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The reactions ~ p - 7( n, ~ p —gn, K p -K n, and K'n -K p, where p and/or A.
&

ex-
changes are involved, are considered within the complex-pole model with the amplitudes
given by y+(+s" + +p $ s"-. Our fits confirm the prediction of the dual absorption model in
that we find the real part of the residue function, yz, to be - t„with n =0, 1, For the imag-
inary part, yl, we find that since the j-plane cuts are strong for the spin-nonflip amplitude
we have yl- -Ko, the Struve function, whereas the cuts are weak for the spin-flip amplitude
so that yl - 0. The contribution of y& to the amplitude always appears in the form +I yl, which
is quite small. Good quantitative fits to all the data are obtained in terms of only four param-
eters for the exchange-degenerate p, A t residue if we take Jo(RO(-t) )+i3Cp(Rg( —t) ) as
the nonflip residue and J&(R&( t) )-/R&( t) —vi Xc!I as the flip residue with Ro=RD-R&~ 1 F
and A, &1. For the imaginary part of the trajectory function we find (nl)& =0.17 and (Q.l)z
=0.26. The presence of nonzero 0.1 removes the need for any explicit ghost-eliminating fac-
tors. A detailed discussion of this model as well as a comparison with other models is made.

I. INTRODUCTION

There is, theoretically, little doubt that com-
plex conjugate Regge poles exist for t ~0 if cuts
in the j plane exist. The evidence comes from the
general analytic structure as a result of pole-cut
collisions, ' t-channel unitarity, ' Bethe-Salpeter
equation, ' multi-Regge models, ' as well as K-
matrix unitarization of the absorptive model. '
The fact that the cuts themselves can be approxi-
mated by these poles is also very plausible if the
imaginary part of the trajectory function, for t ~ 0,
is reasonably small and energies are not asymp-
totic. ' The complex-pole approximation thus pro-
vides an economical way of parametrizing ampli-
tudes much in the same way as the Breit-Wigner
form does in the energy plane. As we shall see
below, it also provides a simple way of incorporat-
ing some of the significant results of the absorp-
tion model.

Phenomenologically, the model has been quite
successful. It has been applied to mN charge-
exchange scattering, v line-reversed reactions, '
and gN backward scattering' as well as many other
reactions. ""

Even though it has strong theoretical backing,
the model, as applied so far, nevertheless, has
several parameters. " In essence one has effec-
tively two poles now and, furthermore, the com-
plex residues have been usually parametrized as
polynomials, linear or quadratic.

It would be most desirable, therefore, if the
residues and the trajectory functions in the com-
plex-pole model can be described, at least qualita-

tively, by simple analytic functions (with very few

parameters) which reproduce the main features
of several different experiments. These simple
functions would be obtained on some theoretical
basis but by themselves need not, in general, fit
the data exactly; the experiments are too accurate
compared to any theoretical model that anyone can
come up with. However, any deviation from these
functions should be snzall.

The main features of nondiffractive reactions
with vector and tensor exchanges are: shrinkage
and power falloff in do/dt, nonzero polarizations,
and crossover zeros and dips. The shrinkage and
the power falloff in do/dt is explained by the
famous Regge s dependence s" ', but the exis-
tence of nonzero polarization needs cuts; hence
comp1ex poles. The crossover zeros and dips are
understood well in terms of the absorption pic-
ture" and arise naturally if one assumes the dual
absorption result, '» ImT„-Z„(R(-t}'~')s", where
n is the total helicity change in the s channel, and

8 is the radius parameter, expected to be of the
order of 1 F. Thus in the complex-pole model, the
imaginary part of thetrajectory function el should
be small and the real part, e~, is essentially the
same as the old (real) trajectory function. One
can also show" "on the basis of the dual absorp-
tion picture, that the real part of the residue func-
tion, ya, should be proportional to J„(A(.-t}'~'). A

crude estimate then shows that for the helicity-
nonf lip amplitude where the cuts are large, since
the simple Regge-pole contribution is nonperipher-
al, yz--Xc(R(-t) '), the Struve function. For
the helicity-flip amplitude where the cuts are
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weak, since the simple Regge-pole contribution
is peripheral, yI- Q. It turns out that the contribu-
tion of y, to the total amplitude appears in the
form Qfi yr which is small.

We shall continue to fit the experiments with

polynomial residues and trajectories but we antic-
ipate that they will be described qualitatively by
the above simple analytic functions. Thus, in a
sense, we are carrying out an amplitude analysis
of the different reactions but within the theoretical
framework of complex poles.

We consider the following four charge-exchange
reactions which involve p and/or A, exchange:
v P-v'n, v P-qn, K P-K'n, and K'n-Id'P. We
first analyze z P -m'n where considerable data
are available. The data include do/dt, polariza-
tion, sum rules, and g, -~ —g,+~. This reaction
was analyzed previously' but this time we go to
larger -t's including t=-1.5 where, in the simple
Regge-pole model, there is a ghost (corresponding
to ci. = —1) which is usually eliminated by an explic-
it factor (a+1) in the residue function. We find,
however, that our y~ is well described by J, for
the nonf lip, and J, for the flip amplitude. We con-
firm the previous result' that the phase of the
residue corresponding to the pole j = cv, is nega-
tive We .find, as anticipated earlier, that yi- -K
for the nonf lip and y, -0 for the flip amplitude.
Fortunately, as mentioned earlier, the contribu-
tion of y, is small. We next go to m P-qn. We
keep yR and y, the same as in mN charge-exchange
scattering except for the overall exponentia1 fall-
off. We, however, take a~ and 0., different. We
find that ni is larger for the A, than for the p ex-
change: (o,)~=0.1V, (o,,)„=0.26. In v p-qn, data
are available for do/dt. We obtain the experimen-
tally observed dip at t= -1.5 in do/dt The pola. r-
ization is predicted to be positive for low -t. We
next go to K P -F'n and K'P -K'n. Here we keep
the same y's and e's determined previously for
the p and A, exchanges, the only change being in
the overall constants which are, however, deter-
mined from SU, . Our predicted curves are com-
pared with the experimental dg/dt and we find
very good agreement.

An exact fit requires several parameters. How-
ever, the main features of all the four reactions
can be qualitatively described, apart from the
overall normalization factors and trajectory func-
tions, by only two parameters if we fix R to be 1

F, the two parameters being the ones involved in
the a, of p and A, . Good quantitative fits can be
obtained if we also take the radii R, and R,' in the
nonf lip residues

as parameters and the radius R, and A, in the flip

residue

as parameters. The radii turn out to be quite
close to 1 F; we find R0=12 F Ro 0 9 F Ry 1

F, and A. =0.1.

II. THE COMPLEX-POLE MODEL

As mentioned in the Introduction there is strong
evidence in favor of complex conjugate poles for
t ~ 0. If e, is the position of the branch point in
the complex j plane, then from the Mandelstam
prescription we have o,,=n at t=0 where n(t) is
the trajectory function. In the neighborhood of
t=0, the trajectory will, therefore, become com-
plex.

For t&0, one can write

A(s, t) = (possible physical sheet pales)

1
+ — dj s' discA(t, j),

K oo

discA(t, j) =
2g

where the superscripts I and II indicate the first
and the second sheets, respectively. Since A' and/
or A" will have complex poles, so will discA.
Thus discA will have a peak near the position of
the poles. If we approximate the entire discontinu-
ity by this peak (complex-pole approximation),
then we can write'

(2)

where o., and o. are the positions of the complex
conjugate poles.

