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Using SU(2) x SU(2) current algebra and pion-pole dominance, we derive from the Ward
identities an exact crossing-symmetric expression for the m~ scattering amplitude. We make
approximations which are suitable at low energy for those three- and four-point functions of
the problem which cannot be determined from the constraints of current algebra. We para-
metrize these functions in terms of propagators and polynomials exhibiting the correct anal-
yticity properties. Form factors, analytic in the cut plane, are expressed in effective-
range form, and the s- and p-wave amplitudes are constructed in terms of them. The exis-
tence of resonances in the m~ system is not assumed, and soft-pion estimates are not used.
Instead all the parameters are free to be varied. We determine all the free parameters of
the problem self-consistently by imposing the constraints that follow from elastic unitarity.
The scheme predicts all the features of low-energy arm scattering, the only input parameters
being m„and E, the pion mass and decay constant. Among our principal results are the
s- and p-wave scattering lengths, the corresponding phase shifts, and the determination of
an important parameter which measures the isospin T = 2 component of the 0 commutator,
cr' . The details of the method predispose scattering lengths to be small. We find that
unitarity prefers the T = 2 component of o'~ to be small relative to the T= 0 component.
As a consequence, our scattering lengths are in excellent. agreement with those obtained by
Weinberg. The T = J= 1 phase shift exhibits a p resonance around 915 MeV with a width of
210 MeV. The T = 2, J= 0 phase shift is small and in agreement with experimental results.
The T = J= 0 phase shift displays acceptable behavior at low energy; we offer physical argu-
ments to say that its higher-energy behavior is less reliable than that of the p wave at the
same energies. We discuss our results and analyze the predictive power of the method
presented. Finally, we suggest some improvements on our calculations, including possible
applications to related problems.

I. INTRODUCTION

For more than a decade, the problem of deter-
mining the amplitude for mn scattering has pre-
sented a challenge for theoretical physics to solve.
In the absence of a fully developed theory of had-
rons, an ultimate solution continues to be an over-
ly ambitious goal. Many approaches to an approxi-
mate solution have evolved, and contributed to the
unfolding of several features of the problem. The

principles of S-matrix theory (including Lorentz
invariance, analyticity, unitarity, and crossing
symmetry) are cornerstones of hadron dynamics'
and have long been advocated as the means by
which a self-consistent solution to the mg problem
may be found. If hadronic theory is to include, in
addition, the content of the algebra of vector and
axial-vector currents, ~ then any treatments based
purely on 9-matrix theory are to be viewed as part
of the prehistory of the problem. The low-energy



PION-PION SCATTERING BASED ON. . .

pion scattering theorems' predicted on the basis
of partial conservation of axial-vector current
(PCAC) and current algebra are results which pure
S-matrix theory is at a loss to confirm. On the
other hand, to base the formulation of wm dynamics
jointly on current algebra and on $-matrix methods
would be to prescribe a scheme more powerful
than either is separately. An approach of this kind
has recently been adopted by Schnitzer4; our ob-
jective in this work is to provide a thorough analy-
sis of a similar method.

The hard-pion techniques of Schnitzer and Wein-
berg' provide the basic sort of framework for this
analysis. In this approach the constraints on the
off-shell amplitudes which follow from equal-time
current algebra are summarized in a collection of
Ward identities. These authors studied the three-
point functions of the A, pz system and solved for
the mass-shell amplitudes in meson-pole-domi-
nated (tree) form. The procedure was extended to
four-point functions by Gerstein and Schnitzer. '

The system of Ward identities also admits the
application of methods for extending the hard-pion
analysis of three-point functions beyond the ap-
proximation of pole dominance in the squared mo-
mentum-transfer variable t. The technique' treats
the cut-plane analyticity of the form factor f(t)
and the propagator &(t), and has been applied to
the A, pz system' a,nd to the A,om system. " The
scheme of Ward identities, augmented by the
smoothness approximation, ' leads to an expression
in which Imf ' is a known function for 4m, ' ~ t
~ 16m„' (the ww region). If f(0) is given, then an
effective-range solution results in which f and &

are analytic functions with the mm cut. The phase
of f gives the corresponding vv phase shift in this
interval and the resulting partial-wave amplitude
T(t) is unitary there. As a method for calculating
T(t), the procedure is incomplete. The partial
wave is given by an effective-range formula with
one parameter, an effective range, which must be
regarded as input. Moreover, the implications of
crossing symmetry for the full m amplitude T(s, t)
are no't maintained in that, as an effective-range
result, T(t) has no left-hand cuts. Thus the s- and
p-wave amplitudes obtained in this way from the
three-point functions are provisional results, and
to go beyond them we must turn to an analysis of
the four -point functions.

When the Ward-identity procedure for the four-
point functions of the gn problem is carried out, ' a
crohsing-symmetric amplitude for T(s, t) results,
involving the form factors (f's) and propagators
(&'s) as functions of each of the channel variables
s, t, and u. The partial waves T(s) are projected
and the objective is to impose the unitarity con-
straints,

ImT(s) = p(s) ( T(s) (,
Im f(s) = p(s) f*(s)T(s),
lm&(s) = p(s) If(s) ~',

valid in the vv region (p is the vm phase-space fac-
tor). These amount to constraints on the. parame-
ters which include the effective ranges of the three-
point function problem. The unitarity constraints
can be satisfied only approximately. A thorough
evaluation of the solution of this problem is pre-
sented. It is evident that this approach permits a
self-consistent determination of all the parameters
which, at the level of the three-point functions,
had to be among the input. Thus, to advance to the
level of the four-point functions and impose uni-
tarity is to achieve a closure of the parametriza-
tion of the ww problem. Of course, the only phase
shifts which can be obtained in this way are those
whose quantum numbers correspond to local opera-
tors which have been explicitly introduced in the
theory. For our purposes these are the s- and P-
wave phase shifts.

The results also include the other features of in-
terest in the low-energy mn problem. In particular
the method yields the pion electromagnetic form
factor and the pion-to-pion matrix element of the
o commutatox'. The latter operator is of consider-
able concern to us. For complete generality we
permit it to have both isospin-0 and -2 components.
There is a parameter in the formalism which
serves to give a measure of the isospin-2 part.
It is remarkable that the unitarity constraints force
this parameter to correspond to an isoscalar-
dominant 0 commutator. As a consequence, scat-
tering lengths like those obtained by Weinberg' are
among the results. It should be noted in advance
that, as in Ref. 4, the method does not allow for
strong left cuts of the partial waves and therefore
is predisposed to give small scattering lengths.

We emphasize that, while the procedure is based
in part on analyticity and unitarity, it does not em-
ploy partial-wave dispersion relations. The Ward
identities themselves provide relations among anal-
ytic functions and permit us to implement analy-
ticity locally rather than over the whole cut plane.
The program is one of imposing, simultaneously,
the constraints of current algebra and of unitarity
along lines of the sort recently advanced by Schnit-
zer.4 The program is thoroughly analyzed to es-

.tablish the extent of its predictive power. We de-
part from Schnitzer in several instances, especi-
a1.ly in the treatment of quantities related to the o
commutator. No assumptions are made about the
occurrence of p or o resonances in the wz system;
these are to be in the output of the problem, in all
three channels symmetrically, if the scheme pre-
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diets them. No use is made of low-energy results
as input data. The only input parameters are m,
and I', the pion mass and decay constant.

