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fixed a priori and, wherever possible, sum rules were
used to determine the residues yz and yl . The attempt
here was to see primarily whether the overall features
rather than the details of different experiments can be
understood from complex poles.
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The (6,6*)8 (6*,6) representation oi "J(3)(3 SU(3) is presented and its use in breaking
chiral symmetry is discussed in terms of its contr ibution to meson masses, pion-pion
scattering lengths, baryon masses, and the nucleon 0. term. W'e include singlet, octet, and
27-piet SU(3) pieces in the symmetry-breaking Hamiltonian, and also discuss the possible
SU(2) S SU(2) classifications of the Hamiltonian.

I. INTRODUCTION

Recent experimental evidence on the s-wave
pion-pion scattering lengths" seems to indicate
the need for a chiral-symmetry-breaking Hamil-
tonian which transforms in a way other than (3, 3*)
8 (3*,3). In order to produce a large isospin-zero
s-wave scattering length, the original Weinberg
analysis' must be modified to include isospin-two
contributions to the 0 commutator. This in turn
requires the symmetry-breaking Hamiltonian to
contain pieces which belong to an SU(3) Cg SU(3)
representation which has isospin-two components

in its reduction to SU(3) and hence to SU(2). It is
also possible that a large value of the nucleon v
term would require these other terms, but this
conclusion is not definitely confirmed. Indirectly,
a recent analysis of the hard-pion Ward identity
approach to the pion-pion scattering problem'
which enforces unitarity within certain smoothness
approximations also requires isospin-two 0 terms
for the optimal solution. This result is, however,
also rather uncertain because of the many assump-
tions involved.

Assuming that such additional pieces are neces-
sary in the Hamiltonian, it is natural to investigate
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the consequences of the simplest possible choices.
In order to have isospin two we require at least
the 27-dimensional representation of SU(3). The
two smallest SU(3) C8(SU(3) representations contain-
ing this are (8, 8) and (6, 6*)6( (6*,6), which reduce
under parity and SU(3) as I'6 8'(s 27'6( 8 s( 10
10 and 1'88'$27+$1 88 827, respectively.
The consequences of using the former have been
discussed by several authors. ' ' In this paper we
shall explore the latter possibility.

Although both of the above symmetry-breaking
mechanisms have been suggested on the basis of
simplicity, no dynamical model has been proposed.
If we use the quark model where the triplet belongs
to (1,3) 6( (3*,1)(l( (1,3*)(S(3, 1), then a Fermi-like
coupling could induce either of the above breaking
mechanisms. For (8, 8) one could also have a
three-point coupling to an octet of vector gluons.
However, neither of these mechanisms is attrac-
tive from a theoretical standpoint.

We shall develop the (6, 6*)(S (6*,6) representa-
tion in analogy to the (3, 3*)$ (3*,3) case. ' In Sec.
II we review the (3, 3*)$(3*,3) development, and
then in Sec. III we present the (6, 6*)8 (6*,6) rep-
resentation. Section IV is a discussion of the pos-
sible forms of the symmetry-breaking Hamiltonian
in terms of its SU(3) and SU(2) 8 SU(2) properties.
In Sec. V we apply this Hamiltonian to the calcula-
tion of the symmetry-breaking contribution to
meson masses, pion-pion scattering lengths,
baryon masses, and the nucleon 0 term. We dis-
cuss these results in Sec. VI.

[E,W(]=-kX((W( for 3*, (2)

where the X~& are the eight 3x3 matrices of the
three-dimensional representation of SU(3). (In .

this section Greek indices run from 1, . . . , 8 and
Latin from 1, . . . , 3.) They satisfy

[X",X6] = 2if ~8~&,

(X",A~] =2d~syV+k 6„((f.
From the above we write for (3, 3*) in SU(3)

e SU(3)

II. REVIEW OF (3, 3*) (3~, 3)

The 3 and 3* representations of SU(3) are defined
by the commutation relations

[E„,T,] = ,' T(X(( for 3—
and

and for (3+, 3)

[F~~ W((1- - k &(kWk( ~

[F,W((] =
k X(k W(k,

where F'„= ,'(E„-+F') and F„=,'(F-—E'„). Since
T,( transforms like (3*,3) we can parity-double
our decomposition by requiring

so that T(( is now said to transform under (3, 3*)
(E (3+, 3).