Three points need to be made regarding the
above expression. First is that if there are physi-
cal sheet poles, then y, contains their contribu-
tion as well as the contributions of the cut. That
is, y, (t) r=y*(t)] will then be a sum of the residue
of the physical sheet pole and the "residue" approx-
imating the cut contribution. Secondly, whereas
the residue of a physical sheet pole is strictly a
function of t only, the "residue" of the pole ap-
proximating the cut may be a function of s also,
hopefully a slowly varying function of s. Even
though throughout the paper we will consider the
total residues to be functions of t alone, this pos-
sibility should be kept in mind for possible future
discussions. Finally, the complex-pole approxi-
mation will fail at asymptotic s where the s' fac-
tor in (1) will dominate over the discontinuity func-
tion. What this asymptotic s will be is unknown,
but from phenomenological. considerations it ap-
pears that the presently available energies are
within the region of complex-pole dominance.
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Introducing crossing symmetry we get for the
amplitude

-f m'n+

T(s, t)=r, s '
Bingo. ,

is needed before one can make a definite statement.
We will return to this question later in this paper
[Sec. VIF].

Having reviewed some of the important features
of the complex-pole model, we now look at the
characteristic features of nondiffractive processes.

III. CHARACTERISTICS OF NONDIFFRACTIVE

PROCESSES AND ESTIMATED BEHAVIOR

OFio.~, 01, AND y~

where +1 indicates odd or even signature. Thus,

ImT(s, t) = y, s"++ y s"-
A. Shrinkage and Power Falloff in do jdt: ez and n&

= 2
l yl s "& cos(p+ o., lns),

ReT(st) =y, (, : ')s"
(4)

In the reactions with vector and tensor exchanges
it is found that one can write

+ 1 —cosvt'A

%'e note that when 021 is small

ImT= (ye+ nz yz lns)s "& . (6)

A similar expression holds for Re7. Thus con-
tributions of yr appear in the form of the combina-
tion o.,y, . If a, identically vanishes, then we do
not have any contributions from y, either.

Furthermore, we note that for +„near a nega-
tive integer, e~= —n, the signature factor is
given by

+I —e""+ a(-I)" —1+v(o.s+n+in, )
sin se, v(as + n+ in. ,)

There is no peak at a~ = 0, -2, . . . for the odd-
signature p trajectory, and at n~ =-1, -3, . . . for
the even-signature A, trajectory because the signa-
ture factor (+I —e ""+)provides exact cancella-
tion. However, at nR=-1, -3, . . . for p, and e„
= 0, -2, . . . for A„ there will be a peak. Now
there are two alternatives: either y, is sufficiently
rapidly falling in t so that the peak is "smoothed
out" and no structure is seen in the amplitudes,
or that y, provides an exact cancellation by having
explicit factors (o.,+1)(n„+3)~ ~ ~ etc. in p and

o.,(o.,+ 2) ~ ~ ~ in A, .
In the simple Regge-pole model the latter alterna-

tive is chosen because the poles appear on the real
axis and correspond to infinities in the amplitude.
These are, of course, the so-called "ghosts" and
the residues provide explicit ghost-eliminating
factors. In the complex-pole picture we have com-
plex ghosts (or tachyons) and since they do not
correspond to infinities in the amplitude the former
alternative mentioned above is entirely plausible
as long as the ghost is "smoothed out" by falling
y's. The phenomenology seems to favor this alter-
native, but more data, especially on A., exchange,

o.s(t) = a+ bt
t ~0.

o.,(t) small
(6)

The smallness of er is dictated by the fact that
the energy dependence predicted by the simple
Regge theory with real trajectories is known to be
roughly correct. It is also a desirable property
from the complex-pole viewpoint since the small-
ness of nl is the basis of the complex-pole approxi-
mation.

B. Nonzero Polarizations: The Phase of y&

The polarization, P, is given by

P —- —Im(A' B*)do'

dt

where A' and B are the nonf lip and flip amplitudes.
In the simple Regge theory the phases arise en-
tirely from the signature factor and, consequently,
for a given trajectory exchange, the phases of A'
and B are identical, predicting a zero polarization.
But it is known experimentally that in wN charge-
exchange scattering, for instance, the polariza-
tion is nonzero. Thus the simple Regge-pole

where a,f, (t) is found to be linear for small nega-
tive t and when extrapolated to positive t gives
roughly the correct spin values of the resonances.
For large negative t it may deviate from linearity
as a consequence of the presence of cuts.

In the complex-pole model, the energy depen-
dence comes mainly from the factor s ~, but there
is some energy dependence from the sin(o. z lns) and
cos(o., lns) factors also. If we assume at t=0

o.,(0) =0,

then we anticipate that ns(t) will be linear and con-
sistent with the reasonances for positive t. There-
fore, we expect
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which clarifies our earlier statements. This par-
ticular aspect of the complex-pole model, as well
as many others related to polarization, has al-
ready been discussed in the paper of Barik et al. 7

The important thing to note is that the sign of P
puts restrictions on the signs of Q„and Qe.

C. Crossover Zeros and Dips: yR

Crossover zeros refer to the zeros in the ampli-
tudes necessary to explain the change in sign in
the difference (do„/dt —do, , /dt) b—etween particle
and antiparticle differential cross sections. The
evidence comes from w'P, K'P, and PP -PP reac
tions, and also from sum rules. The zeros seem
to occur around i= -0.2 (BeV/c)' and in the non-
flip amplitude. The dips refer to the dips in do/di
which are associated with the zeros in the flip
amplitude. For m p- m'n they occur around t= -0.6,
and recent data indicate a dip in m P - gn around
t = -1.5.

The absorption model ' explains rather neatly
and systematically the occurrence of these zeros.
According to this model the low partial waves are
strongly absorbed so that the partial-wave distribu-
tion is essentially peripheral. In the dual absorp-
tive model proposed by Harari'4 it is argued that
it is the imaginary part of the amplitude which is
peripheral. The argument uses duality in addition
to absorption. If one saturates the amplitude with
periPheral s-channel resonances then it is most
plausible that the imaginary part of the amplitude
remains peripheral, but not necessarily the real
part where the resonance contributions tend to
alternate in sign.

The dual absorptive model then states that'4

ImT„=C s" ' J„(R( t)~ ), — (9)

where n is the total s-channel helicity change and
R is the radius parameter, expected to be of the
order of 1 F. The above relation (9) should be
understood in a qualitative sense, if not in a semi-
quantitative sense. However, it does describe
very simply the characteristic zeros of the ampli-
tude. We will use it to estimate the complex res-
idue parameters.

theory which works extremely well as far as the
s dependence is concerned fails in predicting the
phases correctly.

In the complex-pole model the phases arise not
only from the signature factor but also from the
complex residues, y, . Since the residues for A'
and B can have different phases, the polarization
is nonzero. For small el, one can write (with P„,
Ps as the phases of the residues}'

40'P
d el sin(&4

A possible relation between the complex-pole
model and the dual absorptive model was pointed
out recently by Desai. "" We will review here
some of the important points.