In Sec. II the techniques of bard-pion current al-
gebra are used to formulate the mm problem. The
most laborious details of the construction have
been relegated to the appendixes. A smoothness
hypothesis is employed and the s- and p-wave am-

plitudes are projected. The form taken by the uni-
tarity relation is given. In Sec. III we show how
the constraints of analyticity and elastic unitarity
are used to determine all the parameters of the
problem in a self-consistent way. In Sec. 1V we
present our results and in See. V we conclude with
some observations and possible future applications
of the scheme presented.

II. mm AMPLITUDE AND UNITARITY

The hard-pion methods of Refs. 5, 6, and 12 provide the techniques which we utilize to obtain our start-
ing point. The structure of the current-algebra amplitude for the process v, (q, }+eb(q, )- m, (q, ) + v«(q, ) has
been developed in Appendix B wherein we have derived the Ward identities for the four-point functions of
the axial-vector currents. The exact crossing-symmetric expression for the mm scattering amplitude on
the mass-shell is given by Eg. (B6}when we take q = -m, 2 (i =1 to 4}:

F, T""(S,t) =(q,pqb„qbqq«, Tq~qc(qbi qx~ qa)]c;b=-,b

-(2E,'f"' (s)+b"'"(s)+E,'( ,'l, —m, '—+2s)6„6~+&~,e~,(u —t)(E,'E(s) —c[tb»(s) —C„]))
-(2F 'f"bd(t)+4"'«(t)+E2( —,'l2-m b2+t)6„6 bde+„,e b(dcu-s)(F„E(t) —4[&»(t) -C»])}
-(2E„f2~"( )u&+~~( )uE+„(—b', l, —m, '+ 2u)6~6„+a~,e,bc(s —t) (EcbE(u) —c[&»(u) -C»] j}.

(1)

All quantities appearing in (1) have been defined in the appendixes. In summary: T' ~(s, t) is the on-shell
mm amplitude; T'„~„'f,(qb, q„q2) is the part of the four-point function of axial-vector currents which is free of
vacuum contributions and of pion poles in the mass variables q«2; f~~(s) and 4' '«(s) are the form factor
and propagator of the c commutator (in the notation of Ref. 11); E(s}and h»(s) are the form factor and
propagator of the vector current (in the notation of Ref. 'I); C» = 4»(0). The o commutator, defined by

o (0)6(x) = [A.;(x), S, A'„(0)]6(x,), (2a)

has in general both isoscalar (T=0) and isotensor (T=2) components. Therefore, its pion-to-pion matrix
element has two form factors fr(s), T=O and 2; correspondingly, there are two propagators hr(s}, T=O
and 2. The important parameter l, appears in the coupling of the operator c"'(0) to the pion:

o"'(0)6(x) = —[A;(x), a "(0)]6(x,),
(2(u,)'" {s(qe)[o'"(0)(0)=E„P l„P,.„,

T =0,2

in which P is the isospin projection operator. The parameters E, and l, satisfy"

(2b)

(2c)

2lo —512 = 6m, 2 . (2d)

1 serves as a measure of the isospin-2 part of c". Thus it also provides a measure of the departure of
the calculated scattering lengths from those obtained by Weinberg. b An important feature of this project is
that l, is determinable as a result of applying the unitarity constraints.

Our knowledge of the quantity T'„'g (qb; q„qm} is quite limited. To proceed we adopt a smoothness hypoth-
esis analogous to that of Ref. 5 in order to express it in terms of propagator functions and appropriately
parametr ized coupling polynomials. This is the following ansatz:

T'„'g, (qb' qx q2) =&"„a(qi)&ce(q2)t gg(q. )&".„(q,)Ta'ee„(q.; q„qb), (»)
where

A

aeeq(qbi %~ q2) cbc~dccraey( ques qm)+y6(ql+qb)reqd(qbt qd)

+r e"( q„q,)&""'(s)r-e,"(q„-q )+nob6~y ee

+~dec dbcraey( q1~ qb}+yb(q. —q3)ralph( q27 'qc)

+rae«(-q Mb}A ' (t)re~q ( q q )+6o 6bdy eel

+&cdc&bccraqy ( qX~ qd)+yb(qX q4}reed(qb~ qb}

+r«n ( q~ qd}+ (u}res (q» qm}+6~6cby«ee
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In (Sb) the vertex factors I'TB and I'„"B'~ are constructed to be as smooth as possible in their momenta.
This is achieved by giving them minimal momentum dependence:

(3c}

(3d)

A ~aey( qlt q2} Y16aB(q2 'ql)y +
Y2[6ny (q2 + 'ql)B 6By ('q2+ ql)n]+Ys(6ny'q2B 6By qln} I

CA'I'aB"(-ql q2) =~
B Z &TP.2;; ~

T =0,2

The construction endows T„",~~ with the cuts which correspond to sigma and to vector propagation. Any
residual structure may be taken to be of polynomial form for the purposes of a low-energy analysis. Thus
the remaining terms of (Sb) with minimal momentum dependence are

CA ynBe 2=F2 I&l6nB6ee+q2(6ne6B2+~a26Be)l. (Se)

In these equations y, », pT (T =0, 2), and y}» are constants. The parametrization is the most general,
consistent with crossing symmetry. The constants which appear are among the set of parameters to be de-
termined by application of the unitarity constraints. It will be shown that these constraints relate the cou-
pling parameters of Eqs. (3) to the analogous constants appearing as coupling parameters in the three-
point functions.

The smoothness ansatz of Eqs. (3) for the four-point amplitude and of Eqs. (AV) and (A1V) for the three-
point amplitudes represents the major source of model dependence in this treatment of wm scattering. The
construction specifies the amplitudes to have the relevant cuts, and prescribes the discontinuities on the
cuts to be simply proportional to the discontinuities of less complex analytic functions, the propagators.
We note that, for the wv amplitude, Eqs. (1) and (3) imply a suppression of features which correspond to
double-spectral functions. This is certainly consistent with our viewpoint of implementing analyticity only
locally, and it limits the validity of the calculation to the low-energy region.

When we contract q,„, q,„, q»„and q4, into Eq. (Sa), use Eqs. (Sb)-(Se), and go to the pion mass shell,
we obtain

[q»q2„qe~qA, Tq,„,(q„q„q2)]2.2 2 = E22&E&28(t u)tlv(s)hl(s) + g hT(s)tlT (s)P22~+ 'E& 52AA (s t u)
T =0,2

+ E 6 (s —u)&„(t)h, (t) + p h (t)& (t)P„, +F„'5„6 " (t, s, u)
T =0,2

+e„,e„,(t s)4„-(u)h, (u)+ g hT(u)&T(u)P,"„,+F„25,„6„=(u,t, s),
T=0,2

(4)

where

l(s) = (-'r, 2s r„m.'-)',
hT(s) =rT2g(s}, T=0 and 2,

responding propagator functions hv(s) and &T(s),
respectively. The derivatiori of these equations has
been sketched in Appendix A; the Ward identities
are

:-(s, t, u) =y},g(s)+y}2[g(t)+g(u)],

g(s}= (2s —m„')',

y,2=y, -y2 and y,s=y, +y3.

and

fT(s)+IT=[1"T(s—2m, ') —1] A(Ts) /,F2

F(s) =[2E,' -C„, + (1+I's)tl - (s)] /2F„2 .

(6)

(6)

Expression (4) becomes part of the vv amplitude,
via Eq. (1). The polynomial growth which is ap-
parent in (4), particularly in the " terms, reminds
us again that our construction is not expected to
apply outside of the low-energy regime.