In order to reduce this representation under
parity, we define

P~z = Tg~ +T»
and

M„=i(T(, —T,', ),
so that

PP]~P = P)), P)) = P]],
PM„P '=-M„,

(4)

The SU(3) content can be made manifest by 'writing
1 1

ii ~3 U06((+~2 f(Un

-1 1
M;( —

~3 VO6(;+ ~2 ((V~ ~

We can invert these relations as

1
Uo= ~3P((~

1
Vo= ~3 M(;,

a1V„= ~2 X((M((,

where the U's and V''s are Hermitian scalar and
pseudoscalar fields, respectively. They satisfy
the well-known commutation relations' [from E(I.
(3)]

[F„,U, ] =[F„V,] =0,

[F„,U8] =if~syUy,

[F„,v8] =if „8y V~,

which identify U, and Vo as SU(3) singlets and (UJ.
and (Vj as SU(3) octets. Also,

[F„',U, ] = -i(-', )'"v„,
[F'„,v, ] =z(-', )"'U„,

[~at T((] k ~(k Tk( ~

[F„,T„]= ,'XP,T„, - (3)
[F'„,U, ] = -id„„V„-i(-;)"'6„,V„
[F„,V((] =id~((~ Uy+i(3) 6~((UO.
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For calculations involving (3, 3*)8 (3*,3) it is
customary to work directly with the U's and P's,
since theix commutation relations are simple and
the properties of f q& and d sz are well tabulated. o

Hovrever, as are shaB see, for more complicated
x'epresentations 1t px'oves simpler to work dix'ectly
in terms of the analogs of the 7.'0. Thus, for exarn-
ple, instead of vrriting the perturbing Hamiltonian
as"

If =
~3 &Mp«+ ~2 ~ss&~gP~y ~

This 4,ttex' approach reduces calculations such as
those in Sec. V to trace calculations with the lX"}
mat 11ces.

+here 9 is summed from 1 to 2V. The matrices
5, (S }, and(Te} satisfy

Tr(M) =6, Tr(nS") =Tr(6T') =0, .

Tr(S"S')= 106„„Tr(S"Te)=0,
Tr(TeTe') = 6ee..

We can explicitly construct the (Te}by writing the
Clebsch-Qordan series fox' 6 (36*=I 8$2V. %le
do not pxesent the general result, since ere shall
need only T'„' (corresponding to the I = F =0 member
of 27) in our subsequent calculations. It is given
by

m. THE (6, 6~)(6~, 6) REPRESENTATION

%'8 develop this representati, on in analogy to
Sec. II by writing the commutation relations

SV

~so

[F„,W)) = 2SPqW~ -for 6*,

where the Latin indices now run from 1 to 6 x'ather
than the 1 to 3 in Sec. II. The eight 6x6 matrices,
(S }, are the representation of the SU(3) generators
in the 6 representation of SU(3). In the Appendix
these matrices are explicitly presented using the
phase conventions of Behrends et aL" They satisfy

[s,s') =ay„„s&.

For (6, 6*) we write

[F&» T jj) 2 sf a T»J &

[F',T„]= =,'Sg,T„,
and extend this to (6, 6*)8 (6*,6) by introducing
paxity via PT,&P

~ =7'&, as before. The parity
content of this repx'esentation is reduced by

Mgq =i(T(g —T~g),
-

as in Eq. (4).
Now, however, the SU(3) decomposition is slight-

ly more complicated due to the presence of the 2V-
dimensional representation. %8 write

Using the trace relations, we invert Eqs. (I}as

(6)

Ue =T])P]~, Ve =T]~M;y .
The U s and 7's are scalar and pseudoscalar

fields, respectively; and (U,}and (V,}, (IJj and

(Wg, and(Ue} and(Vej transform as singlet,
octet, and 2V-piet representations of SU(3), re-
spectively.

The commutation x'elations of the U's and 7's
are easily written down from Eq. (6) in analogy to
Eq. (5}. However, it is more convenient to use the
relations for Pgy and Afgy directlyI These'are found
from Eqs. (6) to be

[Fa Mol = a S;&*~ay —2 Sga~~r &

[Fa& PfJ) —2 ~sA MA/ —
&&

~ sf%~A &

[F~ Mo) = i&Sf&*PI y+ 2 &SgaPia.

IV. HAMII. TONIAN FORMS

To constxuct a suitable symmetry-breaking
HRIQiltonian fox' the strong interactionsy %'8 Wish
to include terms which conserve parity, isospin,
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and hypercharge. Thus, we can include compo-
nents proportional to Uo (singlet), H, (from (Uj),
and IJ» (from (Ue)), i.e., we write

1
6

C oP»» +
~10

27+ C6 27Tg~+q~ ~ (10)

-4 3
Ceo '. Css .'C6 27- 1:

~6

implies H'-(0, 0) in SU(2) SSU(2), and

Two special cases of this general form may be of
interest. If we set C, » =0, then 0' contains only
singlet and octet pieces and thus represents an
octet-dominance-type breaking which will, for
example, lead automatically to the Gell-Mann-
Okubo mass formula for the meson and baryon
states.

