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be interpreted quite simply as due to the fact that
forces in the KN system do play a significant role
in determining the resonance position, as should
be expected when the resonance is strongly coupled
to K¹The ambiguity in interpretation thus seems
to reflect an ambiguity in the physics; the possibil-
ity of including a pole in the two-channel K matrix
means that forces from higher-mass channels may
play a role in forming the resonance, but the
strong coupling to KN means that forces in this
channel are also of significance.

A more stringent criterion for interpreting K-
matrix poles has been proposed by Rajasekaran. '
He argues that in order to ascribe a resonance to
a K-matrix pole, detK ' should pass through zero
with a large negative slope at the pole position.
One can easily demonstrate that this condition can-
not be satisfied for any K matrix defined by Eg. (1)
whose matrix elements are close to those of the
usual constant K-matrix fits at some energy above
the KN threshold. However, the argument for this

test is based on a requirement that the resonance
pole position have a negligible dependence on the
threshold energy of the closed channel. This is
certainly not the case for a resonance strongly
coupled to that channel, as for the fits we have
discussed here.

From a physical point of view, the nature of the
Y*,(1405) in both the constant K-matrix case, and
the fits we have made using the Dalitz form, is es-
sentially the same. In all the fits, the Zm ampli-
tude below threshold is dominated by a pole whose
position and residue is nearly model-independent.
Thus, whether the resonance is regarded as a vir-
tual bound state of the KN system, with negligible
effects from couplings to other channels, or as
having its origins in forces from higher-mass
channels, it still appears to be strongly coupled to
the KN system. The experimental difficulties as-
sociated with this coupling which were discussed
earlier remain.
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The proposal of Oakes linking the pion mass and the strangeness-changing weak interactions
is invc. tigated in the (8,8) symmetry breaking of SU(3) SU(3). This leads to a determination
of the Cabibbo angle and the p —3n decay rates which are in agreement with the earlier re-
sults in the (3,3)$ (3,3) model. The connection between cancellations in the leading weak-
interaction divergences and the Cabibbo angle, however, does not hold in the (8,8) scheme.

I. INTRODUCTION

Ever since Gell-Mann's' original suggestion that
strong interactions are approximately invariant
under SU(3)S SU(3) was put forward, considerable

interest has centered around the following ques-
tions: (a) How does the symmetry-breaking Ham-
iltonian X' transform under SU(3) Igw SU(3), and (b)
how is SU(3) SU(3) broken down to SU(2)? The
simplest assumption, that K' is part of a (3, 3)
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8 (3, 3) representation of SU(3) 8 SU(3), has been
thoroughly investigated. ' One finds that we are
close to a world in which SU(3) @SU(3) is broken
in the chain

SU(3) 8 SU(3)- SU(2) SU(2) —SU(2) .
This symmetry-breaking pattern led Oakes' to
discuss the interesting possibility of a, connection
between the small amount of SU(2) SU(2) breaking
which is present in nature (i.e. , the smallness of
the pion mass m, ) and the Cabibbo angle 8. He
proposed that the nonvanishing of both m, and 0
have a common origin, and thus obtained a predic-
tion for the Cabibbo angle which is in agreement
with experiment. Moreover, with the modification
of K' suggested by his analysis, he was able to
evaluate4 the decays q- 3n and obtain decay rates
in reasonable agreement with experiment. It has
been shown' ' that this choice for R' leads to a
cancellation of the leading weak and electromag-
netic divergences.

In this paper we investigate this connection be-
tween m, and 8 in the (8, 8) model of symmetry
breaking. %Ye show that the relation between m„
and 0 obtained here, and the evaluation of the de-
cays 7l-3v, are identical to those in the (3, 3)
6 (3, 3) model. However, in contrast to the latter
model the cancellation between the leading diver-
gences of the weak and electromagnetic interac-
tions cannot occur.

We shall not discuss here the various motiva-
tions to abandon the (3, 3) 6 (3, 3) model. We sim-
ply note that there are sufficient apparent discrep-
ancies' between this scheme and experiments to
warrant a study of more complex models. If one
abandons the (3, 3)$ (3, 3) scheme, the next sim-
plest possibility is the assumption that R' trans-
forms under SU(3)ID SU(3) as a, member of an (8, 8)
representation. Many features of this model have
already been discussed, "and in particular the
symmetry-breaking parameter has also been ob-
tained. Although SU(2)I8I SU(2) cannot be an exact
symmetry limit of R' in the (8, 8) model, we dis-
cuss an interesting analogy between the (3, 3)
$(3, 3) and the (8, 8) models. As a consequence
one can understand why m, .=0 in the (8, 8). We
begin with some definitions and specify our nota-
tion.