At this juncture the ws amplitude (1) has assumed
the form of a crossing-symmetric expression in-
volving form factors, propagators, and polynomi-
als. As such, it is a relationship among analytic
functions which exhibit all the low-lying cuts.
Furthermore, the form factors and propagators
themselves cari be related one to the other by ap-
plication of similar techniques. The Ward identi-
ties for the three-point functions give equations re-
lating the form factors F(s) and fT(s) to the cor-

If we rewrite (5) as

fT(S) + ET = I T(S —CET)+T(S)/E~

where

~z =2m + I'z

then (6) and (V) imply that we must have

E(-I' ) = 1 —C„/2F 2 = Fr
and

fT(RT) l T '

(V)

(8)

We can now realize an expression for T~~(s, t}
which is given entirely in terms of form factors or
in terms of propagators.
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The next step is to consider the requirements of
elastic unitarity. The unitarity constraints are
best implemented in terms of partial-wave ampli-
tudes. The mm scattering amplitude T" (s, t) can
be decomposed in partial waves as

T"' (s, t) = P (2l +1)exp(i 5»)
1.6mW

)r
x sin6, r P,(cos8)P„,~,

where 6» is the phase shift and W, k, and 0 are
related to the Mandelstam variables s, t, and u in
the c.m. frame:

s = -(q, + q, )'=W'=4(m„'+k'),

t = -(q, —q, )' = -2k'(1 —cos 8),

u = -(q, —q,)'=-2k'(1+cos8) .
The partial-wave amplitude T» is defined by

T,r = exp(i6») sin6»/p, ,

where p, is the phase-space factor. At low energy
only the s- and p-waves are important and for
these p, =k/16' and p, =k'/6'. The unitarity re-
lations in the elastic region (4m„' ~ s & 16m, ') are

for the form factors and propagators. Equations
(6) and ( t) then also imply that

Imfr = p.i'r(s - ctr) I fr I'/F, '

and

ImF = p, (1+rs) IFP/2F', '. (14)

%'e now proceed to construct the partial-wave
amplitudes T,~ and Tyy from the full amplitude
T"~(s, t) in (1). To do this we substitute (4) in Eq.
(1) and eliminate the propagators in favor of the
form factors utilizing Eqs. (6) and (7). When we
project the T=O and 2 s waves and the T=1 P
wave, we obtain

Tor =(frHr+4'r)/F~ and Tn = (EH, +4~)/F

(15)

where

kr —1Hr=, —2 and H, =21' +1.I'r (s —ur 1+1"s

The 4 functions in (15) contain the terms having
left-hand cuts and polynomials:

Co=I, +5I2 —J+ l,(HO+1)
ImT, r- pglT, rl

for the partial waves, and

Imfr = pof *Tor and 1m+ = pol fr I'

as well as

ImF = p, F*T„a.nd Imhr = p, I FI'

(10)

(12)

+(3q, +2q, )g(s) +-,'(q, +4q, )(s'+ —,'v'),

,'(2I, +I, + J-)+ l, (H2+1)

+2q.r(s) +8 (q, +q2)(s'+ 3 v'),

4', = g(2I(') —5I2 Z ) ~(% -q2)s,

in which v=4k' and

(16)

Ip ,'H, (t) [f,(t) +—l,]

J " (4m, ' —t —2s) [E(t) —F„]2H,(t) s+ E (4m, ' —3s)

Ir 3 to 2t 3Hr(t)[ fr(t)+ lr] 0
+g

J ' ' (4m —t —2s) [F(t) —Fr]2H~(t) 1+Fr(4H, —3)

If,H, +erl =H, r, (s cr)lf, I',— (18)

I FH, +@,I'= pH, (1+1's) IEI'. (19)

We can make Egs. (11)-(14), (18), and (19) con-

Note that we have converted the integration

f, dcos8 to the form (2/v)f dt using cos8=1
+ 2t/v.

It is straightforward at this point to impose the
unitarity constraint (10) on the partial waves in
(15), with the help of Egs. (13) and (14). We see
that over the elastic interval, 4m, ~ ~ s ~ 16m, ',
we must have

sistent in a neighborhood above threshold if we re-
quire that

Hr=I' (s —n ) and H, =-(1+I"s), (20)
and that each 4 function vanishes in a neighborhood
of threshold to some leading order in a power ser-
ies in v. The 4 functions of course still give the
left-hand cuts of the partial waves in (15) when
continued to s &0, as demanded by crossing. The
relations (20) tell us that several parameters in (4)
are now determined. These are py3 0 py2
and f~' = 41 ~'. Hard-pion physics thus establishes
the following forms for the partial waves:

T, =[I' (s -a )f +e ]/F, ' (21)
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r„=[2(1+I's)E+e, ]/E„'. (22)

Over the whole elastic interval, Eqs. (18) and (19)
now provide a unitarity relation of the form

il+ZrP =1,

mn cut. Following the method of Ref. 8 we can con-
struct effective-range solutions for the form fac-
tors having the. correct cut-plane analyticity. The
form factors so constructed must also satisfy Eqs.
(8) and (9).

To begin with, we shall express E and immedi-
ately make a simplifying observation:

Zr=%'r[I"r(s-nr)fr] ' (T=O and 2) (24) (& &
wu(1+ra)r(s)+4m, :*) (RS )

Z, = N, [(1+I's)E]-'.
Relation (23) constrains each Zr as shown in Fig.
1.

This completes the formal development of our
problem. The three lowest partial waves (21) and
(22) have been extracted from the crossing-sym-
metric amplitude (1), augmented by the smooth-
ness ansatz (3). The objective now is to determine
all the parameters introduced so far and all those
to follow by imposing unitarity (23) and by de-
manding the vanishing of the leading terms in the
expansions of each 4 function in (16). The form
factors in (24) and (25) are to be constructed to
satisfy (8), (9), (13), and (14). This is by no
means the unique solution. It is, however, the one
most consistent with the set of constraints (10)-
(14).

HI. PARAMETRIZATION

The unitarity equations (23) provide the key con-
straints which must be satisfied over' the whole
elastic interval (4m„'c s ~ 16m„'). In order to
utilize them, we first need explicit expressions
for the form factors fr and E. Equations (13) and
(14) imply that the imaginary parts of fr ' and E-'
are known functions in the elastic interval on the

where b is a constant and Y'(s) is the analytic func-
tlonp

1'(s) = —(v/s)"' In —pic, v~ 0.I,, Ws+ Wv

r 2m.

(26b)

When condition (8) is imposed on (26a), we obtain

(26c)

Let us now turn to an examination of the p-wave
unitarity equation of {23)with E(s) as given in (26).
We note that the terms in ( 1+Z, P growing fastest
with s are all accompanied by the factor I'. We
shall eliminate this rapid growth by setting I =0.
It follows from (26c) that Er =0, i.e., that C„
=2E„'. We hasten to point out that this is not a
derivRtlon of the Kawarabaya8hi-Suzukl-Riazuddin-
Fayyazuddin (KSRF} relation's but rather a reflec-
tion of the fact that the p-wave unitarity relation
of (23}favors a value of I" close to zero. Our
choice I' =0 is a welcome simplification in that it
reduces the number of unknown constants in our
problem and, of course, it is also a parametriza-
tion of the propagator 4~ which has been widely
employed. We note that if F =0, then the Schnitz-
er-Weinberg parameter 6 = -1 (see Appendix A).
Phenomenologically, this is not the optimum
choice" for the value of 6; nevertheless, it does
provide p and A., decay parameters'which are not
unsatisfactory. From the point of view of dynam-
ics, we are incbned to believe that departures
from I' = 0 are to be understood only in the con-
text of multichannel inelastic unitarity. Once the
choice I'=0 is made, Eq. (25) becomes

