /R —+4M ~ J+2 =kIR (2.3)

for some "radius of interaction" R. k~ is the c.m.
momentum associated with s~= p, ~' and external
masses M. The usual linear trajectory is treated
briefly in Sec. III.

To elucidate the width-spin relation, we first
treat I ~= I' as J-independent. This preliminary is
a convenient introduction to the determination of
the correct J dependence.

Replacing the sum over J by a contour C enclos-
ing the points J=O, 1, 2, . . . by the SW method, '
we get

which is convenient for the s channel because
Q„(cos8), the (symmetric limit) Legendre func-
tion of the second kind, is real for real n. This
gives

P (-cosB)+rP (cosB) =S, o)P (cosB
sinn+

2——Q„(cos8), (2.10)

where the signature factor S,(a) =—(cosva+r)/sing~
after a little algebra becomes

f =— dJ(2J+ 1)8(J,s)
Sk c

I' P~(-cosB) +7P~(cosB)
X

D(J) sin vJ

D(J) -=i (J) --,'fr —Ws.

(2.4)

7 COS77QR + coshg(yl
S,(&) = .~, . , ' (r si nwn„-i sinhwo, ) .

sinh'go. ,+ sin'p~R
(2.11)

Notice two properties which will be useful later
on~.

Distort C to the contour C'=—the line ReJ=--,' plus
the infinite semicircle in a right half plane. One
picks up the pole J = a at the simple zero of D(J),
which gives' f =f,«. +f»«„.„„d, with

ImS,(a)- -1, ReS,(a)-0, az-~,.

[Ims, (n)]V—= [~ '
( )]

= coth (~me~) .

Regge Limit, s Channel

(2.12)

f,.„=—r(2&+1)R(~)8(o, s)

P (-cosB) +~P„(cosB)
X

sinn o.

Here the pole n and residue R(a) are

~= kR ——,'+frR~/4k

=as+in~, &u=—(k'+M )"'
(2 o. + 1)R(a) = ,' R p (a) = ,' R (Ws—+—', iI'), —

with the approximation'

(2.5)

(2 5)

(2 7)

In the Regge limit 8= v t/k- 0 so tha-t we can use
the small-angle approximation"' P„(cosB)- Jo((o. + —,') 8). Expand

J,((n+ '.)J-t/k)= J,(-(a, + ,'g ~/k)-
-i o., J,((a„+2)~t/k),~t

where (n,~t/k)' is neglected. Then taking the
imaginary part of f, Eq. (2.5), one gets" (in a
form valid for any trajectory)

Imf - ——(2o. +1)R(n)8(a, s) ImS, (n)Jo~ (na + —,') 1 — ~ " +-~r ~t, w o. sing o. ) 2

4k k '
sxnhmo'~ cy&+-,

'
) m o'R+1

The last term came from"

(2.13)

Q„(1+ t/2k') —-ln -y

k-~, -t&O fixed

(2.14)

with the approximation al/n„+1«1.

Width and Elasticity

In the resonance region I' on resonance must be
of realistic size [e.g. , for 16pzc3 GeV for well-
known vN resonances, r(v s = pz) is typically some
hundreds of MeV]. With the typical value I" = 200
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F~(&s = tt.~) =2yk~, (2.15)

with y a well-determined small dimensionless con-
stant; this choice will be discussed further below.
Notice that we are only assuming a form for the
width on resonance. For the energy dependence
away from resonance we can take any of several
favorite phenomenological forms [e.g. , Eq. (3.43)
of Ref. 6 with Fs given by our (2.15)]. But the
general energy dependence is largely irrelevant
for the results of this paper.

But in virtue of the assumed mass trajectory
(2.3), (2.15) is just sufficient to determine the
quantity of interest F(no, s). Proof: Ws= p,~ has
the solution J= kR ——,

' =—oo if we extend (2.15) to
continuous J values. Hence the extended (2.15)
can be written

I"(n„s) = 2yk. (2.16)

Q.E.D.
When (2.16) is put into the pole equation the solu-

tion is
n= kR ——', + ,'iyRur, &u=(k +M—)' (2.17)

with the approximations y' neglected relative to 1
and uP/k' not too different from 1. The residue, in

which it is sufficient to neglect also —,
'

y relative to
1~ ls

(2o. +1}R(o.}=—,'R'J s. (2.18)

The upshot is that n, =
2 yR~-O(k), which is the

maximum growth rate (a =1) allowed for s-inde-
pendent t structure, as argued above.