It is also interesting to ask how H' transforms
under the subgroup SU(2)N»SU(2), since the (3, 3*)
8 (3*,3) symmetry-breaking scheme seems to in-
dicate that the breaking term may be approximate-'

ly in a (0, 0) representation. 'o [We use the conven-
tional notation of labeling SU(3) representations by
their dimension, but SU(2) representations by their
spin content. ] It is easy to see that if we are to
induce isospin-two components in the 0 commuta-
tor, then we have to include an SU(2)8 SU(2) piece
from the (1, 1) representation [the highest repre-
sentation contained in (6, 6*)8 (6~, 6)]. Thus, the
two most interesting cases are the (0, 0) and (1, 1)
representations contained in (6, 6*)8 (6*,6).

Because we have parity doubling, we have both
a (0, 0)" and a (0, 0) . Also, for (1, 1) we have two

cases which reduce under SU(2) as 0'8 —,
' 8 1' and

0 6 —,"61, respectively. From these, clearly
the (0, 0)' state and the 0' member of a (1, 1) are
the suitable candidates for forming H'. By using
a group-theoretic reduction or simply by examin-
ing the commutation relations directly, it is easy
to see that P« transforms like (0, 0) with respect
to SV(2) S SU(2) and has positive parity, and

g», P»» transforms like the 0' [SU(2)] member
of a (1, 1) representation of SU(2) 8 SU(2). Examin-
ing the general form, . Eq. (10), for H', we see
that the choice

. 2. 1
80' «' »»27 (12)

implies H'-(1, 1) in SU(2) 3 SU(2) (the 1=0' mem-
ber). Note that each of these separately requires
a 27-piet piece in H', but the mixture,
C6p C68 C6 27 1:~5:0, removes this dependence
while maintaining a mixture of pure (0, 0)8 (1, 1).

V CALCULATIONS

In this section we shall employ the most general
form of H' [Eq. (10)], and use it to find the (6, 6*)
8 (6*,6) contributions to (A) meson masses, (B)
pion-pion scattering lengths, (C) baryon masses,
and (D) nucleon o terms. In A and B we shall use
the soft-meson approximation, but this is not

needed for C and D. We shall also neglect the
possible effects on the breaking of scale invari-
ance by a scalar meson, "'"effectively assuming
our symmetry-breaking 0' to have dimension E =3.
Additional factors due to such effects" can easily
be included in our results. We shall use the sim-
ple assumption that H is given by Jrp+Jj' where 8p

is invariant under SU(3) SSU(3), does not contrib-
ute to meson masses, and gives a uniform mass,
Mp to the baryon octet.

A. Meson Masses

&~.IH'I ~.&
=- ~. (OI [+.",[+,",H']] Io&,

where to this order we assume that the PCAC
(partially conserved axial-vector current) con-
stants are all equal, "F,=F, =F„=F, i.e.,

8»'A„=m„'F(f)

We also write

&olP„. lo&= '6 6„&ofv, lo&,

neglecting any possible contribution from (0 I U, I 0)
and (0 I U» I 0). With these assumptions,

Using the usual soft-meson reduction, the meson
mass is given by

which yields

(13)

where
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1
2v3

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0-1 0 0 0 0
0 0 0 0-1 0 0 0
0 0 0. 0 0-1 0 0
0 0 0 0 0 0-1 0
0 0 0 0 0 0 0 -2~

2V = 1
'-8=

2m30

0000000
0 1 00 0 0 0000100000000-300000000-300000000-300
OOOO 0 0-30
00000009~~

Note that although the traces involved in finding Eq. (13) can be derived by using commutator identities, for
the calculations involved here it is simpler to compute them by hand using the explicit form for jS"]
given in the Appendix. We also remark that d, 8 and g'„'8 are the standard matrices obtained from coupling
888 to 8,„~ (I=I'=0) and 8x8 to 27 (I=I'=0), respectively. '

8. Pion-Pion Scattering Lengths

In the soft-meson limit, the s-wave, isospin-zero scattering length is given by"

and

(o) 1~ =(98')
5A + 16m „'/F'

(2) 2 (o& 3 m ,8) s o (20 ) F2 t

where a,' is the s-wave, isospin-two scattering length. In the case where the 0 commutator has no iso-
spin-two piece, A =m, '/F'. In general it is given by