Z, = 2e,/E, (25')

FIG. 1. Argand representation of the unitaritJJ rela-
tion (1+Zr)t = 1. The complex function 1+Zr should
lie on the unit circle as shown. Note that at threshold
Z~= 0.

and Eqs. (16) and (1V) are rewritten in their final
form,

y, =I,+5I, —J+ l,i', (s -2m, ')+(3q, +2',)g(s)
+ 8 (n&+4@&)(s'+ 3 v')

y, =-,'(2I, +I, + J')+lsr, (s -2m, ')+2tl, g(s) (2V)

+ s(q, +n.)(s'+4 v')

+, = s(2I,'-5I,'- J') -s(q, -g,)s,
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where

(28)

In the previous section it was shown that our
scheme for satisfying elastic unitarity included the
requirement that, when each + function is expand-
ed in powers of v, the leading terms in each ex-
pansion should vanish. We shall require that each
4 vanish to O(v). Near thresholdv , is small and,
in the integrals in (28), the integrands are to be
evaluated for t close to zero. We therefore can
use a linear parametrization of fT(t) and E(t) under
the integrals in (28) for small v. From soft-pion
estimates" we expect the values of np and o,, to be
small also. (Reference 11 supplies the estimate
I'T ' = -2m, 2 implying nT =0.) Thus we paramet-
rize our form factors linearly for v near thresh-
old as follows:

F(t)=1+tF' and f (t)=-l +{t—n )f '. (29)

Note that fT(t) in (29) conforms to Eq. (9) and that
the constant E' in (29) is related to 5 in (26}.
There is now a total of eight parameters free to be
varied; these are 1, n„n„q„Tt„ fo', f, ', and
E'. Our requirement that each 4 vanish to O(v)
provides six constraints among these eight un-
knowns, so that two parameters remain free. We
take these to be o.p and z, . All the others are
given in terms of these as follows:

f, ' =3m„'(12m, ' -4n, - 5n, )

x((n, —n, ) [3(4n, +3n, +6m, ')

+4m„(5I', +4I' )]j ',
', [n,n, —2m, '(n, +n, )],5m,

E = f, (r,n,'- r,n, ')/12m, '--'.f,'(I', —I',),
q, =f '[5no+n2-20m (I'0 —1",)]/15m, ,

712 ——fo'[5no+Vn2+ 20m, '(I', —I',)]/30m„',
2
5 p p

in which we recall that I', , = (no 2
—2m, ') ' and

that 2 lp 5 lg 6m, '. The parameter space z, vs
np is shown in Fig. 2. All of the six parameters in
(30}assume a wide range of values as we vary no
and a, . We have displayed this by plotting the
curves E'=0 and ~, lp=0, and l, =0.

To determine the values of ep and n, we finally

and

rs(s -s„)[r(s)—r(s„)])-'
16~x„'

( ) 1 5
vvt'(s)+4m '

48T['E

(31)

(32)

where

r Tn[Tr(0) —I'(nT)]
pT 16 F 2

—(nTfT /LT) (LT+nTfT }nE.
and

5 = -E' —(62F,)-2.

Equation (31) appears to be more involved than an
effective-range expression ought to be. Actually

FIG. 2. Parameter space (o.o, 0.2) . The plotted curves
indicate vvherelo-= 0, l2= 0, andP'= 0 and ~.

I

appeal to the unitarity constraints (23). The ef-
fective-range constructions of the form factors fT
and E needed in (23) should conform to Eqs. (29).
We express our analytic form factors as

fs(s) = {-( '[(s+(s ss)fs']+P,-((-sls, )'
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its form has been contrived to satisfy the addition-
al requirement that f~(0) in (81) should match fr(0)
in (29). In doing this we ensure a smooth transi-
tion between the linearimed form (29) for imple-
menting the conditions on the 0 's and the analytic
form (81) for implementing the unitarity condition
over the elastic interval. Expressions (81}and

(32) go into (24) and (25'), and the constraints list-
ed in Eqs. (80) are incorporated. A search over
the parameter space of Fig. 2 is then to be con-
ducted to find values of n, and a, such that Egs.
(23) are satisfied to optimum accuracy. It is clear
that by this. procedure we can only satisfy the elas-
tic unitarity constraints approximately. Once the
parameter search i.s completed then we may re-
gard the crossing-symmetric expression (1) as an
amplitude determined from a self-consistent dy-
namical method adequate for a description of low-
energy mr scattering.

IV. RESULTS

Our parameter search to determine ao and +2
has bvo phases. The first is a survey and con-
sists of calculating each of the quantities ) 1+Zr P
in the elastic interval (4m„' ~ s ~ 16m,') for a
wide range of points in the parameter space
(ao, am). We immediately notice that the departure
of [I+Zr p from unity over the whole elastic in-
tex'val is small only for points in a neighborhood of
the line where E'=0 (see Fig. 2). The selection of
acceptable values of e, and a, is further narrowed
down when we implement an important constraint
imposed by analyticity. We note that form factors
fr (t) and F{t) given by Eqs. (31) and (32) can have
yo'kes on the negative t axis and the positions of
these poles move as we vary the parameters ~0
and e,. These poles of course are physically in-
valid; they may arise only when the effective-
range expressions for the form factors are used
far outside of their domain of validity. Thus the
parameters must be such that the poles can only
occur at locations far removed from this domain.
We note that as we increase v the integration in-
terval [-v, 0] in (28) extends increasingly to nega-
tive values of f,. This situation is illustrated in

Fig. 3. A logarithmic branch point can develop in
the 4 functions for positive v if the offending poles
are not kept far enough to the left on the I; axis.
We observe that, for those values of eo and a~ for
which E' is not sufficiently positive, there are poles
of f,(t} and E(t}which move to the right on the neg-
ative g axis and intervene in the integrations from
which the + functions are obtained. This undesir-
able situation can be avoided if we bound E' from
below. We adopt this provision and further reject
those values of a, and a, for which [ 1+Zr P ~ 1.25

elastic cut

I -plane

remote

pole
w F KF

region ot
integration

FIG. 3. v plane andi plane. For given v on the elastic
cut, the range of integration in t from -Eq. (28) is shown.
The form factor pole at must be kept remotely to the
left of the point t = -v as v is increased.

anywhere in the elastic interval. The second phase
of oux' parameter seRrch consists of CRlculRtlng the
areas under the quantities ) 1+Zr p over [4m,',
16m,'] for those values of a, and o., obtained in
the first phase. We then select those parameters
which minimize the areas under consideration.
The best fit to (23}by this procedure is obtained
for parameters (n„a,) in the region {aom, ',
a,m, ') = (1.0V, 1.5V) to (1.12, 1.52). We find that
the intermediate point (aom„m, u~m 2) = (1.10,
1.54) is the most suitable choice. In Fig. 4 we plot
) I+Zr P over the elastic interval (4m ' ~ s ~ 16~,')
for each of the three isospin channels T = 0, 1,2.
In each case the broken curves correspond to the
extreme values of (n,m„', u, m„'}=(1.0V, 1.5V)

and {1.12 and 1.52); the solid curve corresponds
to the ideal choice (1.10, 1.54}. For the T =0 plot,
the broken curves corresponding to the extreme
values of (u,m„', n, m, '}almost coincide and
therefore only one broken curve is shown in Fig.
(4a). We consider it remarkable that unitarity
should select such a small region of the (a„o.,}
space and thereby determine our paxametrization
of the xw amplitude so unambiguously.