Next, restricting ourselves to elastic scattering,
let us determine the elasticity 6~—= x~. From Eq.
(2.13), using the expressions just found for n,

MeV one gets o.l =5x0.2/4= —,', or the signature
factor ImS, (a) has oscillations of size V= coth'(v/8)
='l, characteristic of the resonance region. But
in order that the resonances wash out at high

enough energies it is necessary" that n, increase
with energy, as one sees from (2.11) or (2.12).
Since nl- —,'I'R by (2.6), the case F~ J-independent
is therefore rejected. "

But n, cannot grow too fast with energy because
o. = O(k) is the distinctive growth law for which the
t structure becomes independent of s, as one sees
from the small-angle approximation for P„(cos6).
Thus one must have o., = O(k'), 0 & a ~ 1.

To determine the correct width trajectory, we

proceed as follows. In the pole equation D(J)
= p, (J) —-', iF(J, s) —v s =0, the width term should
furnish a small correction to the zero order equa-
tion with this term absent; therefore replace J in

the width by the zero-order root J = n0 -=kR ——,.
Now guided by experiment' we make the basic

assumption

F(o, s}, and R(o.'), we see that (1) x(n, s) must

grow asymptotically like I/u s.' Other conditions

can be imposed on xz(s): (2) it should make the
partial-wave series converge at all angles; (3) it
should make the infinite semicircle contribution in

the SW transform vanish; (4) xz(s) ~ 1 for all J and

s. These do not fix it uniquely, but for example

2M cosh 1

Ws cosh(g, '/s) (2.19)

does satisfy (1)-(4}. The dimensional constant 2M

stands for the threshold value of v s in the general
case; this value is determined essentially by (4).
Then (2.19) gives

x(a, s) —2M/Ws, s- ~ (2.20)

since p'(n) —s if —,'y«1.
With the substitution of (2.16), (2.1"I), (2.18),

and (2.20) into (2.13) and neglect'o of -', y relative
to 1 the amplitude becomes

Imf ———,'xR yM ImS, (n} .-(aa —
l)))~

sinhvro. , kR

(2.21)

where oz = —,'yR&u and ImS, (n) is given by (2.11).
Keeping only the leading term in energy, one gets

Imf ——', vR'yMJo(Rv t) . - (2.22)

This reproduces the desired form (1.2) with "J,"
=J, and P(s) —const. Q.E.D. Hence the range pa-
rameter R, introduced originally in the mass tra-
jectory, has the size" R=10 " cm.

Crossover and Dips

Equation (2.21) shows that at nonasymptotic en-
ergies the "crossover point" (where Im f vanishes
for the first time) is given by

(RJ-t) g 1
ro' sinn(kR ——,)

CTOSS 0 (2.23)

where g, =2.4 is the first zero of J,(z). The
first dip (at the first minimum of Imf) is at

r n, sing(kR ——,')
sinhme, kR

(2.24)

More on the Width

(1) Comparing the width formula (2.15) with ex-
periment, "one finds that it works fairly well in

where (, =3.8 ~ ~ ~ is the first (nonzero) zero of
J,(z). These small corrections to the values ( —t)„„,
=0.23 and ( t)d;, =0.59 (GeV-/c)' given by the quali-
tative theory (1.2) oscillate with energy around
these values and disappear with increasing energy.
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~ »r- 1.8

or

k„„—= 4 x 1.8/rrRy

= 3600 MeV/c

(2.25)

if we take y =0.13. Or, as in nuclear physics, one
could define this energy as that for which the width
at resonance becomes equal to the level spacing.
In our case the latter is given by Rhk =2 or b, k
=400 MeV/c. This gives the same type of criterion
as (2.25), but quantitatively on the low side:

rgk=k, )=~k

view of the large experimental uncertainties, giving
a value y= 0.1 to 0.15. The approximations y'
neglected, used in solving for the pole, and —,

'
y

« I, used in (2.21), are well satisfied by this val-
ue.