~ = ——&0 ) [F,', [F,', [F,', [F,',a']]]] )0&,

where i =1 or 2 or 3 (no sum). A more general isospin decomposition of the fourfold commutator involves
Lo and L,„which measure the relative isospin-zero and -tvro components of the 0 commutator. In terms
of these,

1 2
A. = 3 Lo + 3 L2,

but L, and L,, are also constrained by a Jacobi-identity relation" which yields
2

2L, -5L, =6

Thus, I., =0 implies Io = 3 m, '/F', which yields A =m, '/F' for the pure isospin-zero case.
Using our form for II', we find

(14)
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Q. Baryon Masies

With our neglect of scale-symmetry-breaking considerations, we write simply

M„=M, +&a„tH'I a.&.

Now we must clearly keep &Nl Uo I N& &NI

Uolte&,

and &Nl U» I N& all nonzero. We denote these by No) &o
and N», respectively, and we let D(E+D = 1) be the mixing parameter in &B„I Uo I 8 ). In this notation

&~t U. IN & =(AIU. IA& =&~ IU. I~& =&=-IU. I =-& =~. ,
2--D

&~IUol~&=(1 'oD) &o

2+-D
&~IUolA&= (1 'oD) &ss

-(1--,'D)
&:"IUol="&=

(1 o'D) &o

&Z(U„IZ& =--', N„,
&AIU„lw&=-2~„,

& =-IU„t =-& =~.,
Thus,

Mx Mo+Ceo&o+&es&s+6 27&2y ~

23D lMr =Mo+CooN~ —(, ,
)

Coo&o —o C3~
etc. , with the obvious replacements for A and -,

The nucleon g term is given by

o„=&N I [Z,', [Z,',a'jj I ~&,

D. Nucleon 0 Term

where i =1 or 2 or 3 (no sum). To evaluate this we again need N~, N„and N». To perform the projection
we write symbolically

1 1
&~l f'*.

g I &&-
~g 6](Pro +

~10 ~)~]&s+7'j"~Ã»

which yields

o„= " ' Tr(S'S')+ ' Tr(SoS'S')+~„Tr(T»S'S')

"
I
—

s- Tr(s's's') +
s

—)'. [Tr(s'srs's') + Tr(s's's's')]+ -,')(„[Tr(s'r"s's') + Tr(s's's" s')]I

+s ' Tr(T"s's')+ — ' [Tr(s'r"s's')+ rT(
' s' s"s)s] -+s[rTr(T"s'"s's')+Tr(T"s'T"s')]I

N N
o ~6 2 @10 2 27

sW5 " 5&5 ' " st ' " H5 " 7&5 ' ")
1 11 13

sW5 " " Ws " W5 '")' (16)

Note that even if H has no 27-piet component (C, » =0}, Eq. (16) still will include contributions from N».

VI. DISCUSSION

Evidence from the E,4 decay~' seems to favor
a value of a~o~ which is larger than the original

Weinberg prediction' (A =1}. For A =1, a[o]=0.16/
m, but increases rapidly with A. For example,
if A =10, a~o]=0.5/m„. The experimental data
indicate a value of a[o] of order 0.5/m, . Howeve,
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one must also realize that there are theoretical
corrections to the soft-pion predictions. In a re-
cent theoretical calculation which included unitar-
ity corrections, ' a value of A. = 4 was found. How-
ever, in the same calculation, an effective value
of A = 5 would be needed, in the, simple soft-pion
formula for a,', to produce the calculated scatter-
ing length. Although this calculation may not be
quantitatively reliable, it does indicate that uni-
tarity corrections can enhance the effective value
of A.. In view of this we may conclude that even
though the experimental evidence favors A & 1, it
may not have to be as large as A.- 10 which the
simple soft-pion formula would indicate.

However, a simple estimate using the meson-
mass formula [Eq. (13)] and our calculation of
A [Eq. (14)] indicates that the use of (6, 6*)
g'(6*, 6} alone for H' is not reasonable. To make
this estimate we set C6 Q7 0, although a similar
result holds in any case. I,et N= &0 I U, 10-&/F and
a -=C«/C«. Then from Eq. (13)

m 2

~Q
sl» 3 N 10~5

from which we find

10' (I-m, '/m ')
'I (2+m, '/mr* )

iv =--.' (m, '+2m, ').
Using these we can calculate A. from Eq. (14):

(24m»* —143m, ')
5

m '
35E F

Such a large negative value is clearly ruled out
by the experimental data. Vfe might note that pure
(8, 8) breaking would also produce a negative
value for A.

