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U(3) x U(3) breaking (Ref. 15), will be discussed else-
where.

F. Strocchi and R. Vergara Caffarelli, Phys. Letters
35B, 595 (1971).
' The advantage of using AP.) instead of WP.) is that

AP) will likely have a well-defined limit as ~& (x)
=constant, whereas W(X) does not (Ref. 12). Moreover,
the connections with the semiclassical approximation
will be more apparent in terms of AP, ) rather than W(X),
as we will see below.

~ln particular, the group-theoretical properties of
H(x) govern the divergences of the local currents and
are connected with the PCAC equations.

G. Cicogna, F. Strocchi, and R. Vergara Caffarelli,
Phys. Rev. Letters 22, 497 (1969); Phys. Rev. D 1,
1197 (1970).

SThe functional method proves to be very useful also
in discussing the analyticity properties of the vacuum
expectation values with respect to the breaking param-
eters e&. This will be discussed in a subsequent paper.

R. Dashen, Phys. Rev. 183, 1245 (1969);L.-F. Li and
H. Pagels, Phys. Rev. Letters 26, 1204 (1971);27, 1089
(1971).
2~Similar values have been obtained by Parisi and

Testa, Ref. 12.
These relations could be obtained also from the sec-

ond-order equations (37)-(41). From a practical point
of view, however, the present method automatically gives
these formulas, whereas extracting them by direct elim-
ination of e and X from Eqs. (37)-(41) can be a somewhat
tedious task. This remark will appear even more rele-
vant in the case e3 & 0 where the second-order Ward
identities are complicated by the occurrence of three
mixing angles.

S. L. Glashow, in Hadrons and Their Interactions,
edited by A. Zichichi (Academic, New York, 1968), p. 83.

24N. N. Khuri, Phys. Rev. Letters 16, 75 (1966); 16,
601(E) (1966).

25Alternatively, one may use the following formula:

tan& =-202 1-—, 1-4—
which can be derived without making any approximation
from Eqs. (59) and (60).

This equation follows easily from Eq. (59) by putting
%8 =0, and is the standard GMO formula including mixing.

27Putting m zi =1422 MeV would lead to an angle of the
order —5 . A further possibility, actually, cannot be
excluded, viz. , the occurrence of a mixing between X
and E. Such a mixing would in fact be consistent with
our Eqs. (59) and (60).
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Finite-energy sum rules and current-algebra sum rules are shown to work at the quark
level. Making use of these rules, and of a factorization assumption for the basic meson-
quark amplitudes above threshold, some well-known SU(6) results are derived. Low-energy
parameters in xQ and nN scattering are also evaluated. Using our model for the mN a&,
P-wave scattering lengths, an inconsistency is found between the usual PCAC (partially con-
served axial-vector current) or p-exchange-model treatments and dispersion relations. It
can be removed if double counting of resonances and p-exchange terms is avoided. This pro-
vides good agreement with experiment.

I. INTRODUCTION

The quark model is usually seen as an easy way
of applying unitary symmetries to hadronic in-
teractions. The determination of coupling con-
stants and widths of resonances at low energies
and relations between cross sections at high
energies are classic examples in which the quark
model and the SU(6) symmetry scheme give the
same results. However the quark model is not
identical to SU(6), and the physics of hadrons is,
on the other hand, much more complex than SU(6)

or any other simple symmetry scheme. In this
paper we exploit possible non-SU(6} [or SU(6)~]
aspects of the quark model.

Inverting the normal procedure, we start by
going from hadrons to quarks rather than the
other way round. The reason is that if we want
more than SU(6}, we have to use experimental
information where it exists and where it has
motivated and justified a large variety of theoreti-
cal approaches. That means that we have to in-
corporate the knowledge gained in hadron physics.
%'e thus apply to quarks the well-established
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theoretical treatments of dispersion relations and
current algebra, and successful concepts of
duality and exchange degeneracy. This is the con-
tent of the next three sections. In Sec. II quark-
level finite-energy sum rules (FESR) (i.e., for
pseudoscalar-meson-quark scattering) are dis-
cussed. We show that duality, and in particular
the connection between s-channel exotic states
and t-channel exchange degeneracy, still holds.
Low-energy and high-energy additivity are then
unified in the additivity of quark-level duality
diagrams to generate hadron-level ones. In Sec.
III we consider current-algebra sum rules, and
using a factorization assumption for the imaginary
part of the amplitude over the entire physical re-
gion, we regain various SU(6} relations confirm-
ing the idea that the world of quarks is an SU(6)
world. Section IV contains the treatment of the
low-energy parameters in w Q scattering.