(2) The resonances will have vanished when the
"variation" V, Eq. (2.12), is about unity. Defining
the latter by a 10% variation, say, we set V=1.1,
which gives

The Background Integral

For completeness one should show that the back-
ground integral in the SW transform is negligible
compared to f „,. This is (2.4) with g= ——,'+iy,
-~&y&~, and I'-I'~(s). An ansatz for I'~(s) valid
at any energy" (and hopefully for the background
region J = ——2+iy as well) should properly be used
here. Instead for simplicity we have used I'~(s)
—I'gv s = p~) = Eq. (2.15) here, which is wrong but
probably overestimates the integral [because of a
barrier factor entering in I'~(s}]. Even more un-
certainty attaches to the elasticity, for which we
have arbitrarily chosen (2.19). Hence substitute

I'(J) =i2yy/R, tr(J) =2(-y +M R )" /R.

After some algebra

yM
" y'8(J, s)

2k „~ Ir(y)

x S,(J)P~(cos 8) ——Q~(cos 8), (2.28)
2

D(y) = (-y' +M'R')'" + —,
'

yy —2R&s, —

(2.29)

or

k,',r = 1/Ry

=1500 MeV/c.

(2.26) where S,(J) was given in (2.11).
If (2.19) is now substituted into (2.28), one can

prove by a calculation' too long to give here that
in the Regge limit

The most massive known ~N resonances do lie
somewhere around the limit (2.25).

A Consistency Check

Our requirements on I'~ and 6}~ have completely
determined the asymptotic elastic Imf, = (2.22}.
One can now compare its size forward to that of
Imf, &. For the diffractive amplitude we take"

f« =i (k/4rr)rr„, (pp) exp( ,'R't)—
This gives

Imf „„„„„y'g(R~t-), (2.30)

where g( ) is a certain function, independent of s
in the limit y-0. This is negligible compared to
the pole contribution (2.22) if we neglect y relative
to 1. Q.E.D.

However since y=0. 1 to 0.2 is not too negligible,
a careful evaluation of the background integral
with reasonable forms for width and elasticity,
along with the terms of O(y') we have neglected in
(2.21), might be of physical interest.

III. LINEAR TRAJECTORY

Imf, (t =0} 2rrR'yM

lmfrr(t =0) kyar...(PP)
' (2.27)

It is interesting to see what the conventional
linear trajectory yields in the direct channel. The
mass and width are given by

According to Harari, ' this should equal q,/v"', v
=— lab momentum, with rt, = 0.7 (GeV/c)"' for rrN

amplitudes at high energy. So using k= (-,'M„v)"
and replacing 2M-M„+ p.„, we get

p~' = p'(Z —a), I ~
= I'. (3 1)

The constants p.
' and a specify slope and intercept;

we treat here only the case of constant width. Pole
and residue come out to be"' 2R'{M + )

rto = " ' =0.50 (GeV/c)~'
a...(pp)

rr. = a+ s/tr, '+iWsr/tr',

R(cr) = 2(Ms+i ,' r)/p', - (3.2)

as compared to the experimental O.V. The value y
=0.13, suggested by the two series of prominent
mN resonances, "was used here.

if I'/4s is neglected. These are substituted into
the general form (2.5) or, in the Regge limit, into
(2.13)."
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In the present case o,-~ in the Regge limit even

though the width is constant. So in that limit, keep-

ing only the leading term, we obtain

Imf - const&& I's8(a, s)JO(4k' t/-p ) . (3.3)

The energy dependence could be made correct by

requiring 8(a, s) =O(s '). But the basic defect of

the linear trajectory is the s dependence of the

t structure as witnessed by the argument of the
Bessel function.