If we assume that R in expression (9) is a con-
stant, independent of energy, then expressions (4)
and (9) are similar in the limit nl-0. In other
words, one can think of the dual absorptive model
as an approximate version of the complex-pole
model. Equating the two in the limit e, -0, we
obtain

y„= .'C J„(R—(-t)~'). (10a)

IV. ESTIMATE OF yr

In our model the entire pole-cut structure is
approximated by complex conjugate poles with
residues and trajectories becoming complex for
I ~ 0. Thus y, (t) will have a (left-hand) cut in t
from 0 to -~ in addition to the usual (right-hand)
cut and subtraction terms. Thus

y„(t) = (possible subtraction terms)

P ~ dt'yi(t') P ",yl(t') (ll

where t, (&0) is the t value at threshold.
We adopt the attitude inherent in the dual absorp-

tion picture, '4 namely, that if the imaginary part
of an amplitude predicted by simple Regge poles
has a nonPeriPheral partial-wave distribution,
then the cuts in the j plane are st ong. On the
other hand, if the Regge poles give a PeriPheral
amplitude then the cuts must be sneak. The point
is that the correct imaginary part of an amplitude
must be peripheral so that the strength of the cor-
rection term due to cuts depends on whether the
original amplitude, as predicted by simple Regge
poles, is peripheral or not.

Thus we anticipate for the two amplitudes in
question,

y~- J,(R( t}~') -(nonf lip),
(10b)

Z,(R(-t)~2)
yR R( i}l/2 (f»p) ~

Thus we see that although the characteristic fea-
tures of nondiffractive processes provide a fair
estimate of y~, n R, the sign of the phase of the
complex residues, and to some extent n~, they do
not apparently throw much light on the magnitudes
of the imaginary part, yI, of the complex residues.
This problem is pretty much similar to having a
prescription for the imaginary part of the ampli-
tude while the real part still remains unknown in
the dual absorptive model. So we base our investi-
gation of y, on some theoretical guesses.
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First let us consider the nonf lip amplitude.
From the last section (see III C) we concluded, on
the basis of the dual absorptive model, that
y„-Jo(R(-t)~2). For R 1 F, this function has a
zero at t=-0.2 (BeV/c)2, which is, of course, the
famous crossover zero. The amplitude predicted by
simple Regge poles does not have this zero, and
it is, therefore, not peripheral. Hence, for the
nonf lip amplitude, the cuts must be strong. '4

As emphasized earlier, existence of cuts in the

j plane implies the existence of complex poles for
t ~ 0 and, therefore, of the left-hand cut in (11).
Thus, if the cuts are strong then the contribution
of the left-hand cut must be large. On the other
hand, the right-hand cut (plus any subtractions)
is present even when the cuts are absent and
should, therefore, reflect more the property of
the simple Regge-pole picture.

Evidently, our approach is somewhat perturba-
tion-theoretic. However, since we are only inter-
ested in a crude estimate of y„we feel justified
in using this approach. Substituting J,(R(-t)' ')
for yn in (11), we obtain

In Refs. 15 and 16, the flip and the nonf lip ampli-
tudes were treated in the same footing. In other
words, it was assumed that the J, structure in the
flip amplitude came entirely from the j-plane cut
and, therefore, the left-hand cut was the dominant
contributor. For this case, we can follow the
same procedure as in (12), (13), and (14) and ob-
tain

-X,(R(-t)'/')
R(-t)"' (17)

We tend to favor (16) over (17) even though we
are fully aware of the fact that thereby we are
losing a certain amount of symmetry between the
treatments of the nonf lip and flip amplitudes. How-

ever, we feel that once the simple Regge poles
have the factor n(o. + 1), then it is inevitable that
the right-hand cut (plus subtraction) will inherit
that factor. We also point out that in potential
theory where there are no cuts in the j plane the
a(a+1) factor is predicted and ean be expressed
in terms of the right-hand cut.

In summary, we anticipate
0

J,(R(-t)~') ='dt', '— + small corrections .
(12}

y/= -K (R'(-t)~') (nonf lip),

y/ —A. CR1 (flip)
(18)

Now the following relation is known":

J„(R(-t)"') P ' dt'X„(R(-t')"')
(R( t)1/2)n & (R( tr)1/2)n(tip t) (13)

where X„(R(—t)'/') is the so-called Struve function.
Comparing (12}and (13), we obtain

y, =-X,(R(-t)' '). This was the estimate obtained
in Refs. 15 and 16. However, we can take account
of the small correction term in (12) to express

y/=-K, (R'( —t}' '), R'=R (nonf lip) . (14)

y, =0 (flip) . (16)

We can assume y/=-Ao/ (flip) as a better esti-
mate with A, ~ 1, since o., is a small quantity.

For phenomenological purposes, we can assume
R' slightly different from R.

The flip amplitude predicted by simple Regge
poles has the famous term I'(a) ' of which we will
consider the first two factors, o(~+ I). Since
this term already has the structure of J„ the cuts
must be weak. That is, substituting J',(R(-t) ')/
R( t)~2 for yz in-(11), we obtain

J,(R( t)'/') -P 0 dt'y, (t')
R(-t)~2 ' + + t' —t

where we have associated the term C,o.(o. + 1) with
the right-hand cut as it comes from the simple
Hegge-pole theory. The almost identical behavior
of J, and o.(a+ 1) implies that

V. ANALYSIS OF EXPERIMENTS AND THE
BEHAVIOR OF 0.~ AND y~

If we assume SU, symmetry for the meson-ver-
tex residue factors we get the following expres-
sions for the charge-exchange amplitudes in gen-
eral:

T(v P- 1/'n) = —W2Tp, -

T(w-p -11n) = ~T„,,
T(K P -K n) = T

q
+ T„

T(K'n Kop) = —Tq+ T/,

(19)

The expression for the differential cross section,
polarization, etc. for the above processes can be
given in terms of the conventional invariant ampli-

where R'=8, A, &1. Ne note that these expressions
can only be estimates because rigorously speaking
one cannot cleanly identify, as we have done, the
left-hand cut as coming entirely from the j-plane
cuts and the right-hand cut (plus subtraction) as
due to the simple Regge poles.

In order to confirm our contention for the above
estimates we make a phenomenological analysis
of the experiments with complex residues as poly-
nomials in t. Then we compare the residues we
get from the fit with our estimates. Ne also
attempt to get qualitative fits to the experimental
data from these estimates.
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tudes A' and B as follows:

m'(2. 57) t
dt 16msk' 4m'

t E„b' —m'+ st/4m'
4m' 1 —t/4m'

16m s

2 ImAp
Av(w P —w'P) =

Phb

N

S = — Im(vB)~ ~dv.

(20)

since one of our interests is in an unbiased search
for the functional form of the amplitudes, we
chose quadratic polynomials for the complex resi-
dues in spite of the fact that it led us to having too
many parameters.