II. THE MODEL

[q„",S»(x)] = i(-f "S'~(x)+f"~'S"(x)), (2.2)

where repeated indices have been summed over.
It is convenient to introduce operators S~ and

S„defined by

and

Sns g&8+ pan
S

S(x8 So'.8 Ss fx

(2.3}

(2.4)

The symmetry-breaking Hamiltonian X'(x) may be
written as

X'(x) = Sz "(x)+ d, „sS» (x) . (2.5)

It will be convenient to define the symmetry-break-
ing parameter z by

(2.6)

From Eqs. (2.5) and (2.6) the current divergences
may now be computed" as linear forms in S„
We present below the octet part of these expres-
sions. These are projected out by contracting
with the SU(3) structure constants f~ 8, i e , we. .
write

3(P = fp~ss„" (2.7)

where 6'~ are the corresponding octet operators.
One obtains

[&"&„"],=+ ~(-,'+z)d", (2.8)

[8~A»], =+~(-,'+z)(P», - (2.9)

and

[8"A„"],=~ (-2+z)(P" . (2.10)

We now compare Eqs. (2.7)-(2.10) with the corre-
sponding expressions for the current divergences
in the (3, 3)$ (3,3) model, which has

OQo + CSQs

= Eo(QO+ CQS» (2.11)

where the u's are the scalar densities of the (3, 3)
6 (3, 3) representation of SU(3) 8 SU(3), and c= @,/e, .
Using Eq. (2.11) the current divergences may be
expressed in terms of the pseudosealar densities
v in the standard fashion:

The (8, 8) model has 64 operators S"z, with o., P
= 1, . . . , 8, transforming as a "A„'=— ' (c+W2}v, , (2.12)

and

[q, S8~(x)]=i(f "S'~(x)+f"~'S ( )8)x (2.1)
(2.13)
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8 "AJ = —~0[(&2 —c)v, + c&2v, ] . (2.14)

1
x&2 ' (2.15)

Comparing Eqs. (2.8)—(2.9) with Eqs. (2.12)-
(2.13) we note that if we define

&n~v„~P, ) = ra „,
in the (3, 3)$ (3.3) model, and

(3 I)

values for c and z in Eqs. (2.18) and (2.19). These
follow by making use of Eqs. (2.8) and (2.12) and
by noting that approximate SU(3) for the vacuum
and the pseudoscalar meson states ~P8) allows us
to write

2 5 c (2.16)
(n((P „~~8)= r5„q

or equivalently

(3 2)

~(m
' —m, ')

w e obtain

(2.18)

282@ .+ m+ (2.19)

in agreement with the value of z obtained in Refs .
9-12.

We may aiso note that the expressions for the
octet part of the vector -current divergences in the
(8, 8) model are also proportional to' the corre-
sponding expressions in the (3, 3)6 (3, 3) model.
The vector- current divergences are proportional
to S~ ~, and their octet parts are readily projected
out by contracting with the SU(3) coefficients d~„&.

III. SYMMETRY-BREAKING PATTERNS

IN THE (8, 8) MODEL

Any model of chiral symmetry breaking has to
cope with the existence of states transforming
approximately covariantly under SU(3), and with
the smallness of the pion mass. These two basic
facts imply that 9 "A'„' ' ' in the (3, 3)$ (3, 3) or its
octet part in the (8, 8) are related to v„or 4'„, re-
spectively, by a factor of order m, '/m»'. To see
this it suffices to use Eqs. (2.8) and (2.12) and the

the expressions in (2.8) and (2.9) are identical to
those in (2.12) and (2.13) if we make the replace-
ment (P~- v~ In other words, the octet parts of
the current; divergences in (2.8) and (2.9) become
identical to Eqs. (2.12) and (2.13). The same sub-
stitutions make Eq. (2.10) identical to Eq. (2.14),
apart from the term proportional to v, in the latter
equation. Such a term does not occur in Eq. (2.10),
since f,„8S„" vanishes identically. However, this
difference is irrelevant for our purposes, since
the analysis of Gell-Mann, Oakes, and Renner'
suggests that

(2.17)

if we neglect g-g' mixing, as we shall throughout.
Using Eq. (2.15) and the value for c obtained in the

(3, 3)$ (3, 3) model, i.e.,

(nl [s„"')„„-,l~, ) = o (3.3)

in the (8, 8) model. Since [once again from approx-
imate SU(3)]

(II
~
S"A'„v') m, '

(n~B„A'„Z') m, ' ' (3.4)

we then obtain Eqs. (2.18) and (2.19). This implies
the above assertion and shows furthermore that
SU(3) is not a much better symmetry than SU(3)

SU(3). In other words, approximate SU(3) for
the above states and the Hamiltonian would have
implied in both models that SU(3) is also approxi-
mately valid for the particle masses, i.e., m, = m~.