IV. CROSSING AND DUALITY QUESTIONS

Crossing Properties

If one tries to continue the amplitude developed
in Sec. II to the t channel Iby considering t ~ 4M',
s ~ 0 in Eqs. (2.5), (2.6), and (2.7)~ in the parabolic
case, where I'(o., s) is either a constant or 2yk and

8(a, s) is derived from (2.19) or something similar]
nonsensical physical behavior is obtained for either
parabolic or linear mass trajectories. There is
usually blowup with energy squared t as t- ~ and

complicated, unrealistic momentum transfer s de-
pendence. Since this theory presumably applies
best to entrance channels like mN, KN, etc. , the
t channel describes boson-boson reactions. Al-
though there is no experimental data for the latter,
we suspect that they could never be as pathological
as given by this crossed f, .

Now although there are several conventional
reasons" why this crossed f, need not be physical,
the main source of error is probably in the func-
tional forms used for the trajectory u and for p, (n),
I'(a, s), and 6(o., s). ' That is, this unphysical be-
havior suggests that these functions of s are only

s channel appr-oximations, not suitable for analytic
continuation to other (different) channels.

Duality

In this paper we have shown that one can repro-
duce Harari's amplitude (1.2) by summing an in-
finite number of direct-channel resonances. How-

ever, this success required parabolic mass and
width trajectories and a certain elasticity. The
total and elastic widths, I'~ and I'~„=x~I'~, respec-
tively, on resonance were characterized by a slow
growth with J.

On the other hand, the idea of duality is that the
same amplitude should be obtainable as the sum
of an infinite number of exchanges of resonances
with t-channel quantum numbers. Further work,
to be reported in detail later, has shown that we
can indeed get essentially Harari's amplitude this
way, but arith some important qualitative changes.
Namely: (1) the mass trajectory must be linear

instead of parabolic; (2) the total widths on reso-
nance, I'~(u s = p, ~), should vanish as J-~ rather

than grow as k~; (3) the elastic widths contain a
"barrier factor" (4k'/M') at all energies, which

leads to the exceedingly rapid growth ~J with J
on resonance. These changes amount to saying

that the partial waves for these t-channel reso-
nances have field-theory Feynman-graph form

rather than Breit-Wigner form. (See the remarks
on the Van Hove-Durand model below). In addition,

in accord with Harari and the many absorptive
models, the first kR partial waves" must be al-
most completely absorbed out, which goes beyond

perturbation theory.
These theoretical findings seem to tie in beau-

tifully with what we find on examining the Particle
Data Group Tables. For since the amplitude (1.2),
from which one gets the whole complex amplitude

f, by affixing the signature factor

I +re-lan
S, n)-=

sinews
(4.1)

2k 4k
6 I' -g ~ —,(2J+1) 'C (4.2)

where C~ is the leading coefficient of P~(z) The.
prescription (4.2) gives Durand's amplitude F,
which is connected to the c.m. amplitude f by

is found experimentally to describe elastic and in-
elastic two-body reactions with baryon (zN, KN)

quantum numbers, the direct-channel resonances
should be baryon resonances of this type. These
resonances should then obey the trajectory assump-
tions made above, which do seem to be supported

by experiment, in particular the slowly growing

width trajectory (2.15)."
On the other hand, the t-channel resonances have

boson (zv, vV, KK, KK, etc. ) quantum numbers.
These in fact do seem to conform to our t-channel
resonance trajectory assumptions. The linear
mass trajectory for bosons has been in use a. long

time; and in particular, widths (which -0 as Jin-
creases are observedfor boson resonances. "

Earlier work by Van Hove and Durand"' similar
in spirit to ours illuminates both questions of
crossing properties and duality. If one inter-
changes the names s and t in their work, one can
say that they derived a physically sensible result
(single-Regge-pole amplitude) in the t channel by
continuing an amplitude given as an infinite sum of
"narrow" resonances with linear mass trajectory
in the s channel. In more detail: their starting
point was Feynman graphs in field theory; we can
recover Durand's assumptions" by setting I'~=0
in the denominator of (2.2) and replacing in the
numerator
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If we now apply the SW method, we obtain for F
the expression (2.5}, with 8(n, s}I' replaced by the
right-hand side of (4.2) with J- n and pole and

residue a=a+s/p, R(a) =I/g2. Then crossing
to the t channel and going to the t-channel Regge
limit t-~, s&0 fixed, a little calculation gives