The advantage of working at the quark level
before returning to hadrons is a gain in simplicity.
The factorization assumption is justified by the
absence of important resonances at the quark
level and also by kinematic factors. This clarifies
a contradiction between the means by which cur-
rent algebra and the p-exchange model are applied
to the determination of low-energy parameters, in
contrast to dispersion-relation techniques. For
current algebra, or in the p-exchange model,
factorization is always applied to the real part of
the amplitude, while in dispersion relations the
only sensible factorization is of the imaginary
part of the amplitude, and then only in the region
beyond the strong resonance bumps. Current
algebra or the p-exchange model overcounts the
simultaneous contributions of direct- and ex-
change-channel terms. The overcounting is evi-
dent in the determination of the a, P-wave nN
scattering amplitude, where direct-channel and
exchange-channel contributions are both impor-
tant. When only one of the terms is appreciable,
for example in the a,' s-wave scattering length,
current algebra or p-exchange is adequate. We
conclude, in agreement with the ideas of duality,
that at a given energy we must include either
resonances or t-channel exchanges but not both.
These questions are discussed in Sec. IV and, as
applied to mN scattering, in Sec. V. With a very
crude model which handles correctly the s- and t-
channel contributions we overcome the difficulties
of the usual treatments and obtain good agreement
with experiments for the a,' ' ~N p-wave scatter-
ing length.

Finally, in Sec. VI we conclude that it is possible
to develop a quark model with quarks in the (s, t, u)
plane as well as in the (IYB) plane.

II. FINITE-ENERGY SUM RULES AT QUARK LEVEL

Quark-model additivity' or exchange models with
universality and factorization' give in general good
predictions for high-energy scattering of hadrons.
In the quark model the cross sections are deter-
mined by counting basic quark-quark (QQ or QQ)
contributions. There are two types of such con-
tributions: (1}those that are indifferent to the
nature of the participant quarks and give an over-
all term proportional to the pairs of quark lines
present in the process, and (2) those that involve
QQ annihilations. In the language of Regge poles,
they correspond respectively to Pomeranchukon
and particle exchanges.

We leave out the Pomeranchukon type of contri-
butions and consider additivity in forward meson-
baryon (MB) scattering. For NN and KX scatter-
ing one thus obtains the relations

f»f& f»a ~

f»~, INp-
~»w f»pr

(1)

(2)

(3)

where f~«~~ represents the MB amplitude cor-
responding to t-channel exchanges with the quan-
tum numbers of the vector (tensor) meson V (T).
Equations (1) and (2) are the usual relations for
exchange degeneracy of opposite-parity vector
and tensor mesons. Equation (3), a standard
universality or SU(6) or quark model result,
shows that exchange degeneracy does not occur
for vector (or tensor) mesons of opposite G

parity.
Now we look at additivity from a slightly mod-

ified point of view. Only the baryons are seen
as made up of quarks (Q=3I, O', A) and we count
basic MQ scattering amplitudes. Without Pom-
eranchukon terms one derives relations like

3(II +)=z(f»g, +&N )+~V»p+f «, )

3(&'6') =.'(f y, f )+ '(-f p+-f»~, }—-
3(1~'3I) = —,'(Z.„-X..).-'(X., —y...),

3(& &) = '(f»g, +f» }—'V»-p+f»g, )

3(&'d') = f~g, —~f»p

3(» (p) = f»y +3f»p,

(4)

(6)

(6)

(7)

(6)

(9)

where the left-hand sides refer to MQ amplitudes.
In relations (4)-(9), interpreted as finite-energy

sum rules' (FESR's) with a resonance saturation
approximation, it is easy to verify that the concept
of duality4 also works at the level of MQ scatter-
ing. We shall demonstrate this using the above
examples.
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The fictitious process MQ - MQ from the point
of view of SU(2) has the decomposition