We have fitted the dn/dt, Ac, polarization, and
FESR" (finite-energy sum rule) values for the
process m p-m'n as well as the differential cross-
section data for g-p -gn. The data were obtained
from Refs. 18 to 20. We have obtained an excellent
fit to the above data with a X' of 135 for 146 data
points. The solid curves in Fig. 1 show our fits.
The following are the trajectory and residue pa-
rameters obtained:

n, ~= (0.5V+0.91t)+ i0.26(-t)~',

A„'(, t) = y,",(t) &( „)( / .) "

+y', (t)](n „)(v/vo)"-',

B,(v, t) =y,'~(t)$(n.~)(v/v. )"'" ' (21)

We parametrize the amplitudes A. ' and B for the
vector- and tensor-meson exchanges as follows:

(23)
n,„=(0.48+ 0.8t) + i0.39(-t)~',

y» = 1.29 e"&'[(I +14.1t+ 15.2t')

+~4.3i~(-t)'~'(1+0.27t- 0.9t')], (24)

P„=15.19 e~~'[(1+2.89t+ 1.43t')+ i0.3(-t)~'], (25)

where

where

+y „(t)((n,)(v/v, )" h, =2.245 (BeV/c) ', d~=0. 58 (BeV/c) ',
h„=2.71 (BeV/c) ', d„=O.VV (BeV/c) '.

k stands for p or 4, exchange,

v = Ei b
+ t/4m ~

p =1 BeV,
~-fmn~~

$(n „)= . , v = signature =+1.
singe, „

The trajectories and the residues are parametrized
in the following way:

n„= (au+ ba t) +ig,(-t)

y,"~ =hoe ~ [(I+yot+y, t )+tyz(-t)~ (I+y3t+y4t )]
gA (22)

y,', = d,e'~ '[(1+~,t+ ~,t')+ i~,(- t)~']

Hence we have 20 parameters as such. At the first
instance it might appear that such a large number

of parameters would give enough flexibility to fit
the data. But it is not so. As a matter of fact the
parameters introduced like h„dp yp yy Ap A, y

and a~ and b, can be approximately fixed in an ob-
vious manner. As for example, from the knowl-

edge of the sum-rule zeros of S, and the cross-
over zero we can fix y, and y„whereas the dips
in dc/dt for m P n'n and-w-p-qn and also the
zero in S, would fix A and X, uniquely. However,

We note that er vanishes at t=0 and grows as
(-t)~' as -t increases. To get a feeling for the

average behavior of e, over an interval t, we de-
fine

tp

(n,),,= — dt n, (t) .
0 0

Taking t, = -1, we find for p and A, [see (23)],

(n, )p=0.17, (nI)„=0.26.

The solid curves in Fig. 1 correspond to our fits.
The dip structure in der/dt and the sum rules So

and S, for mN charge exchange (CEX) are well re-
produced. Here y~ plays the important role. To
get the correct sign of the polarization y, must be
negative, and P„and gs (the phases of the resi-
dues y, for the A' and B amplitudes) pass through
——,'g at t=-0.1 and t=-0.5, respectively. This im-
portant observation was already made in the paper
of Barik et g/. ' The difference between our work
and that of Ref. V lies in the fact that we have ob-
tained a larger el for p, the reason being ihat we

have gone to much larger t's including the region
near e~ = -1 where in order to avoid a peak coming
from (sinvn, ) ', we need a larger n, . As far as y,
is concerned, since it contributes very little to the

amplitude, the contribution being elyl as compared
to ys [see (14)], the only place where its value can
be determined to a good accuracy would be those
points at which y„=0. Therefore, for the same
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value of n, y, a larger Q., would mean a smaller y, .
Thus our yr is sma1.ler than given by Ref. V. In
fitting da/dt for v P-qn where A, exchange occurs,
we kept the same residue function as p except for
the overall exponentia1. constants. We obtain ex-
cellent fits to do/dt including the dip near n =-1.
The available data on polarization in p p-qn are
quite meager and have large errors; however,

our predicted polarization is positive and consis-
tent with the data.

The dv/dt for K p-K0n, and K'n-K0p are
given in Fig. 2. Here we have (A, + p) exchanges.
The solid curves correspond to our predicted fits
where no new parameters are introduced and the
overall normalization constants are determined
from SU, . Our predicted curves agree quite well
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(e) and (f) sum rule 80 and S& respectively for n. p- ~ n. The data are from Refs. 17-20.
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IO

(a}

with experiments. The experimental data are
from Ref. 21.

The solid curves in Fig. 3 correspond to ys, ys,
0.1 yI, and n, y, that we obtained from our fits
[see (24) and (25)]. The n, corresponds to that of
p. The dashed curves correspond to the Bessel-

Struve functions which approximate these quanti-
ties. The reason for plotting e,y, instead of yl
is, as pointed out earlier [see (6)], the contribu-
tion of y, to the amplitude appears in the form
&rye.

The dashed curve in Fig. 3(a) corresponds to
the J, function which approximates ys and is ob-
tained by fitting the sum rule S,. We find it to be
of the form [f is in (BeV/c)']

Zo = 1.33 e ' "Zo(6. 28(-t)~') mb BeV/c . (26)

IO =

-I
IO =

IO =

-I
IO =

IO

IO =
OJ

I

tJ
IO-a

4l
CO

BeV/c

BeV/c

BeV/c

BeV/c

Notice that once the first zero in J, is known then
all the subsequent zeros are determined. There-
fore, instead of being coincident with the first
zero of y~ and, thereby, missing very badly the
second zero, our J, function takes an in-between
position.

The dashed curve in Fig. 3(b) corresponds to
the 3'., function which approximates y, and is given
by

&1360=-1.33 e ' "~,K,(4 50( t)~. ') m-b BeV/c. (2'I)

Notice that the over-all normalization factor is the
same as in (26), as it should be. It has a slightly
different radius which presumably corresponds to
small corrections due to the right-hand cut [see
(14) and (18)]. The agreement with nzyz" is excel-
lent.

In Fig. 3(a) we have the Z, function which corre-
sponds to y ,

b IO=
K n ~Kop+ {b)

-o.Bs& ~85 78(
5.78(-t)~' (28)

io-'=

IO'

IO =

IO

IO =

- 5.5 BeV/c

7. l BeY/c

9.5 BeV/c

The agreement with y~ is remarkably good.
In Fig. 3(c) we have plotted n, yls which is ex-

tremely small. As pointed out in Sec. IV [see (16)
and (18)] it was anticipated to be negligible. It is
compared with An, ' (dashed curve).

Thus, in terms of simple analytic functions our
model would predict the following form for the
amplitudes:

2'-(J', (Ro(-t)~')- iX,(R,'(-i)'~')] s "+$(o.', )

+/i, (R,(-i)~')+i',N,'(-i)"')) s -«(n ),
(29)

R-(J,(R,(-t)' ')-i Xn,] s "+ '$(n, )

+/i, (R,(-t)"')+i X~,J s"--'~(n ),

IO l2. '5 BeV/c

IQ
-5

0,0
I

0.8 I.6
—t ( BeV/c)

FIG. 2. The predicted da/dt for (a) K P K n and (b)
K+n K p against the experimental data ref. 21).

where R, =6.2& (BeV/c) ', R,'=4.50 (BeV/c) ',
R, =5.78 (BeV/c) ', and A.=0.1. Note that, apart
from the over-all normalization and trajectory
functions, there are only five parameters, R„
R,', A., and the two nr's corresponding to p and

A„ the radius R, can be fixed a Priori to be 1 F.
The dashed curves in Fig. 4 correspond to the

approximation (29). The agreement is quite good.
The negative sigri for the residue in A. ' is neces-
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sary to give positive polarization for -t&0.6 in mN

CEX. The radius R, is somewhat larger than R,
in order to fit the sum rule S,. The R,' is smaller
than R, in order for polarization to be negative for
-t &0.6.