E- -g2
2 2 S,(o.) —, , a = a+ s/p, (4 3)

V. FINAL COMMENTS AND CONCLUSIONS

The generalization to external particles with

spin (and different masses) is immediate. One re-
places the partial-wave expansion (2.1}by the
Jacob-Wick helicity amplitude expansion. " Our
normalization is such that fz(s) is then replaced by

f~~ „.„„(s)—= (X,X, (T~(E) ~X,X,) in their notation, and
d' a 5

in the resonance ansatz (2.2) 8~ may bear helicity
labels. In the s-channel Regge limit the small-
angle approximation"

(5 1)

can be used. One will then end up with (2.21) or
(2.22) in which J2- Jz,„[in particular if 8z(s) and
I'~ are taken exactly as before"], which verifies
Harari's conjecture (1.2).

It is interesting that the infinite sum of reso-
nances in the direct channel produces by interfer-
ence exactly the most peripheral partial wave J
= kR for a parabolic mass trajectory without the aid

where S,(o) = Eq. (4.1), or conventional Regge-pole
behavior. Q.E.D.

This result might be confusing, because we found

no sensible crossing properties above, even with

the linear mass trajectory. The answer lies in the
different width and elasticity forms assumed. The
vanishing total width in the Breit-Wigner denomina-
tor and elastic width as given by (4.2) give very
different results, when analytically continued,
from the constant width assumed in Sec. III [even
with 8(n, s) unspecified, as there].

The Van Hove-Durand calculation serves as a
simplified illustration of the "further work" on
summing t-channel exchanges reported above. It
lacks the ingredient "absorption, " or cuts in the
J plane, hence does not reproduce the Bessel-like
function of Rv tin (1.2}. -

of "absorption'* to cut out low waves or barrier fac-
tors to cut out the high ones. " For we nowhere had to
use any assumptions about I'~ or 8~ off resonance
(except that they be such as to guarantee background
and infinite semicircle integrals negligible).

Apparently one needs an exponential t depen-
dence" e~ as well as the Bessel function in (2.22)
since J~& does not fall fast enough at small -t.
Whether this is already contained in the present
theory, e.g. , in the background integral, is not
clear. One does obtain it by the t-channel approach
described in Sec. IV.

The success of our consistency check [after Eq.
(2.27)] encourages the idea that the high-energy
amplitude (2.21) with the forms (2.16), (2.20) of
width and elasticity on resonance may even be
semiquantitatively correct. A good way to check
experimentally the growth assumption for the width
would be to look for the small energy-dependent
oscillations of the crossover and first dip points
as predicted in (2.23), (2.24).

Conclusions

The imaginary part of the nondiffractive com-
ponent of a two-body amplitude can be obtained as
a sum over resonances whose masses and widths
follow the "parabolic" trajectories p, ~fx J, I ~~J
asymptotically, in agreement with Harari's qualita-
tive theory. This reproduces the characteristic
s-independent t structure in Bessel-like functions
observed for a very wide class of hadronic two-
body reactions at high energies. The elasticity
&(J=kR, s) is found to fall like 1/Ws as s- ~.
There is good reason to believe that these trajec-
tory and elasticity functions are approximations
suited to the s channel, that is, they do not serve
to continue the amplitude to other channels.

A theoretical argument for the striking fact that
baryon resonances lie (P} on parabolic mass tra-
jectories p, ~-J and have total widths that grow
slowly with J as J-~, while boson resonances lie
on linear trajectories p.~ -J and have total widths
that vanish as J-~ is found in duality. Duality re-
quires that the two-body amplitudes considered
here be simultaneously sums of baryon direct-
channel resonances and boson t-channel reso-
nances. The present work plus further work on
summing t-channel exchanges shows that the re-
spective resonances must have just the above char-
acteristics in order to produce (approximately)
one and the same amplitude (1.2).
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