It is clear from the preceding remarks that
(6, 6*)6 (6*,6) symmetry breaking cannot be the
only contribution to H'. On the other hand, since
all of our results in Sec. V are linear in H', these
calculations can be used to discuss more general
schemes~" which involve using (6, 6*)$ (6*,6}
breaking in addition to some other contribution
to H'. Classification of 9' pieces under the sub-
group SU(2) SU(2} (Ref. 18), as discussed in
Sec. IV, may provide a tractable approach to this

problem. We shall present several alternatives
for combining (3, 3~)$ (3*,3), (6, 6*)$ (6*,6), and

(8, 8} in a subsequent article.
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APPENDIX: THE 6-DIMENSIONAL

REPRESENTATION OF SU(3)

We use the phase conventions and notation of
Behrends et al."to construct the representation
of the eight generators of SU(3} on the six-dimen-
sional representation. In terms of a spherical
basis set, these are

if'= ~(ll&&11-13&&31)+2 3 (14&&41-15&&51),
1 1

~.=-'. (1»&11+l»&21+ 1»&31&

-' (14& &41+ I » &51) -'. (16& &61),

z, =, (I» &31+11&&21)+ ~6 (14& &51),

(I4& &61+ I »&41)+ 6 (I» &51),

3 ( I » &61+13&&51&+ (I » &41),

and Z, =Z, . The states (11&, 12), 13&] form an
isotriplet; (14&, 15&] form an isodoublet, and (16&)
is an isosinglet. We transform to a Cartesian
basis by writing

s, =6(z, +z,),

s, =-i&6(z, -z,),
S~ =2&3H~,

s, =vV(z, +z,),
s~ = -i W6 (zm —z 2),

s, =&6(z,+z,),
s, = -i W6(z, —z,),
S, =2v 3a„

such that [S„S~]=2if,»S~. These matrices form
the 6-dimensional representation of SU(3).
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Using SU(2) x SU(2) current algebra and pion-pole dominance, we derive from the Ward
identities an exact crossing-symmetric expression for the m~ scattering amplitude. We make
approximations which are suitable at low energy for those three- and four-point functions of
the problem which cannot be determined from the constraints of current algebra. We para-
metrize these functions in terms of propagators and polynomials exhibiting the correct anal-
yticity properties. Form factors, analytic in the cut plane, are expressed in effective-
range form, and the s- and p-wave amplitudes are constructed in terms of them. The exis-
tence of resonances in the m~ system is not assumed, and soft-pion estimates are not used.
Instead all the parameters are free to be varied. We determine all the free parameters of
the problem self-consistently by imposing the constraints that follow from elastic unitarity.
The scheme predicts all the features of low-energy arm scattering, the only input parameters
being m„and E, the pion mass and decay constant. Among our principal results are the
s- and p-wave scattering lengths, the corresponding phase shifts, and the determination of
an important parameter which measures the isospin T = 2 component of the 0 commutator,
cr' . The details of the method predispose scattering lengths to be small. We find that
unitarity prefers the T = 2 component of o'~ to be small relative to the T= 0 component.
As a consequence, our scattering lengths are in excellent. agreement with those obtained by
Weinberg. The T = J= 1 phase shift exhibits a p resonance around 915 MeV with a width of
210 MeV. The T = 2, J= 0 phase shift is small and in agreement with experimental results.
The T = J= 0 phase shift displays acceptable behavior at low energy; we offer physical argu-
ments to say that its higher-energy behavior is less reliable than that of the p wave at the
same energies. We discuss our results and analyze the predictive power of the method
presented. Finally, we suggest some improvements on our calculations, including possible
applications to related problems.

I. INTRODUCTION

For more than a decade, the problem of deter-
mining the amplitude for mn scattering has pre-
sented a challenge for theoretical physics to solve.
In the absence of a fully developed theory of had-
rons, an ultimate solution continues to be an over-
ly ambitious goal. Many approaches to an approxi-
mate solution have evolved, and contributed to the
unfolding of several features of the problem. The

principles of S-matrix theory (including Lorentz
invariance, analyticity, unitarity, and crossing
symmetry) are cornerstones of hadron dynamics'
and have long been advocated as the means by
which a self-consistent solution to the mg problem
may be found. If hadronic theory is to include, in
addition, the content of the algebra of vector and
axial-vector currents, ~ then any treatments based
purely on 9-matrix theory are to be viewed as part
of the prehistory of the problem. The low-energy