We emphasize that a qualitative agreement with
the main features of all the four reactions could
be obtained in terms of only tzoo parameters, i.e.,
the two er's with Rp Ro Ry fixed aPxioxi at 1 F

and A. =O. The shrinkage and power falloff, the
crossover zeros, and the dips, as well as positive
polarization for low -t, can be understood.

In Figs. 5(a)-5(d) we have plotted the s-channel
helicity amplitudes vs t (solid curves) and have
compared them with the results obtained from the
amplitude analysis at 6 BeV/c. 'a For the phase
of the I=0 amplitude we have used the values ob-
tained by Barger and Phillips. 2 The agreement
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FIG. 3. Comparison of the real and imaginary part of the complex residue functions Vs, Vss, Vl, and Vsl obtained from
the fit (solid curves) with Jo, Z&, nl ko, and Aa.l, respectively (dashed curves). The quantities are defined in the text
fsee Eqs. (26)-(29) in the text]. Also compar. d are yz with niyl lns for a typical value of s =10 BeV . The negative
signs for the imaginary parts of the residue functions are ignored.
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is remarkably good. The zeros in Img„and
ImE, arise naturally from the J,- and J,-type
structure. The almost double zero in ReI', is
because our I', is very much like a Regge pole
with zeros coming from J, and the signature fac-

«r [see (29)l. ln the ScaAM»d ~eak-«t ~«e»
(at least in their earlier versions") ReF„ for p
has a zero at a lower value of t than in ImE„.
However, because of the negative phase of the y,
residue, the zero of ReI'~ in our complex-pole
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FIG. 4. A comparison of the results obtained (dashed curves) with the residues estimated in terms of Bessel-Struve
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(e) SUB coefficients are used for the over-all normalization [see Eq. (19)l.
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model is pushed out beyond that of ImF„.

VI. SOME OBSERVATIONS ON THE
COMPLEX-POLE MODEL

A. Otl(t) near t=o

has only a right-hand cut then away from it (e.g. ,
in the region t ~ 0) it will be a smoothly varying
function. " Now a left-hand cut can arise from
pole-pole collision or pole-cut collision, In either

Throughout the paper we assumed n, to vanish
at t = 0 and, in fact, took it to be of the form
g(-t) . The point was that the singularity struc-
ture in t of Q. , and y, should be similar. Since the
residues y, are expected to be of the Besse1.—
Struve function type with argument R(-t)~', it
was logical to parametrize n~ as g(-t)'ts. How-

ever, another similar form, e.g. , (-t}' ', is also
entirely plausible. If we do not take the Bessel-
Struve function comparison seriously, then el
need not be of the above forms. It can thus be a
constant, or linear in t, etc. The present experi-
ments do not distinguish between the different
forms.

The data most sensitive to et' (and also to yt)
would be the shape of the polarization curve very
near t= 0. A careful measurement of this quantity
near t=0 would throw considerable light on the
behavior of e, . It should be noted that the t-plane
singularity of ct, (t) and y, (t) is related to the j-
plane singularity of the partial-wave amplitudes.
A square-root-type singularity in t implies a
square-root-type singularity in j, a log-type in t
implies log-type singularity in the j plane, and
so on.
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B. J„(R(-t)'~s} as an "Effective" Residue O. I 5

In potential scattering the residue of the leading
trajectory has, generally, only the right-hand cut.
From unitarity above threshold„ t & t„ the real
part of the residue is proportional to Imo. . Since
Imn is known to be a smoothly varying function of
t the same will be the case for the residue. Its
continuation to t &0 should also give a smooth func-
tion. On the other hand, nature seems to require
an oscillating function with zeros along the nega-
tive t axis. The crossover zero is a case in point.
In previous Regge-pole analyses such a zero was
introduced in Bn ad hoc manner. In potential the-
ory it corresponds to an "extinct" bound state
which is impossible to achieve. " Even if one puts
in an ad hoc zero in Regge residue, the real and
imagniary part of the amplitude, within the simple
Regge-pole picture, will vanish at the same point.
This is, however, inconsistent with experiments. "

Clearly then "something else" is needed to pro-
vide a mechanism for oscillation and zeros in the
residue for t&0. This could be in the form of an
additional left-hand cut in the t plane. This is
very plausible because from the property of the
dispersion relations it is evident that if a function
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FIG. 5. Real and imaginary parts of the s-channel spin-
flip and spin-nonflip amplitudes, shown against the points
obtained by Halzen and Michael (Bef. 22). For the Pom-
eranchukon phases the values used are those given in
Bef. 23.
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case we have complex poles and (complex) resi-
dues with yr as the discontinuity of residue functions
across the left-hand cut.

However, as we noted earliex the contribution
of yr to the amplitude is small as long as n, is
small. Thus y~ by itself can be considered as the
"effective residue. " From the dual absorption
picture we hRve noticed thRt pg 18 6886ntlRlly
Z„(R(-t)~'). One of the remarkable facts is that
even to the very low energies where prominent
resonances exist and which are peripheral,
Z„(R(-t)' ') continues to be the "effective" residue.

Finally, we note that even though the derivation
of J„(R(=t)'/') is couched in the s-channel language
it can also be obtained from t-channel absorption.
This is explained in Ref. 16.

C. The Negative Phaselof y+
and the Shrinking Radius

It is pointed out in the earlier paper of Barik
et al.' as well as in the present one that the phase
of y, must be negative, at least for the p trajectory.
This is essential in order to have the positive
sign for gN CEX polarization in the interval -I;
= 0-0.6. The question to ask is whether there
is anything fundamental about this negative sign.
It would certainly be nice if this were the case
because then A„ur, etc. , all vector and tensor
trajectories will have a negative phase for the
residues and there will be an enormous predictive
powel ln our model. A negRt1ve phase fox' +2
gives Positive polarization for m p-gn for low -t.
The data available at present are consistent with

this but more data are clearly needed.
In Ref. 25 it is pointed out that a negative phase

for the residue implies that the complex poles
must be on the unPhysicaE sheet. The arguments
Rre Qot entirely x'igox'ous RQd Rx'6 4Rsed on R model,
but if found true under rigorous examination then
we are clearly dealing with a rather fundamental
aspect of physics. The situation then becomes
very similar to the Breit-Vhgner poles which
from causality are known to be on the unphysical
sheet of the energy plane. Vfe note that multi-
Regge models also predict poles to be on the un-
physical sheet. ~

The existence of a negative phase also implies a
"shrinking" radius. The point is that, within the
complex-pole framework, we have [see (4)]

1m T - s & cos(y+ n, lns) .
Since er, by definition, is positive, a negative
phase, P, implies that the first zero of ImT
moves out in

~
t

~
as s increases. This would cor-

respond to a radius that is decreasing. Another
way to put it would be to observe that the dual

absorption picture can be expressed with a loga-
rithmically dependent radius, "i.e.,

ImT„= s "J„((R,-R, lns)(-t)'/'),

where R,(-t)~' corresponds to P and R,(-t)~' to
er. This expression clearly shows the decrease
in the radius. There is, of course, the character-
istic radius (n'lns) ' coming from s" which re-
mains unchanged. Now the radius involved in J„
shrinks but does so very slowly. Typically, R,
is -5 (BeV/c) ' and, therefore, for R, between 0.1

and 0.5 corresponding to (n/) between 0.1 and 0.5
the radius shrinks to zero only for g between e'
and e' The shrinking of the radius is therefore
too small to be of practical interest.