We take o.0=1.10m,~ and a, =1.54m, ' to be the
values determined in our parameter search and we
now proceed to outline the features of our results



for this particula~ ca«. We find from Eq. (30)
that the slopes of the form factors fr and F as-
suQ1e the VRlues

fo' = -0.05V,

fs'= -0.023,

E' =0.022m

The coupling parRIQeter8 'g j Rnd 'g2 Rx'e

q~ =0,054m~ and q~ = -0.073.~„
%'e can highlight oux results by focusing on the
scattering lengths and drawing a comparison with
UM soft-ploD VRlues. If vie define the scRttex'lng
lengths a» by

l.2-
l. l

l.0—

0.9

0.8-

&ir '=(u""cot6ir).=o

Then from Eqs. (21) and (22) we have

Fr(4m, ' —nr) fr(4m, 2)

32gm, Z,'

E(4m„s)
~lj. 24+~ @ 3 '

numerical x'esults are
6.69, 1'=0

32mI"

a„= 24, (1.10) .

These flndlngs Rl'e ln excellent agreement %'1th

those obtained by Weinberg';

7,, 7=0
gf flan g
02' 32+y 3

(34)

I.I

l.0

09
0.8-

8 8
(b)

0.9

0.8-

I+ Z2
l.2 ~

l0 f 2 l4 le

From the outset we have dealt with R o comxnuta-
tor o' which has both 7=0 Rnd T =2 components;
results (36) were obtained for v'~ isoscalar. Thus
the distinguishing feature of the outcome of our
analysis is the result we obtain for l„ the param-
eter which serves Rs a measure of the T =2 com-
ponent of 0~. %'e get

Es=-0.48m a so that lo=1.80m, . (3V)

Oux' conclusion ls that unltax'lty selects 0' to be
dominantly isoscalar; if this wex'e not so we would
have no reason to expect the agreement we get be-
tween (35) and (36). Note that unitarity has select-
ed zo Rnd +~ to be in R region near the curve on
which /, =0 (see Fig. 2).

The s- Rnd p-wave phase shifts can be calculated
directly from the partial-wave amplitudes (21) and
(22). These equations imply that

tan50r = lm fr [Refr +4 r/I'r (s —nr)] '

FIG. 4. (1+ZrItvs sm„t over the elastic interval:
(a) 8 wave T= 0, P&) s wave 7= 2, and (c}p @ave X= 1.
In each case the solid curve corresponds to (G.on&~ 2,
0,2m„2) = I'1.10, 1.54), and the broken curves to the ex-
treme values I'1.07, 1.57) and (1.12, 1.52), The direction
of' the arrow indicates how the unitarity fit changes as
we vary (mom~ 2, u2m, 2) in the direction from (1.07, ,

1.57) to (1.12, 1.52).

u

gee have computed the g- Rnd p-wave phase shifts
mell beyond the four-pion threshold for c.m. ener-
gy close. to 1 BeV. In Fig. 5 we have plotted the
phase shifts in bands. The broken curves corre-
spond to the phase shifts for-the extreme values of
(n, m„', n, m, '): (1.07, 1.5V) and (1.12, 1.52), and
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FIG. 5. Phase shifts: (a) the s waves, (b) the p wave.

the solid curve for the ideal value (1.10, 1.54). The
P-wave phase shift in Fig. 5(b) shows a broad p
resonance with an~ = 915 MeV and I' = 210 MeV.
The s-wave T = 0 phase shift, 600, in Fig. 5(a)
rises slowly to about 20' and then climbs very
sharply implying a very narrow v resonance with

m =865 MeV and I' =30 MeV. The present ex-
perimental situation for the T = J =0 gp phase shift
is not altogether clear. Experimental analyses
exist which favor either the down-up or up-down
solutions. ' The trend of our phase shift 5« is to
resemble the down-up solution although it rises
more sharply than the phenomenological data seem
to suggest. We shall return to a consideration of
these findings in our concluding section. The s-
wave T=2 pn phase shift, 602, is featureless and
exhibits a weak repulsive force in this channel.
This is in agreement with the present experiment-
al results. "

V. CONCLUSION

The basic goal of this investigation has been to
construct a low-energy am scattering amplitude that
satisfies the required properties of crossing sym-
metry, cut-plane analyticity, and elastic unitarity.
The approach toward such a construction originates
with the Ward identities for the three- and four-
point functions of the wg problem. These expres-
sions contain the dynamical content of current al-
gebra which enters via the equal-time current
commutation relations; the Ward identities provide
exact representations of the amplitudes under con-
sideration. The construction contains functions
such as E„„~(q,p), f~r&(q, p), and T„"„~~,(q„q„q,)
[see Egs. (A6), (A16), and (1)]which cannot be
specified by current algebra alone. These quan-
tities, however, enter only in forms in which they
are multiplied with appropriate momentum varia-
bles and therefore admit approximations for small
values of the momenta. The smoothness approxi-
mation is made wherein these functions are pa-
rametrized in terms of propagators and polynomi-
als having minimal momentum dependence. The
resulting amplitude is then limited in its validity.
to the low-energy regime. Unitarity provides the
additional constraints which we utilize to determine
the free parameters of the problem. We have been
able to satisfy elastic unitarity approximately for
the three partial waves which are important at low

energy. From the outset we have incorporated only
a minimal number of input data in the problem.
Thus-the predictive aspects of this scheme become
apparent once we have determined all the param-
eters by imposing the constraints of analyticity
and unitarity.

One of the most important of our conclusions is
that unitarity prefers the o commutator, o", to be
dominantly isoscalar. Evidence for this feature is
the small value we obtain for l„relative to I, [see
result (37)]. The: remarkably close agreement be-
tween our scattering lengths and thoseof Weinberg
is attributable to this. Weinberg's results were
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obtained under the assumption that o" is purely
isoscalar whereas we allow 0" to have a T =2 part
as well. A. Prion, confirmation of the Weinberg
scattering lengths need not have followed had I,
not been small.

%'hen we turn to our predictions for the phase
shifts, we are reminded that only elastic unitarity
has been invoked. Phenomenological phase shift
data do not exist below 600 MeV, so, in the inelas-
tic region where we can compare with data, we
must question the extent to which our extrapolated
phase shifts are reliable. Where data are avail-
able, the T= J =1 phase shift, 5», and the T=2,
J =0 phase shift, 5», are in qualitative agreement
with the experimental results. Our T= J=0 phase
shift, 6», does not rise above 20 in the elastic in-
terval; it then rises very sharply around 850 MeV.
This rapid increase is even faster than that of the
down-up phase shift solution for 6«. Our low-ener-
gy construction is expected to break down with in-
creasing energy. The rapid change in 6«has its
origin in polynomial growth, not in any physical ef-
fect that has been incorporated in our treatment of
the problem. It should be noted that, for the s-
waves, 4, and 4, [see Eq. (2V)] grow as s', while
for the p-wave, 4, grows as s. Thus, arithmeti-
cally, we cannot trust our s waves as far out in en-
ergy as we can our p wave. There is a far more
important physical consideration to add to this ar-
gument. Inelastic contributions to the unitarity re-
lation become appreciable with increasing energy.
The first two-particle effect to become important
would be the contribution from KK intermediate
states. Phase-space considerations tell us that 500
should be strongly influenced because the KK ef-
fect is in an s state; much less so is this the case
for 'Gay where the KK effect enters in a p state. Of
course, 6„ is unaffected by the opening of the KK
channel. We therefore consider our predicted T = J
=1 phase shift more reliable at higher energy than
that for T= J=O. The strong effect in the s wave
due to the presence of the KZ threshold around
980 MeV has also been reported" "experimental-
ly. The experimental analysis of Flatte et gl."
suggests that the opening of the KK channel is re-
sponsible for a rise in the phase shift 600 from 90
to about 180 between 900 and 990 MeV. We there-
fore do not believe that our calculation reliably
predicts happ to have a narrow o resonance; an anal-
ysis of this effect should await a calculation that in-
corporates inelastic channels, especially KK. In
the elastic interval, of course, we consider our
phase shifts as definite predictions. To confront
these results for 6~ with data, it appears that a
Pais-Treiman analysis" of K„decay" is neces-
sary. Qn the other hand, for the p wave, the argu-
ments presented above permit us to accept the