8@3=3@15@6

and since we consider interactions with indepen-
dent quarks, we treat the one-quark representa-
tion as nonexotic. The left-hand sides of sum
rules (4) and (9}allow s-channel resonances; the
right-hand sides also show a nonvanishing con-
tribution. The left-hand sides of relations (5) and

(6}are exotic: (K'6') and (K'51) have S =+1. The
right-hand sides show vanishing contributions
from the exchange-degeneracy relations (1}and

(2). Note that the isospin-equivalent processes
at the nucleon level, (K 'p) and (K'n), are also
exotic, and exchange degeneracy also makes the
right-hand side of the corresponding sum rule
vanish. The left-hand sides of Eqs. (7) and (8)
are exotic: (K X) has I =1 and (v'6') has I = —,'.
The right-hand sides also vanish because of ex-
change degeneracy and relation (8). At the nu-

cleon level, for (K n) and (w'p) processes, the
s channel is not exotic (Z pole in one case,
resonances in the other}, and the exchange con-
tributions are also nonvanishing. The extra ex-
change degeneracy that occurs at quark level be-
cause of the equality of the quark couplings to
the isoscalar and isovector particles is reflected
in the absence of resonances in the I = 1 and I = 2

channels.
If we think in terms of s, t duality diagrams, '

those that refer to forward scattering and can be

related to additivity, can be drawn only for the
nonvanishing sum rules (4) and (9) [Figs. 1(a}and

1(b)]. The resonant part of the forward MB ampli-
tude can be obtained by summing duality MQ

graphs in the presence of two quark lines (Fig. 2).
Nonplanar diagrams, such as those for n-p- K'Z
and m-Z'- n'Z, are in this way automatically
excluded.

III. CURRENT-ALGEBRA SUM RULES

AT THE QUARK LEVEL

Usually quark-model calculations can be inter-
preted as a means of applying SU(6) to the interac-
tions of hadrons, and refined models with more
sophisticated dynamical assumptions as a means
of breaking that symmetry. However the classi-
fication of states into exotic and nonexotic is
specific to the quark model and goes beyond SU(6),
broken or unbroken. Further, that classification
is related, via duality, to FESR's. The fact that
duality and FESR's work in MQ scattering encour-
ages us to go further and consider other types of
sum rules, in particular current-algebra ones. As
has been pointed out, ' sum rules are the place
where SU(6) can be used in the driving term in
dynamical equations. These involve not only pole
terms, where SU(6) acts, but dispersion integrals
which are normally saturated by experimental
resonances and high-energy fits. We will use the
fact that some intermediate states (I =1, I = —,') are
absent in MQ scattering to make estimates of the
dispersion integrals involved in the sum rules.

We need the basic MQ couplings which come
from additivity' and which reproduce SU(6) re-
lations at the baryon level. They are

fo= 5f (1o)

where fq (f ) is the pseudovector wQ (nN) coupling
constant;

f'= ~
( ') f = —( ') =0'081

where gz (g} is the wQ (vN) pseudoscalar coupling

I

I

I

I

I -lk

I

I

I

I

I

(b)

FIG. 1. Basic meson-quark (s, t) duality diagrams:
(a) Z 6-Z 6; (b) m 6-~ 6.

FIG. 2. Meson-baryon (s, t) duality diagram from
additivity and meson-quark duality diagrams.
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constant and M (m„) is the quark (nucleon) mass;
the vector-meson-dominance (VMD) relation

1fyc= zfq,

where f„o is the QV electric coupling and fq the

yp coupling (fq«, ' -—2); the PCAC type of relation

c g~
( )y/2 Frr

f m„' (12)

where g„(g„)is the axial-vector weak coupling
of quarks (baryons) and F, is the pion annihilation
parameter. Another relation we need involves the
anomalous magnetic moment and depends on as-
sumptions about the mass of the interacting quarks.
We can either use

M(effective mass) = —,'Ms = —,'M„and Kq =Ks=0

or

)if R 5 Geg

and in the ideal-mixing limit ft) =A. X with mp= m

K =-3K = —,i
(13}

m
p

where K (Ks) is the isovector (isoscalar) anoma-
lous magnetic moment. The second hypothesis is
the one consistent with the sum rules we consider
next.

