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An absorption-modified pion-exchange model with coupled-channel unitarity and analyticity
fox the x+x system near the KK threshold is introduced. Data-analysis techniques for the
reactions m +N meson+meson+baryon are discussed.

In recent experiments, ' the n'm and K'K sys-
tems produced in the reactions

7r+ pf ~++ +baryon

have been studied at high incident energies and
small baryon momentum transfers in a region of
mm masses including the KK threshold point. It is
found that the gg "decay" angular distribution has
a forward-backward asymmetry moment (F',) which
exhibits a precipitous, almost discontinuous step
from about 0.15 to zero in a 10-MeV interval in gp
mass at m„„=980 MeV, along with a 50% drop in
da jdm„. It has been duly pointed out that the dis-
continuity in (y,) could be due to the strong onset
of the S-wave KK channel, which absorbs some of
the mm 8-wave probability, thereby reducing the
vn SP wave interference in-(F',). The effect is

actually complicated and difficult to study in terms
of m~ scattering amplitudes or phase shifts. How-
ever, we find the effect should be susceptible to
careful analysis of the "decays" a,nd the production
mechanisms for reactions (I) and (2). In this pa-
per we argue that the analysis should be done, and
we discuss the techniques necessary to do it prop-
erly. The yield could be very interesting informa-
tion on mm and even Kg elastic scattering ampli-
tudes. The technique to be described includes ab-
sorption-modified one-pion exchange together with
a E-matrix approach for the coupled-channel me-
son-meson scattering problem. It is clear that
coupled-channel unitarity and analyticity near the
EK threshold are required in the analysis and will
be crucial in resolving at least part of the iso-
scalar 8'-wave zm phaseshift ambiguity in the region
750-1000 MeV. '

The reduction of the data for reactions (I) and (2)
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will yield for example from the meson-rest-frame
canonical "decay" angular distribution all the
spherical average moments (ReYg} as functions of
t and m . The moments are linearly related to the
production density-matrix elements for the mesonic
system p„"„(f,m„,). If the production mechanism
is pure one-pion exchange, all of the moments
(ReY/) with m 40 will vanish, so that the angular
distribution for decay of a mesonic system with
spin l is the square of the Legendre polynomial
~P, ~'. Of course this is not observed, and the most
commonly accepted explanation is that absorptive
corrections "depolarize" the mesonic system from
the m =0-state through initial- and final-state elas-
tic rescattering. Absorptive effects have been
verified qualitatively in a variety of experiments,
but most convincingly for small t [t ~0.15 (GeV/c)']
by the experiment at SLAC of Baillon, et al. '

In order to study the actual processes z+p- p
+ v and v+ v-K+K from reactions (1) and (2) with
all particles on mass shell it is necessary to extra-
polate the moments from values of t&0 to the point
t =m, '. Because absorptive corrections are im-
portant for small t (t«), the Chew-Low extrapola-
tion is difficult (pure pion exchange does not over-
whelmingly dominate). ' In particular, the moments
(Y~) are affected. It is necessary to incorporate
absorptive effects into the extrapolation procedure,
either by using sufficiently high-order series ex-
pansions of the quantities to be extrapolated or by
using models which reduce the number of free
parameters.

The model we will describe is simple and (so
far) successful. ' It gives useful expressions for
the density-matrix elements p„"„athigh energy
and small t. It was used with l, l' ~1 to describe
all of the decay data of the experiment of Baillon
et al. in the p-meson region, giving very good fits
with only two parameters which are related to on-
shell pm phase shifts. ' The model gives helicity
amplitudes at high energy and small t for the pro-
duction of a mesonic particle with spin l and helic-
ity p in reactions (1) and (2) as

T ~ (-f)""P(m ')e"™~"/(f-m ')

with the proportionality independent of helicity, and

( t)""P(t)~(2l+-1)"'a,d'„,(g) (baryon vertex).