validity of our phase shift, 5», well into the in-
elastic region. This amounts to a prediction of
the p resonance in the T = J=1 channel with m~
=915 MeV and I =210 MeV. Readjustment of the

mass and width of the p to slightly lower values is
expected to follow if the KK effect could be included
in the calculation. Our T=2, J =0 phase shift 'Spy,

lacks any significant structure and is in reasonable
agreement with the experimental result. " We con-
sider it noteworthy that in the elastic interval our
phase shifts for all three partial waves agree quite
well with those of Brown and Goble." This is not
unexpected because theirs is a calculation based
on the unitarization of Weinberg's soft-pion nw

amplitude. '
It is clear from the discussion of our results

that some improvements on our calculation sug-
gest themselves. We recall from Fig. 4 that we
have been able to satisfy the elastic unitarity con-
straints of Eq. (23) within a departure which be-
comes as much as 20%. We could improve upon
this by means of a more extensive parametrization
in which I' is not ~en to be zero and the smooth-
ness approximation of Eq. (A17) for f&~&(q, p) con-
tains terms in addition to the one proportional to

This would result in an increased number of
free parameters in the problem and would allow us
to implement the vanishing of the 4 functions to
O(v~). It is clear that this would improve the
agreement with unitarity and extend the validity
of our calculation. Furthermore, the physics of
the problem demands that we ultimately incorpor-
ate the effects of inelastic channels such as KK to
enable reliable predictions to be made for the T
= J =0 phase shift in the inelastic region.

Finally, we turn to a consideration of problems
peripheral to the present work. One example de-
serving immediate attention is to investigate the
effect of ww scattering in the t channel of gN scat-
tering. The objective would be to examine the pos-
sibility that these effects modify the zN o term, as
evaluated by Cheng and Dashen. ~' The quantity in
question is the nucleon-to-nucleon matrix element
of o" in which only 0 ~=' plays a role; knowledge of
it from experimental wN data bears in an important
way on questions pertaining to the breaking of
chiral symmetry, ." The result of Cheng and Dash-
en suggests that the breaking of SU(2) x SU(2) and
the breaking of SU(3) are of comparable order.
Brown, Pardee, and Peccei" have examined the
mN amplitude on the pion mass-shell and confirmed
the findings of Cheng and Dashen. Reference 23
does not explicitly include features arising from
t-channel mm scattering, and Schnitzer" has pro-
posed a method for introducing them. Schnitzer's
analysis employs the results of his zw investiga-
tion. ~ It would appear that our treatment of the mm
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problem could be used for this purpose too. This
is unfortunately not the case. Our construction is
effectively constrained not to modify the zN cr

term. "'8 This is apparent if we refer to Eq. (5),
regarded as a function of t. The desired modifica-
tion factor, called for by Schnitzer, is just

E,' [f,(t) + t.]& '(t)

(in our notation), evaluated at the point t =2m, '.
In our treatment this result is -j., independent of
r, . To examine the question raised by Schnitzer,
a more extensive parametrization of ftr&(q, p)
would be necessary. This sort of modification has
already been suggested in the preceding paragraph
and should be carried out.

The generality of our technique suggests that it
could be employed to investigate a similar prob-
lem, namely Km scattering. We note that the t
channel of Km scattering includes the states nm and
KK. Thus a thorough treatment of Km scattering
would include in its analysis the resolution of
questions raised earlier about the effects of cou-
pling the mw and KK channels. Moreover, a study

of this process along the lines of the present for-
malism would provide a determination of quanti-
ties related to the matrix elements for K» decay;
thus this would provide a new solution to the K»
problem itself, a problem of great theoretical and
experimental interest. " Needless to say, Kz scat-
tering would be considerably more involved than
the present investigation of mm scattering.

APPENDIX A: THREE-POINT FUNCTIONS

The Ward identities for the family of four-point
functions of axial-vector currents contain the
three- and two-point functions which also enter the
problem. These quantities have been studied in
the earlier literature. '" In this appendix we shall
review those two-. and three-point functions of
primary interest to us and also show how the pa-
rameter I' of our text is related to the Schnitzer-
Weinberg' parameter 5, without making any refer-
ence to p-meson dominance of the vector current.

The three-point functions for the vector and
axial-vector currents of SU(2) xSU(2) are, in the
notation of Ref. 7,

Iyx"(q 0) = J dxdye "*"e'(0(yeede'(x)O„A„(y)V((0)IO),

IV'„'„'(q, y)= J dxdye "*"e"(0ITII„A„'(x)A,(y)V((0)!Il),

Iqe!x(qy)= f dxdye '"""(OITA (*-)A'„(y)V;(O)IO),

in which a, b, and c are isospin indices. The first of Eqs. (Al) for c=3 is related to the off-shell electro-
magnetic form factor of the pion. On shell, the pion form factor E(t) is defined by

(4(d, (dp)'~'(w(qa) [ V),(0) ( w(Pb) ) = -tE~, E(t)q„„
where Q = p + q and t = -(p —q}'. In terms of (Al}, we have

( (d,(d~)'"(w(qa) ) V),(0) [ w(pb)) = -E 'm, '[(m„'+ q')(m„'+ p')W),"(q,p)]~2,2 a,
where the pion decay constant, E, = 94 MeV, is defined by

(2(d )'"(0 ( &„A„'(0)( w(P b) &
= 5„E„m,' .

The spectral representations for the vector and axial-vector propagators are

(A2)

(A3)

dy e' " 0 TV'„y V'„0 0 = -i5„~"„k—C„5„,5

y 2

J(dxe '*(OITAe(x)A„(0)10)=—Iqe(de„(q)e " ""—(C ey, )qe II„),
where

k„k„

, ()

(A4)

and
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Cv, ~ = t'v, ~(0) .
(We assume pion-pole dominance for the spin-zero part of the axial-vector current from the outset. ) The
spectral functions p„and p„are related to {0)V„'(x)V'„(0) ( 0) and (0 ) A„'(x)A'„(0) ) 0) in the usual way.

The three-point functions in (Al) satisfy Ward identities which follow from the current commutation re-
lations. The Schwinger ter ms which appear in these are assumed to be c numbers throughout this paper.
Pion-pole dominance, already manifest in (A4), can be employed for the expressions 1n {Al) as weB. In
this way off-shell form factors are introduced. In the notation of Ref. 7, they are denoted by E~(q, p),
E,~(q, p), and E„,„(q,p), where, e.g.,

[~,(q, p)],.-; .„=1(t)~,.
The following exact relation was obtained in Ref. 7, with k =p —q:

2 2

+.'i+i(aP~ Qd=e„P.+p.-z(sP)+2 q, 4-Qi) Ã -~ (-4')I. (A5)

The quantity te„,E„„„(q,p) is the part of W„"„'„(q,p) with no pion poles in either of the variables q' or p'.
On shell (A5) becomes

+.'[&(t) -1]@ =[q„p.+,.dq P)J;=~=, +'[~ {t)-C ]@~.
The smoothness ansatz' is adopted for E„,~:

S„,„(q,p) = &„"„(q)~„",(p)t",„(I) [r,6„,q, + r,(6„„k,—6,„a.)+r,(6„„P,+6,„q.)J

in which 1„ I'„and I', are constants. With this hypothesis we obtain

[q„p„s„„(q,p)J,. z ..=c„'[-.'t(r, -r, ) —m, '(r, +r,)]q,~„(t) .