To generate current-algebra sum rules there
exists a general procedure'. Sandwich the com-
mutator of two operators (local or integrated
operators) between two states, insert intermedi-
ate states, and separate Born terms (i.e., one-
particle intermediate states) from physical-region
contributions. In general, the sum rules have the
structure

(isospin factor) = (Born term)+ (continuum),

and the term (continuum) is an integral containing
the imaginary part of an amplitude. This term
can also be considered as the dispersion integral
for the amplitude evaluated at v = (s —u)/4M
= &porn =0 ~

In most of the sum rules at the nucleon level,
the dispersion integral is saturated by low-energy
resonances, and usually a fairly good approxima-
tion (70-100/o of saturation of the sum rule) is
achieved by simply inserting the first 6 resonance.
When the sum rules are transposed to the quark
level the I =

& resonances are exotic and we must
necessarily abandon the philosophy of resonance
saturation. The choice is to adopt some sort of
exchange model dominating over all the continuum
region. More specifically, apart from quark-
model additivity relations, we will make use of
high-energy experimental fits extrapolated down

to the threshold, and thus relate different pro-
cesses via factorization of the residues.

It is to be remarked that this extreme approxi-
mation on dispersion integrals is made on ampli-
tudes whose Born term vanishes because t~ =0
and thus corresponds to saying that at quark level
and v~ =0, FESR's are identically satisfied with

any value for the cutoff.
As an example we consider now the Adler-

Weisberger relation. '" For simplicity and be-
cause we are not aiming at exact calculations,
we neglect the pion mass inside the integrals.

We write the Adler-Weisberger sum rule in the
standard form given above:

1 =g„'+F„'G(0)

with

(14)

v(w-6') —a(w'(P) = o(w-p) —a (w'P) (16}

and we evaluate (15), using an experimental fit of
wN scattering" (units of m, }:

(o o,)=1.-70v ". (17)

One then obtains, from (14), g„=0.67, to be
compared to the additivity value g„=0.707 [from
Eqs. (10) and (12) and numerical estimate of g„].
We interpret these numbers as meaning that the
approximation is not unreasonable and adjust G(0)
to reproduce the additivity result for g„:

G(o) =— (18)

If we consider now the Cabibbo-Radicati sum
rule" with vector-meson dominance and additivi-
ty" (or p-exchange model at high energies) we
obtain

K,' (0) = -', [K,(0}]'+G(0)(1/f ') (19)

with K,'v(0) = 1/mq' and K, given by (13); from (18)
and (19) one derives the Kawarabayashi-Suzuki-
Riazuddin-Fayyazuddin (KSRF) relation"

fpF„= mp. (2o)

The photoproduction sum rules of Fubini, Fur-
lan, and Rossetti say that

(21)

G(o) = — —(o- —o.),i "dv
(15)

7l' V
Uo

where I,=0.85m, is the annihilation parameter as
given by the Goldberger-Treiman relation and
(o —v, ) is the difference of the (w-6'), (w'6')
cross sections. Quark-model high-energy additivi-
ty tells us that [see (8) and (9)]
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(22)

where A y+ and A y are Chew -Goldberger -Low-
Nambu (CGLN)" amplitudes. Writing dispersion
relations for A,"(0)and A, ' (0) and considering
again only the Regge type of contributions, the
A,' amplitude will be dominated by ~ exchange
and A,"' by p exchange. Coupling the photon via
VMD the ratio of (21) to (22} immediately gives,
from (13), for the ratios of the py and &ay coupling
constants

-1 -1

a typical VMD, SU(3) relation. If one relates
A, (0) to G(0), again using factorization, and as-
suming that the ratio of the residues of off-mass-
shell particles is equal to that when they are on
the mass shell, then we have

(23)

A ~'~(0) = 2fp
'mp gq, K G(0). (24)

From (21}, (18}, (12), and (20) and the additivity
value of g„= I/v 2 one then derives a well-known
SU(6) result'

gp, =2m' 'fp.