Conceptually, howevex', the shrinking implies
that if the poles are on the unphysical sheet then
at asymptotic energies the cut dominates for all
t." The zeros inherently associated with the com-
plex poles by then have moved out.

D. The Radius R and 0.1

One of the puzzling aspects of the complex-pole
phenomenology is that whereas n is quite small,
the residues y, are large and rapidly varying.
Another way of expressing the same thing wouM

be to note that the radius 8 in the Bessel functions
and n, arise from the same source, namely, cuts
in the j plane (or absorption effects), and yet R is
more than an order of magnitude larger than a~.

In Appendix B we attempt to answer this question
Rnd point out that the cox'x'ectloQS to the residue
function due to cuts are expected to be much larger
than to the trajectory function. Even though we do
not have any rigorous theory at the moment we
anticipate that

such that Rs +1-0,
a-0

ys(t) - const, yr(t) -0.
We note, in passing, that as R-O,

Z„(R(-t)~')
[R ( t}]/2]n

X (R(-t)"')
[R( t)l/2]tt

E. Exchange Degeneracy

In our approach we tacitly assumed that exchange
degeneracy was valid. That is, we assumed

Im T„-g (R(-t)~')
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for both p and A, trajectories. Of course, nl for

p and A, are different and, in that sense, exchange
degeneracy is broken. One might say that the
presence of cuts breaks the exchange degeneracy.

As a possible model one might assume that,
when cuts are "turned off, " exchange degeneracy
is exact and the amplitudes are described exactly
by simple Regge poles. In that case we have

gal CX

ImA'-o. (n+1) ~ ~ ~ . s"
sine+

1 ~1 —e-™n
Sr(a) sinva

~i
Im B a(ty +-1). ~ ~ ~ . s"

s intel'0. '

e-4 $0
s

I'(o. ) sinwn

for p, A„etc. Notice that both amplitudes have
the same n factors. This follows from exchange
degeneracy as well as the ghost-eliminating mech-
anism. The factor (n+ I), for instance, is needed
to eliminate the ghost in p at n =-1, and the fac-
tor o. to eliminate the ghost in A, at n = 0. From
exchange degeneracy then both p and A, have
n(++ I), etc.

When cuts are "turned on" the zero at o, =0
(i.e., at f =-0.5) in A' is moved in towards f=-0.2
(cuts are strong) whereas the same zero in B is
not greatly disturbed (cuts are weak). Thus for p,
A„etc. we have

A'. ~(a+1) ~ ~ ~ -J,(R(-t)'~'),

B: n(&+I) "-J,(R(-f)"').
Exchange degeneracy within the A' amplitudes

and B amplitudes still remains valid except for
the breaking due to different n, s. Our phen-
omenological approach suggests that the picture
implied by (80) is roughly correct.

F. The Ghost Problem

The prescription

ImT„-J„(R( f)~')

cannot possibly be applied within the context of
simple Regge poles. The problem is that of ghosts.
For the nonf lip amplitude, the function Jo(R(-t)'~')
cannot eliminate the ghosts at negative integer
values of o. (odd for p, even for A,), if R is taken
to be the standard Fermi radius. Even the func-
tion J, for the flip amplitude cannot do the job.
One can arrange J,(R(-t)~') to vanish at c =-1 for

p and at a. = 0 for A, by choosing radii close enough
to 1 F. But the ghosts next in line cannot be elimi-
nated. This is so because we have for the distribu-

tion of zeros

J: t„--n,
1

, or sinn+, ' t„--n.
1 (o.)

Thus the zeros of J, are more widely spaced than
those of sine' which are responsible for the ghosts
in the amplitude.

One way of incorporating the relation ImT„-J„
would be through the complex-pole formalism. In
this formalism there are no infinities as a„passes

. through negative integers.
Even though there are no infinities, the function

(sinao. ) ' will have the following form as o.s- -n:

1 1

sinvo. , as--n m[(o.s+n) mini]
'

Thus it will have a peak of width gal as ca~ passes
through -n. The amplitudes will have additional
factors multiplying the above function, namely,
the residues y, , and the signature factor.

Near e~ = -1 in the p trajectory, the B ampli-
tude is dominant and its y~ is proportional to
J,(R(-t)~') (besides the exponential function)
which is going rapidly through zero. Consequent-
ly there is no peak in B. The A' amplitude is ex-
tremely small compared to B and has an exponen-
tial function in the residue which is rapidly falling.
Furthermore nz at t= -1.5 (near na ——-1) is larger
and the peak is "smoothed out. " Thus the con-
tribution of A' to dg/dt shows no peak. For A,
the interesting region is near e~ =0. Again B
has a J,(R(-t)~') as the residue and has no peaks.
The A. ' amplitude even though small compared to
B is not negligible. However, n~ for A, is larger
than for p and the peak is again "smoothed out. '*

Thus the contribution of A' shows no peaks in der/

dt.
%'e have arranged the residues so that phenom-

enologically at l.east there are no peaks in the do/
dt and in that sense we do not have a "problem"
of the ghosts. Nevertheless, at negative integral
values of nR (odd for p, even for A, ) there is a
pole in the complex j plane and (singo. ,) ' does
have a peak. In other words, when the cuts are
absent the ghost poles are on the negative real
axis and are totally eliminated by the correspond-
ing zeros in the residues, but in the presence of
cuts these poles are moved off into complex plane
and are not totally eliminated by the residues.

The important conceptual question to ask is
whether there are any basic physical arguments
against the existence of these poles. We do not
know of any, as long as the poles are in the com-
plex plane. Furthermore, if the complex poles
for t~0 lie on the unphysical sheet in the j plane
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for which there are good indications, then there
should be even less objection against the ghost
poles. We anticipate, of course, that the corre-
sponding t-plane poles lie on the unphysical sheet
of that plane.

One might wonder why one should not assume
the presence of explicit ghost-eliminating factors
even in the complex-pole formalism. This would
be tantamount to the assumption

rmz'- (n+1)(n+ 3) Z„=
r(-', (n+ 1))

for p

and

ImT-n(n+2) ~ ~ ~ 8 =, J (R(-t)'t') for A, .n p(Ln) n

The above expressions, besides looking ugly, are
inconsistent with exchange degeneracy and, more-
over, the significance of A as the radius of peri-
pheral interaction is lost. Phenomenologically
these expressions are not preferred, However,
more information especially on A, is needed be-
fore the final word can be said in this matter,

VII. COMPARISON WITH OTHER MODELS

We compare our model with the following models:

A. Simple Regge-Pole Models

Essentially all the data available can be fitted
by simple Regge poles provided we have enough
of them. """The pN scattering data, both elas-
tic and charge exchange, have been fitted by
Barger and Phillips" using five poles. As a phe-
nomenological fit it is a superb one and yet it is
important to examine its theoretical significance
in the light of the available information. %'e do
know about the existence of P, P', and p trajec-
tories but there is no direct evidence for their
P" and p' trajectories. To this we add the ques-
tion we raised earlier about introduction of &d»c
crossover zeros in the nonf lip residues. Since
the publication of these fits there has been a con-
siderable accumulation of knowledge regarding
the j-plane structure. There is now increasing
evidence that cuts exist and that absorption effects
are important. Our complex-pole model can also
be thought of as a two-pole model, p and p* say;
however, these are complex poles which take
account of the cuts with residues which are capa-
ble of incorporating the absorption effects. To fit
the data exactly we need many parameters but, as
we pointed out earlier, the residues and trajec-
tories can be approximated by simple analytic
functions which reproduce all the main features
of the reactions considered in this paper.