(A6)

In (A6) we must have E(0) =1, therefore, r, +r, =0.
Our final hard-pion expression for F{t) follows:

In the last step we have used the first Weinberg
sum rule":

2Z, '[Z(t) —1]=(1+r t)t, {t)—C„ (A8)

where I" = C„'(I,—I",). Equation (AB) appears as
Eg. (6) of the text.

It only remains to relate 1" to the Schnitzer-
Weinberg parameter 5. To do this we multiply
(A7) by k„and consider the case p' = q'; we get

[~z+p x(q p) le =a = cxcv ri+a( q )(qqq pg p ) ~

But I'„,& satisfies the Ward identityv

t,I",,(q, p) =~„".(q) -~„".(P}
so that in general

1
[&x&p.k(q P)]~=,2 = a[CA -t A(-q') J—(qpq. - P„p.)

Q'

When we compare these two expressions, we see
that &„(-q') is pole-dominated:

where m„'={C„cvr,) ' and g„'=(C„r,) '. The pa-
rameter 5 is defined by'

r, =r,(2+6)
so that

r = -c„'r,(1+6)

[A;(x), o"(0)]6(x,) =-o~'(0) 6{x). (Alo)

The Jacobi identity requires that o' ' satisfy

c"'(x) —v'"(x) = 6„&„A„'(x)—6.,s„A.„'(x) .
We introduce the constants I0 and l2 defined by

(2,)'"{(qd)l "'(0)I0)=&. p I,&;...,
T'=0, 2

where I' denotes the projection operator for iso-
spin T. The Jacobi identity above imposes an im-
portant constraint between l, and l,:

Note that we have nowhere made any reference to
the p meson.

We shall also need the two- and three-point func-
tions of the o commutator and the axial-vectox cur-
rents. Here we adopt the notation of Ref. 11. The
operator 0'~ is defined by

[A;(x), s, A'„(0)]6(x,) =o "(0)6(x).
Vector current conservation implies that 0" is
symmetric in ab and in general has isospin T =0
and T =2 parts. Another commutator that plays a
role is

210-5l2=6m 2. (A11)

The three-point functions that concern us are
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Z" (q p)= j dxdye "*"" and

1 baod Z 1TI baad '

X(0( TS„A'„(x)B d4 (y)o (0) ~ 0),

0""(qp) =jdxdye "**""

x(0 ( rs„A„'(~)a'.(y)v" (0) ( 0),

0'"'(q, p)= j dxdye '""'"

(A12)

x(0 ( TA„'(x)A, „(y)a' (0) ( 0) .

The first of these is related to the off-shell ego
form factor f"'d(q, P). On shell, the ovw form
factor f' 'd(t) is defined by

(4(d,~p)'" (v(q~) I
c'"(0)

I v(pf ) ) = f'"(t)-(A12)
Since o" has T =0 and 2 components, we write

(A14)

1' =0,2

In complete analogy with the treatment of the
matrix element of the vector current (A2), we can
proceed to generate the Ward identities and to ex-
tract all pion poles. This has been done in Ref. 11
and the resulting on-shell exact relation is

F„'[fr(t)+ lr]+br(t) =[q„p„f„„(qyp)],2 pT

(A16)

The quantity

Z f;'.'(q P)p'.b.d=f'„':"(q P)

is the part of Z„',od(q, P) which is free of the vacu-
um contribution and of pion poles in q' and P'.
Other off-shell form factors,

The two-point functions we need are

0'„"(P)=jdye "(OITA', (y)a'"'(O)lo)

and

f""(q,P) =E f"'(q, P)p.'...
T

&v +.'
p2+ ~ 2 bacd &

A""(B)=j dec'"(0(TB"(e)a"(0)(0)

(A15)

are related similarly, in Ref. 11, to Z'„b'd(q, P) and
Z""(q,P), respectively. The smoothness ansatz
to make is the analog of that of Schnitzer and
Weinberg' in the case of the vector current:

=5,b6,dE, 'm„'(2m)'6(k) —i g Ar(t)Prb, d,
T=0,2

f';.'(q, P) = &„".(q)&".s(P)~,(t)(r"'&,) .
When we introduce (A17) into (A16) we get

(A17)

where

dx~,(t)=, , P,(~)

S,'[f,(t)+ f,] =[a,(f -2m, ') —1]~,(t),
where I"r = 2C„'y&r). This appears as Eq. (5) in the
text.

APPENDIX B: FOUR-POINT FUNCTIONS

The general structure of the wz scattering amplitude, satisfying the current-algebra constraints, can be
obtained by deriving the Ward identities for the four-point functions of axial-vector currents. In this ap-
pendix we show how the Ward identities for the four-point functions are obtained, leading to an exact cross-
ing-symmetric gg amplitude on the mass shell. A similar derivation has been carried out in the paper of
Gerstein and Schnitzer. The development of the formulas is presented here from the beginning, in order
to establish our own notation and to coordinate the derivation with that reviewed in Appendix A.

The four-point functions we need are

M'"(q„q„q) = jdxdyd, e'& *" — &(0(TB„A„(x)B.A'„(y)B„A;(*)B„A',(o)ID),

M;" (q; q„q ) =jdxdyde e'&' *"' ' '&(0
I ye&de(x)B„A'(y)B&A((e)A, (0)I 0),

Mx' (q„.q„q ) =jdxdydx e"'*"'""'(0)T A ( ) ABB'„( e)Ax' B( )A',y(0) t&0)e, (B1)

M'x (q„.B„q ) —jdedydx e"""' "'(0 I TB„A„'(x)A'„(y)A'„(e)A', (0) l
0 ),

M'„'„'x(q„q„q ) =j dxdydx e'&' *"" ' '&(OI TA'(x)A'„(y)A'x(e)A, (0) l
0) .
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As in the case of the three-point functions we can generate a set of Ward identities among the I's of Eqs.
(81) by application of the e(lual-time commutation relations. These Ward identities relate the (luantities
in (81), (Al), and (A12) as follows:

q..M "(q. q, q.) = -SM""(q.; q., q.) —[~'"'(q., q.) + ~-"(q..q.) +~""( q,-q.)1
abed g

qSX. g~ 4 73p qlp

«w abed Iq2y'" py~ aq3p q1p

q2) ™('q3 ql 'q2) + ~ de+a ( ql q2) [~o ( q2 qd) ~ o ( ql qd)]

+(22)'(cA+ E,') 2 2 o.be.do(q, + q,)(q„-q~5„),
+m~

q2) xo ('q3i qlt q2) +~ ho '( qst 'q4) [ bce ~ax ( ql q4) + ebd ll lo ( ql qs)]

m 2+2
—3(2v)'((-"A+ &.') 2 2 f ~~&bc&(ql qd)(qs, q34~14)qdo+m

+ ec bd~(ql q3)(qda q44~a4)qSk] t (82)

ql)(M)?vxa(qsi 'qlt 'q2) SMv~ko (qsi qlt q2) [~ebe~xav('qS? q4) + ece~avt(q4t q2) + cde~ kva(q'st q2)]