This common state of affairs allows in the (3, 3)
8 (3.3) scheme a particular interpretation, since
in that model the 8 ~A'„,"are pure octet. Thus,
the smallness of the octet part of this operator
then implies that 8 ~A'„, ' ' itself almost vanishes.
Therefore, since 8 "A„'=0 is the limit of SV(2)

SU(2), the smallness of m, '/m»' is the conse-
quence of an approximate symmetry in the (3, 3)
8 (3, 3) model. This then "explains" the smallness
of m„'/m»'. It also follows that, apart from dy-
namical enhancements, the matrix elements of the
v terms [Q„', 9 "A.„'] have to be small and have to
vanish in the limit m, = 0. In particular, the ratio
of the (mN) to the (KN)z, v terms has to vanish in
the limit of vanishing pion mass, and is predicted
to be of the order m„'/m»'. Furthermore, the
(»Z)~, , o terms also vanish for m„-0, and thus
they ar'e also predicted to be small in the (3, 3)
@ (3, 3). These experimentally testable predictions
follow in the (3, 3)$ (3, 3), since in that model the
a "A„' are pure octet and vanish as m „-0.

The situation is quite different in the (8, 8)
scheme. In this model 8"A.„" has, in addition to
the small octet parts, terms transforming as 10
and 10 representations under SU(3) (which are pro-
jected out in the matrix elements (A~8 "A„"~w)).
These terms will in general contribute to matrix
elements of [Q„', a~A„"]. In fact, in actual calcula-
tions" the contribution from the octet part of 8 "A„"
is frequently just a small correction to that from
its 10 and 10 parts. Thus, for example, not only
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are the (»N) and (wZ), , o terms nonvanishing as
m„-0 in the (8, 8), but, also, the (vZ), , o terms
are found to be large in magnitude in such a limit. "

A study of the vacuum expectation value

brings out yet another aspect. The conventional
and appealing ideas of SU(3) for the states (in par-
ticular for the vacuum) and Goldstone symmetry
breaking are also fulfilled in the (8, 8) scheme.
Namely, for o„(3) a saturation by the pion state
should be correct according to the Goldstone nature
of the symmetry breaking. This then projects out
once again the octet parts of 9"A', and hence o„(3)
should be small. We can also saturate
&nl[q„', a~~„]in) md &nl[@„',a&A'„]ln) by K and q
states, respectively, and express all (S~"~)„in
terms of the above axial 0 terms. In agreement
with SU(3) symmetry for the vacuum state, expres-
sions for ([Sg~]„)„and ([SP],)„are found to van-
ish in the SU(3) limit for f„/f, and f„/f, . Thus the
conventional ideas on Goldstone symmetry break-
ing and the SU(3) symmetry of the vacuum hold in
the (8, 8) model.

As a final comment we note that it is possible to
define a small parameter corresponding to m, '/
m~', which may be used to do perturbation-theory
calculations in the (8, 8) model. We may write K'
as

e 2i9Q-7g H e2i8ov
l1 1 hs=p

= e,[Sg"—2v3 (1 ——,sin'8)d, „&S»

—3 sin'8d, 8Sgs]. (4.1)

The current divergences may now be evaluated
from Eq. (4.1) in the standard fashion. By project-
ing the octet parts of the current divergences using
Eq. (2.7) we obtain

[8 'A,"I, = 9e, 8 in* ii (tP
' —~ il „ii"),

[ai'A~»], =9m, cos'8 (P

(4.2)

(4.3)

proposed by Oakes. '4
The nonconservation of strangeness in the weak

interactions can be thought of as arising from a
rotation of the strangeness-conserving weak cur-
rent through an angle 2g about the 7th direction in
SU(3) space. Moreover, it is an appealing idea
that in the limit of vanishing pion mass the Cabibbo
angle should vanish. Oakes proposed to link the
two effects by demanding that the strong-interac-
tion Hamiltonian for m, W 0 be obtained by rotating
the Hamiltonian with SU(2) SU(2) symmetry by
an angle 28 about the 7th axis in SU(3) space and

imposing strangness conservation on the result.
Carrying out this rotation one obtains from Eq.
(3.5) (with c= -W2)