Equations (20), (23), and (25) show that our treat-
ment of the dispersion integrals is consistent with
SU(6). It is probably not surprising that from sum
rules one reaches SU(6) relations in a much more
straightforward way working at quark level than
at baryon level.

IV. QUARK-PION SCATTERING LENGTHS

Before going to low-energy nN scattering, we
discuss from the same point of view low-energy
m Q scattering in order to check the consistency
of our model and to be able to reveal some incon-
sistencies in the usual PCAC or p-exchange-model
determination of low-energy parameters. ""

In the PCAC treatment one expresses the off-
mass-shell amplitude as a sum of two terms, one
corresponding to the scattering of axial-vector
currents by on-mass-shell targets and the other
being a commutator term. The first term is sat-
urated by s-channel resonances and the second
one is written in terms of electromagnetic form
factors. Huang and Urani" improved the current-
algebra treatment by including also a p particle in
the first term and were able to show that this
scheme is exactly the same as a full on-mass-
shell treatment, with saturation of the amplitude
by s-channel resonances and a p-exchange term.

Comparing the theoretical predictions of nN
low-energy scattering parameters with dispersion-
relation calculations based on detailed experimen-

tal information, one notes that they roughly agree
when either one or the other of the above terms is
dominant, but discrepancies occur when both give
important contributions. An example where the
commutator alone gives a good prediction is in
the determination of the ao~ ' s-wave scattering
length. The term with resonance saturation alone
gives good predictions for the a,' and a,", p-wave
scattering lengths. However, strong disagree-
ment occurs in the a,' ' scattering length where
both terms have contributions of the same order
of magnitude. From our model we shall suggest
that some sort of double counting between reso-
nance and p-exchange terms occurs when both are
added together.

We illustrate this first for n Q scattering. For
the s-wave scattering lengths the commutator
term gives the usual "universal" values for the
scattering of pions from any target of isospin —,'."
For the (+)p-wave scattering lengths the reso-
nance term is expected to give a good result, when
saturated, according to our previous discussion,
with the Born term alone (in the vN case the Born
term and the first ~ resonance give a good ap-
proximation). It is

a,', = ~(a,~+2a33) QfQ',

a,' = —,'(a»+2a3J} 3 fQ'.

(26)

(27)

I+ =-I . (29)

This is a curious result which, in our approxima-
tion of evaluating dispersion integrals for w Q scat-
tering, neglecting the pion mass, is automatically
satisfied; but the important thing that Eq. (29) is
telling us is that ImB, are likely to be relatively
smooth near threshold (as is an extrapolation from
a high-energy fit) without strong oscillations or
resonances whose relative contribution would
change considerably in going from v —1 to v+1 in
the denominators.

Also, from (29), the dispersion integrals for
the B' =- ,'(B++B ) and A" —= —,'(A, + A )-amplitudes
(the latter being once subtracted at the origin)

If one uses the definition of the p-wave scattering
lengths, neglects small s-wave contributions and
terms of order m, /M, and writes a dispersion re-
lation for the B, amplitude for scattering of n'
[see Hamilton and Woolcock (HW), Ref. 21], one
derives

2(a~~ —a~, )+ (a,~
—a») = 6fo'- &(I++I ), (28)

where

1 "
ImB&(v, 0) ImB, (v, 0)

4m 2M, v —1 v+1 J

Comparison of Eqs. (26) and (27) with (28) imposes
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must vanish. This is what one requires to derive
from the Adler condition" the relation a,' = 0 for
the (+) 3-wave scattering lengths. But we do not
here need to invoke the vanishing pion mass. At
quark level, violations of this relation are thus
expected to be even smaller than in nN scattering.