(2v) (~A++2 ) [ ~eh~cd~(ql+ q2)(qSv q24~v4) xo(qs) + ~ac~bd~(ql qs)(qbx q34~x4) va(q2)

+ ~~~" (ql q.)(q4—. q44~.4—)~".1(q2)l

The (c-number) Schwinger terms in the current commutators are the cause for all the noncovariant terms
appearing in (82). The offending terms in (82) are proportional to momentum 5 functions. These are ex-
actly canceled by the vacuum intermediate-state contributions in the other terms of (82). The Z's defined
in (A12) have vacuum contributions; so do the M's of E(ls. (Bl). These may be split off from the M's as
follows:

('q3? qlt q2) [ ' ('q3? qlt qSHqec (q3? qlt q2)

and similarly for the other M's. To give an example of one of the vacuum contributions, we have

(t?'?'."(q.'q q)).:=(qq)'???.'&.*(-q:q.,q(q, +q.) . .&?.(q, )
q1 +m„

2
&m qs). q4a+, „,[ii„q, ii(q, -q)+I! D„it(q, -q)]) .

+m )(q4 +m )

(BS)

The family of M amplitudes, specified as in (83), can then be used to define a corresponding family of off-
shell amplitudes. This is the next task.

Throughout this paper we consistently employ pion-pole dominance for the spin-zero part of the axial-
vector current. The diagonalization of the four-point functions which incorporates this is as follows:

m 8~4
abed

(qbt qlt q2) 1 ~4 ? 2 2& T (qbl ql q2) tt
q, +m„j

«~abed/ n abed/ Kq4& ~abed I('?''? q)=?? ! ! (qiq I?) (bit? q))
q4 +m~

~~cd m 'Z'
7r SX Ta

Xa (qSi qlt q2 VVS f 2+ ~ 21 'ka (qbt 'qlt q2) 2 ~ 2 a (qbi qlt q2)'

& q4fy ~bdcI . i &q3~
Z

abcdI
2+ m 2 ))(. Rq4P qlP q2~ 2+ m 2 ~qSPPe q1P q2 (84)

Meb~( . ) «Zeb~( . 14 vqSv Z~cdl
qS 'ql q2 2 2 1 (qS ql q2t

q
2 2 '4 ('q3 'ql

n acbd r . % &q2& abed I~ .. (-q*;q, -q.)+ * ~ &. (q.;q, q*))
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% 4c -~c.'l, &~2& greelgg
*

- i. (e.' e. -e ) + ., ~ 'i '(e.; a, e*))

+ 2
NfclI, i .

~ &~» clef I
( ~m )( ~~ I)

' ' lib el %I'+ ~~ OI el, e)))

clef, ' «le@ lef
+((vxo{qse qx~ Cs) = s ~((vxo(qsi qx~ Cs)+ s a Tvxo {qsi Cx~ Ca)+ Sl~

gleet i . a + &~& & ~&c&I
. + 2 ~ 2 ~py(ykgsy g2P gal+

Eqv qa k ~()e)xi . )
e x s TeeM I

2+~ 2 pyg~ ~~ ~3~ + 2+~ 2 II'

2+m 2 'VXpiqet-14Pq2g+ 2 m 2 XN iqsyqiy-q4

p2e Csv Csx Te()e(xi, )
eqx s Te()ox(, )s ~ s)( a+~ s) ((o ( Cx& qs& qs +

a+sax s . o Cs& Cx) qa

% ~2&~46 ~by«I . W+ &~j ~ - y&&cl

e 'AX~4& ~«&1 y &~&P efclI

+ 3
I2II 'SX,%0 (~gQg«g, & &~j ~ y«ref/

In the first of Etis. (84) we have defined the off-shell a m»PtudeT" '
(qs, q„qs) for the Process «xn«rest:

a.(qx) +ss(qs) -v.(qs) + &e(qe).
The next step is to obtain the constraints among the T's which follow from (82) and the relevant three

point function Vizard identities. We find

C4.&". (Cs, q» q.) = &.i"'""(qs' Cx C.) —
Z a [(Cx'+ ~.')f""(q» C.)+(C.'+~.')f""(qs qx)

+(q,'+ m„s)f ~{-qx, qs)],

qsxIxo {Csi Cx~ Cs) =+vi (Csi qx qs) & ()e&(e(Po( Cx) Cs)

—
Z ~ [(q ' x+x'xx)f"."(-q -s&q) (+'qa+xx'x)f". "(- Cx-q&)]- ':f" (-Cx qs)

2 . 2
clef bgd, ~& K gdcl

CsvTvxo(qsi qx) Cs) = &gTxo (Cs/ qx) Cs) ~ s fxo (qs) qe)+&see&(vxe&ax{ qx) qe)I"„m„
(85)

+~M.~ &x.(-q„-q.)+ s[q..f),"(-qx -qs)+Calf". "(-Cx -C.)1

Cxs~(iv) o(qs~ qx) q's) =-I'eTvxo(qs) qx) Cs)+ s [Cav f)'o"{qs~ -qe) —C.of),'v"(qs) Ca) —qsx«v'o"(-q" -C )l
mF

[ eve~(vxe+xov(qs) qe) + ~eve~a()e+avx(qe) C'a) + +oxeye()e+xvo{qs& qs)l '

It is now straightforward to obtain the final Ward identity for the x(w scattering amplitude by contracting
qs„, q,„, and q» into the last of Eqs. (85) and then using the first three relations in (85). Our final result
for the off-shell gm amplitude is given by

lef ebc4
(qsi qx~ qa) =

Cx s Csv Cs) Ceo~((vxo{qai qx) Cs)

+ ",[(q,'+ q,'+m, s)f ~(-q„qs)+{q,'+ q,'+ xxx„')f" (q„-q,)

+ (q,'+ q,'+ m„')f""(q„q,)+ (q,'+ q,'+ m,s)f""(q„q,)
+(qs'+ q:+~.*)f'-'(q& qx)+(C.'+ C:+~.*)f""(qs qs)]
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. ale cde(&Em [(4 q3) aEo(, ql& q2) (q2 ql)vEu(q3& 'q4)l

+ ~[Cv(t —u)+(q, —q ),(q, —q4), &"„(q,+q )]}
+ e~,e„,(,'E„'-[(q, + q,)~S~(-q„-q,) —(q, + q,) E,(q„q,)]

+ 4 [C„(s—t) + (q, + q, )„(q,+ q,),&"„,(q, —q, )]j (86)

+e EM (zE„[(q~+q2) E (—
qg q3) —(q, +qg)QEQ(q4 q2)]

+-'[C (s u)+—(q, +q.).(q, +q.).&'..(q. —q.)])

, [(q,'+ q,'+ m„')(q, '+ q,'+ m.')a'"(s) +(qi'+ q' + m.')(q' + q: ™')~'"'(t)
+(q, +q, '+m„)(q, '+ q, + m, ')4' ' (u)]

-E,'[6„6„(2s—m, ')+6„6, (2t —m„')+6 6„(2u —m„')],

where the parameter l has been defined in Appendix A, and where the variables s, t, and u are defined by

s = -(q, + q,)', t = -(q, —q, )', u = -(q, —q,)'.
When Eq. (86) is taken on the pion mass shells (q =-m„', i= 1 to 4), we obtain Eq. (l) of the text.
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