B. Veneziano Model

One of the characteristic properties of the Vene-
ziano model is that, apart from the overall nor-
malization constant, the entire amplitude is deter-
mined in terms of a single function, namely, the
trajectory function. It is possible to incorporate
complex poles in the model'8 but then the entire
amplitude including the residues are determined
in terms of the two parameters of the trajectory
function, a~ and er. For simple Regge poles it
is known that the model gives a factor 1'(n) ' to
both the nonf lip and flip residues. In order to
bring the zero in the nonf lip amplitude from .

t=-0.5 (corresponding to n =0) to t=-0.1, it is
most likely that nr will be found to be quite large.
That is, if nz is approximated as g( t)~' t-hen one
should expect g=1. For the flip amplitude, on the
other hand, the Veneziano representation already
gives the correct first zero and therefore we
should expect g=0. Thus we are faced with two
drastically different functional forms for the same
trajectory. There may be ways to avoid this di-
lemma and this subject should certainly be pur-
sued further.

C. Absorption Models

The SCHAM Model

This model along with the eikonal model" was
responsible for bringing about a significant advance
in our knowledge of high-energy phenomena in-
volving, especially, the question of dips, cross-
over zeros, and the general ideas about absorp-
tion. The earlier version of the model has had
difficulty in explaining the polarization in wN

charge-exchange and elastic scattering as well
as do/dt in w +P-q+n. Recently Ross has indi-
cated that the absorption factor previously as-
sumed to be purely real should have a significant
phase corresponding to the nonzero real part in
the I= 0 amplitude. " It is not clear, at the mo-
ment, whether a complex absorption factor will
solve all the difficulties facing the model. " How-
ever, it is obvious that the calculations in SCRAM
are no longer simple. For instance, the multipli-
cative constant, A., which took account of the addi-
tive contribution of diffraction-type amplitudes
will now have to incorporate the phases of the
respective amplitudes and in m-+p-g+n, one
will have to worry about the phase of elastic q+n
-g+n, and so on. The Chu-Hendry model" is
close in spirit to SCRAM but it is formulated dif-
ferently. It has no specific built-in s dependence,
but like SCRAM it assumes that both the real and
imaginary parts of the partial-wave amplitudes
are peripheral. However, indications from the
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recent mÃ amplitude analysis at 6 BeV/c are that
the real parts are not, generally, peripheral,
though the imaginary yarts are consistent with
being per ipheral. "

It is in the treatment of the real part of the non-
flip amplitude, A', that the major difference lies
between our complex-pole model and SCBAM.
Whereas in SCRAM (at least in their earlier ver-
sions") the ReA' for p has a, zero in t before that
of Imp', in our case the zero appears after be-
cause of the negative phase of y, . Consequently,
in SCRAM the gN CEX polarization vanishes around
t=-0.2, while in our case it vanishes around
t = -0.6 in agreement with experiment. In Reg of

p the difference between the two models is negli-
gible because our X parametex" is negligibly small.
Of course, Img' and ImB of the two models are
essentially the same.

2. The Dual AbsoxPtion Model

In this model, proposed by Harari, "it is as-
sumed that only the imaginary part of the ampli-
tude is peripheral. This picture w'Rs the basis of
our present formulation of the complex-pole mod-
el. As emphasized earlier, complex poles pro-
vide the most logical framework for the purpose
of incorporating the dual absox'ption idea. This
is so because crossing symmetry in the complex-
pole model brings in the signature factor and con-
sequently both the real and imaginary pax'ts of the
amplitude are expressed simply. From the dual
absorption model we estimate yz and then from
dispersion relations, etc. (see Secs. IIIC and IV)
we estImate pg Rnd hence the reRl Rnd Imaginary
parts of the amplitude [see (29)]. To this we add
thRt we Rvold the lnflnlt168 due to ghosts on the
negative real j axis (see Sec. VI F). Of course,
we have an additional quantity e~ which is diffexent
for different trajectories.

VIII. CONCLUSION

our complex-Regge-pole approximation in the j
plane is very much akin to the Breit-Vhgner ap-
proximation in the energy plane. Given the fact
that there are cuts this is the most logical and
economical way to express the partial-wave ampli-
tudes. As long as energies are not extremely high,
the total amplitude should also be well approxi-
mated by these poles.

Unlike the Breit-%'igner case where unitarity
relates the residues directly to the imaginary part
of the pole positions, in the complex Regge-pole
ease we are in the region t ~ 0 and no simple rela-
tion exists. The residues are, furthermore, com-
plex. Here, however, the absox'ption model plays
a cruc1al role. The dual absorpt1ve model

gives the correct estimate of the real part of the
residue function, whereas from dispersion rela-
tions for the residues we obtain the correct esti-
mate of the imaginary part.

Specifically, from the dual absorption model we
find that the real part of the residue function, y~„
should be proportional to the Bessel functions
J„Ot(-f)'~') with R - I F. The magnitude of the
imaginary part, yr, depends on the amplitude in
question. For the spin-nonf lip amplitude where
cuts are large (in order to produce the crossover
zeros) the left-hand cut in the residue function
should be the dominant one, in which case yl is
proportional to the Struve function -Ko(R(- t) ~').
The spin-flip amplitude given by the simple Regge
poles is already consistent with absorption and,
therefore, for complex poles the left-hand cut
should be negligible. In either case the phase of
the residue must be negative for small -t. The
conti lbutlon of pg to the RmplItude Rppeax'8 IQ the
combination el@i, which is small, and therefore
its precise value is not crucial.

%'6 have fitted the available data on m p- m'n,

m p-qn, K p-E n, and K'n-Eop. An exact fit
x'equires many parameters. Howevex, to a good
approximation, we were able to express the tra-
jectox'y and residue functions in terms of simple
analytic functions with very few parameters.
These functions being obtained on the basis of our
present theoretical knowledge. The criterion for
a successful model is not that it gives exact fits
to R pax'tIculRr reRetIOQ, but rather thRt It de-
scribes, even if qualitatively, the main features
of several different reactions. The main features
that we have encountexed are: shrinkage and pow-
er falloff in do/dt; dips and crossover zeros, and
the signs of polarizations. In the four reactions-
mentioned above we have been able to explain the
main features rather simply and to that extent
our complex-pole model has certainly been suc-
cessful. The project we would like next to embark
upon is to analyze processes with K*-K~* ex-
change, + and (if possible) I" exchanges, as well
as those with p and A,2 exchanges which we have
not considered here.
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APPENDIX A: UNITARITY IN THE I: CHANNEI. ,
.COMPLEX POLES, AND THE BREIT-%SIGNER FORM

Let us give a simple argument in favor of com-
plex Regge poles for t~ 0 based on t-channel uni-
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tarity. We first note that the S matrix which satis-
fies two-body elastic unitarity in the t channel can
be written in the form

D(j, -k)@'k)-D( k) ~ (A1)

where t=4(k +m'). Because of the possibility of
writing S in the above form it is clear that if S has
a cut in the j plane then so must the D's. The two
D's above differ only in the sign of k in the argu-
ment and- it is difficult to imagine one of the D's
having a cut and not the other.