3C = E'iHi+ f2H2

= ~,(S," 2&3 d, „,s,")
+ q, (v 2 Sg" + v 6 d, „8S»~),

with

Ei = 3 (1 —i/2 C)EO i

e, = —,'(c+W2)e„

(3.5)

(3.6)

IV. CONNECTION BETWEEN THE PION MASS

AND THE CABIBBO ANGLE

We now consider in the (8, 8) scheme the possible
connection between m, and the Cabibbo angle 6

and e, and c defined as in Eqs. (2.15) and (2.16).
In Eq. (3.5) the term e,H, does not give rise to an

octet part of 9 "A.„', and thus c,=0 would yield
m, =0. The second term is responsible for the
pion mass and tends to zero as m, -0. Thus e,

The ratio e,/e, may be conveniently used
to do perturbation theory around the limit m, =0.
To establish the analogy with the (3, 3)63 (3, 3) mod-
el we remind the reader of the possibility of writ-
ing X' in that model as

K'= 3(W2+c)(W2 u, +u, )+ —,'(1 —&2c)(u, —v2 u ) .
(3 7)

(nla~A„' ii) f,m, '
(Qla "A„K) f„m„'

sin'8 (n d'" a)
cos'8 (Q d'» K) (4.5)

Thus, in the SU(3) limit for (Ql(P'lv)/(Ql(P»lK) we
have

f.
f» m»

For f,/f» 1 we obtain- —

sin 6 = 0.28,

and for f,/f» = (1.28) ' we obtain

sin 6= 0.21 .

(4.6)

(4.7)

(4.8)

The most recently reported value of sin8 is 0.24.
Before concluding this section, note also that

the tadpole term -SE'p sin'6) d, ~&S~ in general con-
tributes to the electromagnetic mass difference.

[8"A„"],=3e,[(4 —3 sin'8)(P'- l3 sin'86"], (4.4)

which are once again identical to the corresponding
expressions for the current divergences in the
(3, 3)$ (3, 3) model if we make the replacement 5'"
- v". From Eqs. (4.2) and (4.3) we have
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m gp —mK+ = m mg+ sin 82 2 2 2 ' 2n (4.9)

For example, its contribution to the (bi= 1) K',
K' mass difference is

which is the same as in the (3, 3)(S (3, 3) model
If desired, the tadpole contribution to the baryon
masses may also be evaluated.

V. THE DECAY @~3m

Since the Hamiltonian in Eq. (4.1) contains a term d, „~Sg, there is now an additional isospin-breaking
contribution from the strong interactions. Thus, for example, the g- 3m amplitudes no longer vanish in
the soft-pion limit. We discuss this decay following the techniques of Refs. 4 and 13-15.

For )I- w'm w', using partial conservation of the axial-vector current (PCAC), we obtain

lim (w' w v'I&a + HsM IV) = lim [M (E, , q, ; E, q '; E„q,')]

{3EOSill 8)(v'w'i[q„'"', d „BSp]i')l)

=—(SE„sin'3}(T~S)(lr Ir l( PS+ (S)l )0 (5.1)

where HE„, as usual, does not contribute to the decay in the soft-pion limit. "
Due to Bose symmetry for the pions and the s-wave form of the space-wave functions, the isospin of the

final v'w' state in Eq. (5.1) is I = 2. On the other hand, S~("")', which contains terms with SU(3) tensorial
characters 8810610, does not have I= 2 parts. Thus in the soft-pion limits in the charged-pion momenta
the decay amplitude g-m'w m' is zero:

lim M(E„q, ;E,q; E„q, ) =0.
e&&a ~p

Precisely the same result obtains in the (3, 3)$ (3, 3) model. However, in that scheme the commutator in
Eq. (5.1) is identically zero, in contrast to the above (8, 8) scheme in which the matrix elements in Eq.
(5.1) are zero.