(4)

The factor (-f)"/2 is the minimal t dependence re-
quired by angular momentum conservation, where
n is the net helicity flip for the reaction. The ro-
tation function d' o(P) for a mesonic system with
spin I and helicity p has argument g, which is the
crossing angle of Trueman and Wick. ' The factor
P(t) in Eq. (4) represents a helicity-dependent

polynomial in t which is evaluated at the pion pole
f =m„' in Eq. (3). This procedure eliminates s-
channel low-partial-wave anomalous terms, which
are offensive to unitary limits, "and makes the
proportionality independent of l.

The exponential factor in Eq. (3) represents he-
licity-independent collimation due to "long-range"
absorption (which may depend on net helicity flip
n). Finally, the quantity a, is the partial-wave am-
plitude for v7/- 7/7/ (vv-KK), referring to reaction
(1) [(2)], normalized to exp(H, )sin5, for elastic
scattering in a pure isospin state, where 5, is the
on-shell. mm phase shift. The baryon vertex fac-
tors are given explicitly in Ref. 5.

The model in Eqs. (3) and (4) enables one to cal-
culate the density matrix elements. These, in
various combinations, can be fitted to the moments

(Yz) obtained from the data, with for example the
ratios Re(a,*a, )/~ a, ~' appearing as parameters.
For the assumption l, l' ~ 1, appropriate for the
p-meson region, there are only two such param-
eters, while for l, l' ~ 2 there are five.

The remaining step is to treat the data on reac-
tions (1) and (2) simultaneously. Probably the best
(tried and true) procedure in the vicinity of a
strong inelastic threshold is to use the K-matrix
approach for the partial-wave amplitudes a, .' This
approach gives a unitary representation of the
partial-wave reaction amplitudes with correct
analyticity near threshold. We review it and its
limitations for the present problem in the follow-
ing.

The K-matrix approach has been used extensive-
ly by many authors working on baryonic systems.
In this approach, the amplitude matrix [a, ]
=K[1—iK] ', where K is a nxn matrix that is
Hermitian, so that [a, ] automatically satisfies
unitarity. The K matrix defines a matrix M by
M=-k'+ "'[K] 'k'+ "', where k is a diagonal matrix
of center-of-mass channel momenta. The matrix
M is analytic in the square of a channel momentum
k' near its threshold (k' =0), so it is expanded to
first order as M =—M, ——,'R,k'. In terms of M,

[ ] k/+ 1/2(M k2l+ 1)-lk1+ 1/2

and for a single-channel problem, M =4""cot6, .
In a multichannel situation, a useful approximation
is to assume that R, is diagonal. Both M, and R,
are real and symmetric, and so is K if all channels
are open. Thus a simple two-channel situation is
described by five real parameters over a small
range of O'. This is appropriate for the mm, KX
problem in the vicinity of 980 MeV, if the contribu-
tions from, e.g. , the 4m channel can be safely ig-
nored. It is worth pointing out here that the KK
elastic reaction (with G =+) cannot be studied
easily, as it would have to be reached through KN
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-KKF with a much longer extrapolation to the kaon
pole and with concomitant difficulties arising from
K* exchange. Thus it is altogether a much harder
problem. On the other hand, we can get some in-
formation via the unitary K-matrix approach, since
we can (almost) measure vm- vv, KK from reac-
tions (1) and (2). To illustrate this, we can write
the two-channel Hermitian K matrix as

0.5

0.2

7T'+ 7/ —.Tr+ Tr

CROSS SECTION
UNITS)

with n (y) referring to the mv (KK) channel. For
S waves near the KK threshold, in terms of the
KK complex scattering length A =—a+ib, the pa-
rameters P, y can be eliminated, and we can write'

0. 1

I

950 970 / 990
/

~
/

I

I 0 I 0

Q zkb . 1+zQ' I - .
kW

a, (~v-KX) = v'ub 1+za "'
1-zkA 1-zo.

a, (KX- KX) = kA

(5a)

(5b)

(5c)

-0 I

FIG. 1. The calculated on-shell forward-backward
asymmetry moment (Y&) and the cross section for x+7l.

scattering near the KK threshold are plotted vs 7t 71 effec-
tive mass in MeV/c .

ikb(1+ n')
1 —ik(a+ nb)

' (6)