When the (-) P waves are also evaluated in the
PCAC or p-exchange model two relations were
obtained, which are easy to compare with dis-
persion relations. Using current algebra these
relations can be derived, for instance, from
Schnitzer's work" [Eqs. (26a) to (26d)], or using
dispersion relations from HW33 [Eqs. (4.28),
(4.29}, and (4.35)]. One relation, neglecting a
small derivative contribution, is

(a&3 —a33)+2fq k

(a3, —a33)+2fq3 1+k» ' (30)

if we disperse B' ' and we use our ansatz for
ImB. The reason is that while the p-exchange
model uses a proportionality for the real part
of the amplitudes

where k =2MK . This result is consistent with
dispersion relations, using our proposed ansatz
for the imaginary part of the amplitude and with
the same type of approximation. The other rela-
tion,

f 2

(a» —a») —(a» —a 33) = (1+K»)
8~m m

p

(31)

is, however, in disagreement with the definition
(neglecting small terms}

(a» —a») —(a» —a33) = ReB~ ~(l, 0), (32)
3

a»-—-0.90fq', a» =-2.10fq',

a„=-0.95fq3, a33=1.45fq'.
(36)

V. NUCLEON-PION SCATTERING LENGTHS

If one tries to transpose the model as it stands
to nucleon-level interactions it obviously fails. In
the low-energy region, resonance terms and extra-
polated Regge terms disagree strongly. For in-
stance, in wN scattering while ImA'„~, ~, is always
positive, ImA'„~, '„„is mostly negative because
of the strong n(1236) contribution; as a conse-
quence, while the contribution from the continuum
in n Q case is positive and g„&1, that contribution
in nN scattering is negative and g„&1.

Following pn idea of Gilman and Schnitzer, "'"
what we propose in wN scattering is to extract
the n(1236) pole from the continuum and treat the
remainder as due to n Q scattering, keeping in
mind (16}. As the first A resonance is close to
the threshold, we evaluate the Regge part as be-
fore with the threshold as a lower limit in the
integral.

To check the validity of the model we take the
Adler-Weisberger relation (14) for eN scattering.
According to Adler's calculation the saturation of
the continuum by the n(1236) alone would give
g„=1.44. In our model the Adler-WeisbergerAg
relation is then written as

g~' = (tt~, )' —&.'G(0),

and, using (18}, one obtains g„=1.23 while Adler
finds g„=1.24. In evaluating now the P-wave ~N
scattering lengths we write equations equivalent to
(30}and (32), but having extracted first the 6(1236)
from the continuum. We have

ReB' ' =(I+K }ReA' ',
we propose

ImvBl ~ =(1+k )imA'~ ~,

(33)

(34)

1 2 23(a,3 —a33)+ ,f' —n, k—
—3'(a» —a33)+ ',f' —Q 1+ k— (38)

where the fa.ctor (1+k»} now comes from ratios of
coupling constants. Because of the Born terms,
(33) cannot also be true; for ReA'l ~ there is an
important Born-term contribution which is negligi-
ble in ReB~ ~. In our n Q model,

ReB & '(1, 0) = (1+k "}G(0)= -'(1+ k )(I/F ') (35)

is half of the quantity given by the exchange model
fo» the real Pa»t of the amPlitude Equations (26), .
(27), (30), and (32) [with the right-hand side given
by (35}]form a soluble system from which the
p-wave scattering lengths can be determined. In
Eq. (30}we have used k» = 12 but the precise value
is not very important provided it is»1. The re-
sulting values are

—,[(a„—a») —(a„—a33)] = tj3+ (1+k»}G(0).
N

(39)

Equation (38) is still equivalent to the PCAC or
p-exchange-model expression. A really different
contribution comes from (39). For the (+) ampli-
tudes previous calculations using PCAC or p-
exchange models remain unchanged. We put k~
=3.7 and take values for the 6 contributions from
Ref. 19: n, =t3, =-0.028 and 63=0.048. We sum-
marize our result for the (-) p-wave scattering
lengths in Table I and show for comparison the
PCAC-p-exchange-model results and the results
from dispersion relations using detailed experi-
mental information. "'"
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a f y p -wave scattering lengths fo r ~N scat-
tering. A comparison of PCAC or p-exchange-model
calculations (Schnitzer, Raman, and Huang and

Urani ) with detailed dispersion relations (HW z and

Roper et aL.24) and the present work.

PCAC or p-exchange model Dispersion
Huang relations

and Roper
Schnitzer Raman Urani HW et al.