In the limit q„,p-0 we have

M(2m „,q, ,' ~zm„, q;0, 0) = (3c sin )8( 'vw ii(S'„'+S„)iq),
7t

(5.3)

which is not zero.
If we reduce out the pions in Eq. (5.3) and assume that the o terms do not contribute, the q'-dependent

terms drop out and we have

lim (M(—,'m„, q, '; &m„, q ';0, 0)]=, (3e, sin'8)(Q~S4„'+S„"iq).
(f 7( + ~ P D g 7f

~ ~P 3(

(5.4)

Using Eq. (4.4) to express (QiS'„'+S~~ig) in terms
of matrix elements of the divergence of the axial-
vector current we have

2

33(0, 0;0, 0;0, 0) =( ',
)

' ' ",",' (33((O~S;],(0)

(5.5)

on noting (Qid" ig)=0. In the (3, 3)$ (3, 3) model
one obtains the same result after using (Qiv, i)7)=0
and (Q l vol)7) = o

In a recent review of the g-Sn problem it has
been shown by Mohapatra" that conditions (5.2)
and (5.3) and the neglect of o terms are sufficient

a=0,
2 m. '8= ——A+2C

mn mn
'

(5.7a)

(5.7b)

to ensure that the experimentally observed slope
in the Dalitz plot of the g-3m decay spectrum be
reproduced. On expanding the matrix element as

M(E, , q, 2; E,q; Eo, qD )

=&+BE o+ C(q +q ')+DqD,

(5.6)

the conditions (5.2) and (5.3) and the neglect of o
terms give
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with

C=0 (5.8a)

A=M(0, 0; 0, 0;0, 0) .
Then

(5.8b)

M(Z, , q, ';Z, ,q ';Z„q, ')=M(0)(l — .
' ),

(5.9)

of the weak and electromagnetic interactions when
the symmetry-breaking parameters in the strong-
interaction Hamiltonian are as given in the model
of Oakes. '

To recapitulate, we note that the leading weak-
interaction correction to the strong processes
consists of adding a further symmetry-breaking
term QI~ to the original breaking, and it is of the
form

with the slope -2/m„. The decay rate is given
by14 t 15

5H - aA'([q', 6 "Z„'~]+[q",e~J„']], (6.1)

r(q-E'7) w') = ~M(0)~'

= 0.81 keV. (5.10)

I (q- sw')

r(q- m'~-w') (5.11)

Also, a straightforward calculation shows that

where A is a cutoff.
On the other hand, the leading electromagnetic

correction 5HEM [which cannot be readily calcu-
lated by a formula analogous to (6.1), as model-
dependent terms would have to be included in this
calculation] is expected to be a U-spin singlet.
Requiring the cancellation of the leading weak and
electromagnetic divergences, i.e.,

The experimental values" are

r()I-~'w-w') =O.63keV
~&w + &&sM (6.2)

r()I- sw')

r(q- )T'~-w')

VI. NONCANCELLATION OF THE LEADING

DIVERGENCES IN WEAK AND

ELECTROMAGNETIC INTERACTIONS

In Refs. 5-7 it has been pointed out that in the
(3,3) 8 (3, 3) model an interesting cancellation
mechanism occurs between the leading divergences

and using the U-spin singlet nature of 5HEM, leads
to an equation for the Cabibbo angle 6). This equa-
tion is identically satisfied in the (3, 3)$ (3, 3)
model when the symmetry-breaking parameters
in the strong-interaction Hamiltonian are as sug-
gested by Oakes. '

Ne now show that this cancellation mechanism
cannot occur in the (8, 8) model. In order to see
this it suffices to consider the parity-conserving
part of the leading weak correction eH~ [Eq. (6.1)]
in the (8, 8) scheme. We have

5H -2GA' -p(S" +S"+2S")—cr(S44+S55+S"+S")+ —sin'8 -S"—S"+S"+S"— S" cos'8

--,' (7+Wsz)(S~z+S", ) -&saS8) -(W37+z)S",

(6.3)

where

p= (1+z),2B (6.4)
3 (6.7)

B
(y= (-—,+z),

g5

7.=~ (-,'+z),

(6.5)

(6.6)

with H and z as in Eqs. (2.5) and (2.6). If Eq. (6.2)
holds we can then use the U-spin property of the
electromagnetic current to obtain
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(6.6)

since Q, is a generator of U-spin rotations. How-
ever, Eqs. (6.3), (6.8), and (6.4)-(6.V) then would

imply

. conclude that the compensation mechanism between
the leading divergences of the weak and electro-
magnetic interactions proposed earlier' ' cannot
occur in the (8, 8) model.

cos'8(—', +z) = sin'8(-,—'+z)+ —,' sin'8,

cos'8(—', +z) = sin'8( —,' + z) ——,' sin'8,

(6.9)
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