Below threshold, k-iI kI, so it is apparent that
nR- real, and a, (vm- mw) satisfies elastic unitarity.
As pointed out in Ref. 2, it is possible that the iso-
scalar phase shift 60 makes a rapid excursion. from
the "down" region (5P= 65'-75') to the "up" region
(5~p= 150'-170') near k' =0. From Eqs. (6) and (5b)
it is apparent that for this to happen, and at the
same time to have gp(vv- KK) be large, would
probably require that the parameter a be large and

where k is the KK center-of-mass momentum. In
this "zero-range" approximation, the three param-
eters o., a, b are real and essentially constant.
Through measurement of the magnitude and phase
of ap(vv- vw) and a, (vv-KK), the low-energy be-
havior of ap(KK-KK) can be determined. It is
clear that any contribution from the 4m channel
would weaken this determination, so ignoring 4p,
although perhaps warranted by the data, is in fact
a fairly strong assumption. We will return to this
point later.

Let us further assume, for the moment, that
l, l ' ~ 1, and that the P-wave KK scattering length
is small. We can estimate the value of A. neces-
sary to produce the cusp in (Y,) for values of o.

corresponding to the ambiguous "up" or "down"
isoscalar S-wave nm phase shifts in the 750-950-
MeV region. " It is convenient to write Eq. (5a),
which corresponds to isoscalax, since KK does
not affect isotensor, as ap(wm- vv) =as/(I —in„),
where the reduced K-matrix element eR is given
by

negative. This in turn implies the existence of a
virtual bound state of KK, which, of course, shows

up as a resonance in zm scattering just below the
KK threshold (k' negative and small).

The results of a simple two-channel on-shell cal-
culation are shown in Fig. 1. The moment (Y',),
and 0„, as functions of m„, are calculated with
a = -15.0 (GeV/c) ' and 5 =4.0 (GeV/c) ' in the
"down" case n =tan(1. 2 rad), with the p-wave am-
plitude given by the p-meso". elastic Breit-Wigner
tail (m p

=0.765 GeV/c', I'~=0. 120 GeV/c'). The
S-wave isotensor phase shift was taken to be -0.5

rad. ' The isoscalar parameters correspond to a
virtual bound state (resonance) at m„„=982
MeV/c' of width & 10 MeV/c'. The rapid varia-
tion of (Y',) from a rather constant value -0.15 to
a much smaller constant value -0.06 within a 10-
MeV/c' interval is reproduced. Note that v, „
shows a narrow dip at resonance, instead of a
peak, and that o„also undergoes a rapid over-
all decrease by about 30%%up as one goes from the re-
gion below 970 MeV/c' to the region above 990
MeV/c' (KK threshold). The gross features in
Fig. 1 are consistent with those of the data of
Alston-Garnjost et al. ', which are binned in 10-
MeV/c' intervals. By contrast, if we started
from the "up" case with n =tan(2. 5 rad), o,„shows
a peak and (Y,) a dip (not a step), so in this case
no virtual bound state could be nearby if xaPid
changes take place as observed.

Finally, we wish to stress the point that the
data, of course, are off-shell. The extrapolation
of the data to the pion pole must be done literally,
or in terms of a model. Details of the production
mechanism may affect the extrapolation proce-
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dure. For this reason, we have given a model so
that the on-shell parameters a, b, e, etc. can be
fitted to off-shell data.

We note that the first multichannel analysis of
this region has been attempted, ' but this analysis
has not included absorptive effects in the produc-
tion mechanism. The extrapolation to the pion
pole is therefore somewhat suspect, ' but the possi-
bility of a resonance just below the KZ threshold
is clearly present.

We conclude with a comment on the assumptions
that the 4m channel is negligible and that the iso-
tensor phase shift is slowly varying. The analysis

of Ref. 8 indicates some increase of 5,' in this re-
gion. A significant variation might result from the
4m channel, which is important above -1 GeV/c. '
Consequently, the 4z channel and a nonconstant 502

might have to be considered in a full investigation
of this region. This opens the door to considering
other effects which we have neglected here. For.
example, D waves could be easily included along
with I'- and D-wave inelasticity in the present
multichannel formulation. This is indeed a very
rich region for studying multichannel effects with
spin-zero particles.
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