The fact that D(j, k) has a eut in j is important.
Vfe assume the cut is along the negative real axis
between -~ and 0, We consider now t ~0. For
this t region D(j, k) is complex for j ~ n, and,
therefore, it must have complex zeros. However,
for the same t region D is real for j & 1. There-
fore, from the Schwarz reflection principle the
zeros for j ~ n, must be complex conjugate.

The lowest elastic threshold in the t channel is
at t =4m, ' which is quite close to t=0 where the
high-energy experiments are analyzed in terms of
j-plane singularities. Thus complex Regge poles
are quite relevant for high-energy reactions.

It is most instructive to write the D function and
the amplitude in a Breit-Wigner-type (or effective-
range-type} form:

D(j, k) = j n(t) +e-( t()j- n)
'

=j —no(t) + ie(n, —j)' ', (A2)

where, for simplicity, we have assumed a square-
root cut. This is an expansion around n, (t} which

we might think of as an "unperturbed" pole. It is
similar to the expression in the energy plane or
the t plane where, for integral j, one writes for
t &4m2

D(j, k) = t-mo'+i-,'I'(t-4m')'~', (AS)

m [D(j, -k) -D(j, k)]/2i
D(j, k)

m ~j, k

where m0 is the resonance position and I" the
width In .the absence of the energy-plane (t-plane)
cuts (I"= 0), we have an "unperturbed" pole m, ',
but in the presence of cuts (I'e 0) we have complex
poles, i.e., the Breit-Wigner poles.

Let us write the partial-wave amplitude A(t, j),

(
.
)

m S(j k)-1
k 2i

(
., m an, -ae(j-n. }~'

A t, jj=-
k j —n, +c(j—n, )~' '

where A+0 and b c are the discontinuities across
the t-plane cut. Defining m~n, /k=PO and mme/k
=-~', we get

A(t )
Po+ ~'(i n.—)~'

j —no+~(i —n.)~' ' (A4)

' '~) m, '-t-i r(t-4mn)&'' (A5)

where the numerator does not have a cut term.
In fact„one can rigorously show that the numera-
tor cannot have the cut term.

From (A4) we notice that the presence of the

(j —n,)~' term makes the poles of A. complex for
j ~ a, with the imaginary part proportional to e.
What is important to notice is that the numerator
is also complex. Consequently, the poles will
have complex phases. Unlike (A5) where the
numerator is simply related to the imaginary part
of the denominator, there is no such simple rela-
tion in (A14).

Finally, we note that the zeros of (AS), the
Breit-Wigner zeros, are known to be on the un-
physical sheet. This follows from the fact that
I' &0. In (A2) the sign of e is unknown but if e &0

(e &0) then the poles are in the unphysical (physi-
cal) sheet-the proof being the same as for (AS).

APPENDIX 8: DEPENDENCE OF y~ AND yi ON

FROM ABSORPTIVE MODEL

The usual absorption model predicts a logarith-
mic cut in the j plane. To simplify comparison
with our earlier discussions we will, however,
assume the cut to be of the square-root type (a
more detailed treatment is given in Ref. 5). The
statement of the absorption model is that there is
a "Born" term given by the simple Regge poles
with residues that do not contain any zeros and a
"correction" term due to the cut. The cut term
appears with a negative sign and has a slower fall-
off compared to the pole term so that at some t
there will be total cancellation and the amplitude
will have a zero. Thus we write

(Bl)

The important point to note is that the numerator
also has a cut term. This should be contrasted
with the form in the energy plane (i.e., the t plane}
for integral j ~ 1,

where b,D(j, k) is the discontinuity of D across
the t-plane cut. From (A2) we have

(B2)
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Since complex poles arise from. unitarization,
we will convert the above expression into an
expression which is consistent with unitarity. Let
us use the K-matrix procedure, where the function

po=0. 1

and, therefore,

p, =1.0. (B6)

A.o
1 -ipAo (Bs) Thus we find that for the j plane the imaginary

part of n for f ~ 0 (i.e., o.z) is then given by

~(f .
)

p. +p,(j-o'o)(j-o'.)~'
j ~.+ p. +p.(j —o.)(i —o..)~'

Since we are interested in poles of A(t, j), we
will use an iteration procedure and replace the
factor (j —n, ) multiplying (j —o,)~' by -P, . This
way we also facilitate comparison with (A4). We
then have

(B4)

(B4')

Now let us discuss how large p, and p, should
be in order to be consistent with the absorption
picture. According to the absorption model there
must be a zero at t = -0.1 in the amplitude given by
(B2). For the typical value s = 10 we find that

is consistent with unitarity. The quantity p is
[(t-4m')/4m']~' which is =i for small t. The
unitarized amplitude, we call A, will then be given
by

&~s& = pop. =o 1. . (BS)

Hence (ni) is smal/. However, the correction
term in the numerator of (B4), P~P„ is of the
same orden as p, itself.

In other words, even though in absolute magni-
tude the correction term in the numerator and the
denominator of (B4) is small and of the same
order, in the numerator the quantity being cor-
rected, namely, Po, is itself small. Thus it is
entirely plausible to have (o.,) small and yet have
the residues and their phases quite large.

In order to be most general one should write
instead of (A4) the following:

(
.
)

p, +e'(j —n.)~'+a "(j—o..)+ ~

j-n, +e(j —a,)~'

(B8)

where the higher-order terms in the numerator
are expected to be important just as the first-
order term was, We write it compactly as follows:

We have made the usual assumption. that the slope
of n, is half that of ao.

The quantity P, as we noted in Appendix A is
simply ha„which in turn is =Imn along the right-
hand cut in the t plane. Typically, for the zz case
for the p exchange, for instance, it is =(m~1'~)o."
=0.1. Thus

where P, and P, do not have cuts in j. One can
now take the Mellin transform of (B8') and then the
resulting complex pales will have a real part of
the residue, y~-P„and an imaginary part, y, -P, .
Each of these quantities will have considerable
structure in t. A more detailed discussion of this
will be given in Ref. 5.
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The (6,6*)8 (6*,6) representation oi "J(3)(3 SU(3) is presented and its use in breaking
chiral symmetry is discussed in terms of its contr ibution to meson masses, pion-pion
scattering lengths, baryon masses, and the nucleon 0. term. W'e include singlet, octet, and
27-piet SU(3) pieces in the symmetry-breaking Hamiltonian, and also discuss the possible
SU(2) S SU(2) classifications of the Hamiltonian.

I. INTRODUCTION

Recent experimental evidence on the s-wave
pion-pion scattering lengths" seems to indicate
the need for a chiral-symmetry-breaking Hamil-
tonian which transforms in a way other than (3, 3*)
8 (3*,3). In order to produce a large isospin-zero
s-wave scattering length, the original Weinberg
analysis' must be modified to include isospin-two
contributions to the 0 commutator. This in turn
requires the symmetry-breaking Hamiltonian to
contain pieces which belong to an SU(3) Cg SU(3)
representation which has isospin-two components

in its reduction to SU(3) and hence to SU(2). It is
also possible that a large value of the nucleon v
term would require these other terms, but this
conclusion is not definitely confirmed. Indirectly,
a recent analysis of the hard-pion Ward identity
approach to the pion-pion scattering problem'
which enforces unitarity within certain smoothness
approximations also requires isospin-two 0 terms
for the optimal solution. This result is, however,
also rather uncertain because of the many assump-
tions involved.

Assuming that such additional pieces are neces-
sary in the Hamiltonian, it is natural to investigate