Present
work

a -0.005 +0.0123 -0,003 -0.021 -0.016 -0.016(-)

af+ -0.075 -0.083 -0.089 —0.081 -0.081 -0.083

It should be noticed that the discrepancy found

by previous authors in the a, P-wave scattering
length had resisted all attempts to explain it in a
convincing way. The inclusion of an exchange
term with I, =O" does not, of course, affect the
isospin antisymmetric part of the amplitude.
Schnitzer's suggestion" of adding more contri-
butions to the direct term beyond the n(1236)
worsened the result rather than improving it, as
can be seen in Raman's calculation. ' It can still
be argued" that if nonpole contributions are added
in the direct-channel term, they may interfere
with the excessively large p-exchange term,
bringing the a, P wave down to the experimental
value. We think however that our simple explana-
tion of the discrepancy is more appealing, and the
best support for it is the good agreement obtained
using an extremely crude model. The problem of
finding a too strong p term in the B amplitude was
also met in work with chiral Lagrangians, "where
the unjustified suggestion was made of neglecting
the magnetic pNN coupling in order to decrease
the over-all p contribution.

Our conclusion concerning the PCAC or p-
exchange-model calculations of low-energy param-
eters is again that, in the way they are normally
applied, they are in contradiction with dispersion
relations; on the contrary, agreement is reached
if, in the direct-channel term, one includes reso-
nances below a given energy and, in the exchange-
channel term, the remaining high-energy behavior.
This is in total agreement with the current ideas
of duality and the necessity of avoiding double
counting of resonances and exchange terms.

VI. QUARK MODELS IN THE (s,t,u) PLANE

Coming back to the quark model we would like
to draw attention to the following points:

(1} If the whole procedure of evaluating sum
rules and dispersion relations in n Q scattering
has any sense at a11, a quark model with massive
quarks (M ~ 5 GeV} and large anomalous magnetic

moment seems more fruitful than a model with

light Dirac quarks.
(2) Apart from the absence of I = & resonances,

a kinematic argument can be given in favor of the
extrapolation of the high-energy curve down to the
threshold in n Q scattering. If some sort of quark
excitations exist and lie on a Regge trajectory of
universal slope, a resonance region for wQ scat-
tering would be, in the s variable, of the same
order of magnitude as in mN scattering. However
in the v variable that region in the ~Q case is
narrowed by a factor m„/M and the Regge be-
havior is built up much earlier.

(3} Dispersion relations can be applied to de-
termine the remaining low-energy w Q parameters,
in particular, the s-wave effective ranges b,'.
We use the C' and C' ' relations of HW, com-
bined with an effective range expansion

3b&') = C&'),
p

where

(40)

-(a»+2a, 3+2a»+4a») (41)

where

(42)

( ) . 3 dv 0' -0'+
C = lim. . . „&, , ~-&ufo

lT z (V — ) V —V

-(a»+2a„—a» —2a33), (43)

and azp 03p are the s-wave scattering lengths.
For 0 +0, we use the fits of Ref. 11 and the add-
itivity relation

[o +o,]a=-,'(o +o,}"=0.720+2.73v ". (44)

Using also (10), (17), and (36), we obtain from
(40) and (42)

b~-) =+0.059,

b~') =+0.065.
(45)

The current-algebra or p-exchange-model deter-
minations of bp~" are much too model-dependent
to allow an unambiguous comparison. The same
parameters would be, in Schnitzer's" approach,

bp =+0.058, bp') =+0.144,

and with the Huang-Urani" prescription,

bp =+0.003, bp' =+0.038.

Some discrepancy appears in these results, but
the same also happens when these methods are
applied to mN scattering. However, there is
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over-all agreement with respect to the sign and
the order of magnitude of the s-wave effective
ranges. With the "universal" s-wave scattering
lengths and Eqs. (36}and (45) we complete the
usual set of low-energy parameters for n Q scat-
tering.

It therefore seems possible to construct a quark
model that includes, not only the language of uni-
tary symmetries, but also makes use of other
tools of strong-interaction physics, such as
duality schemes and dispersion representations.
Using Lipkin's image of the two planes (I, Y, B)
and (s, t, u) for strong interaction physics, we
tend to say that quarks and their interactions are

not only objects belonging to the (I, Y, B) plane -as
the usual criticism of more realistic quark mod-
els insists -but also to the (s, t, u} plane. This is
at least what some of our results strongly suggest.
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