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The complex-Regge-pole model is applied to mN elastic and charge-exchange scattering in
the forward direction. P, P', and p poles are assumed to dominate with both square-root
and logarithmic singularity at the branch point. The Pomeranchuk trajectory is parametrized
both as a real pole and as a pair of complex-conjugate poles. Various ghost-eliminating
mechanisms are tested, and good fits are obtained including excellent agreement with the new
~N charge-exchange and elastic polarization data. P' and p are nearly exchange degenerate,
but the data show no strong preference for either a real or complex Pomeranchuk trajectory
or for a square-root or logarithmic branch cut.

I. INTRODUCTION

In recent years Regge-cut models have played an

increasingly important role in the description of
high-energy scattering data. In the complex-
Regge-pole (CRP) model the cut contribution is
approximated by complex Regge poles so that the
entire scattering amplitude may be expressed as a
sum over complex poles. This model has been
very successful in fitting a wide range of scattering
processes, and in particular successful fits have
been obtained to the wN charge-exchange data."
These fits were characterized by positive, nonzero
charge-exchange polarization and a crossover zero
in the imaginary part of the spin-nonf lip amplitude.
The crossover zero in Im&' was accomplished
without introducing a zero simultaneously into
Red', and thus the usual contradictions of the fac-
torization hypothesis were avoided.

In view of the success of these earlier CRP fits in

wN charge-exchange scattering, we have extended
the results to wN elastic scattering as well. In the
analysis we were interested in the following de-
tails:

(2) Existence of new Polarization data. The
work of Guisan et al.' has provided new charge-
exchange polarization data for larger values of -t,
and Borghini etal, . have obtained m p and m'p elas-
tic polarization values4 which extend to larger —t
and are much more complete than previous data.
The new data place strong restrictions on phenom-
enological models, and it is of interest to test the

success of the CRP model in fitting these data.
(2) Crossover zero and simultaneous fitting of

all data. In a simultaneous fit of the nN elastic and
charge-exchange data the crossover phenomenon
can be studied directly, and one can determine the
precise relationship between the zero in Img, ' and
the crossover of the m p and m'p elastic differen-
tial cross sections. Also, the p parameters which
are consistent with both the elastic and charge-ex-
change data can be obtained.

(3) Nature of the Pomeranchuh trajectory. The
Pomeranchuk trajectory is parametrized both as
a real pole and as a pair of complex-conjugate
poles, and we shall include here a brief discussion
of the parametrization with complex-conjugate
poles.

It is now well established theoretically that com-
plex-conjugate Regge poles exist for t & 0 if cuts in
the j plane also exist. ' In this case the scattering
amplitude is represented by an integral over the
branch cut plus a pair of complex-conjugate Regge
poles, if the poles are on the physical sheet, and

by the cut integral alone when the poles are on the
unphysical sheet. However, the Pomeranchuk tra-
jectory has the following special property. If it is
present as a pair of complex-conjugate poles, then
either the poles are on the unphysical sheet or Ima
vanishes at t=0. Otherwise, total cross sections
would become negative at asymptotic energies.

Ball, Marchesini, and Zachariasen (BMZ) have
shown that the cut integral, at intermediate ener-
gies and small values of Imn, can be approximated
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modifications for a real Pomeranchuk trajectory
will be discussed later.

The wN invariant amplitudes A'(s, t) and B(s, t)
for individual P, P', and p exchange are param-
etrized as follows:

by complex-conjugate poles. ' This approximation
is expected to hold for a complex Pomeranchuk
trajectory in the same way as for other complex
Regge poles. Thus, at intermediate energies and
small Ima, the entire scattering amplitude may be
parameirized with complex-conjugate poles includ-
ing the Pomeranchuk txajectory.

Because the BMZ approximation fails at very
high energies, where it is necessary to calculate
the behavior of the cut integral directly, we have
restricted the maximum value of P» in the experi-
mental data to about 30 BeV/c. Within this range
we wish to determine whether the data show a pref-
erence for either a real or complex-conjugate
Pomeranchuk trajectory.

(4) Type of branch point singularity. Cut models
involving both logarithmic and square-root singu-
larities at the branch point have been proposed,
and we attempt to determine which is superior.

(5) Behavior of comjlex trajectories. It is of
interest to determine more precisly the param-
eters of the p and P' trajectories in the CRP mod-
el and to test the hypothesis of p-P' exchange de-
generacy.

(6) Models for the residues. Different models
for the I= 0 residue functions are used including
the Barger-Phillips cyclic residue, the Chew
mechanism, ' and the no-compensation mechanism. '

p Qf+

A'(s, f) =r„— 4(~, )

V
tx

+r ~ — 4(o' ),
Vo

1

B(, f) =r, — 5(,)
Vo

0,'1
+r s — 5(o' ),

Vo

where

t
v =E»+ and v0=1 BeV

4m„ (3)

and the signature factor g(o.) is given by

s iI17fQ
(4)

The plus sign in (4) corresponds to p exchange,
and the minus sign to P and P' exchange.

We may express the amplitudes for m p and m'p
elastic scattering and v P charge-exchange (CEX)
scattering in terms of the amplitudes for exchange
of individual trajectories

II. mN AMPLITUDES AND THE COMPLEX-
REGGE-POLE MODEL

(5)

(6)

A'~-p =Ap+Ap. +A'p,

A'~+q =Ap+A~. —A'p,

A~„= —v 2 A'p,

Regge trajectories P, P', and p are assumed to
dominate the t-channel exchange. In what follows,
the Pomeranchuk trajectory is parametrized as a
pair of complex-conjugate poles. The appropriate

TABLE I. High-energy scattering data used in the fits.

Values of

phb (Bev/c)
No. of data

points ReferencesMeasurement

do'—(~ p-~'4)
cN

5.85, 9.8, 13.3, 18.2 10

P(x p 7(on)

0'~0~~ (& p)

5.0, 5.9, 8.0, 11.2 27 3. 11

127-29

ReA'( 'p)
0. (x'p) = 7-27 20

do'

dt
—{x+p~x+p) 6.8, 12.4, 16.7

do'

dt
—(g p~x p) 6.0, 10.8, 15.0, 18.4 14, 15

4, 16p(~+p-m p)

P(~ p-~ p)

6.0, 10.0, 12.0, 17.5

6.0, 10.0, 14.0

Total data points

62

358

COMPLEX-REGGE-POLE MODEL IN mN SCATTERING
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TABLE H. Values of X2 in the cyclic residue model for the data in Table I.

Branch-point
singularity Real Pomeranchuk trajectory Complex Pomeranchuk trajectory

Square-root
Logarithmic

952
895

761
1154

and similarly for the B amplitudes. The formulas
for cross sections and polarization can be found in
Ref. 8.

The trajectories in the CRP model are of two
types, corresponding to the nature of the branch-
point singularity. For a logarithmic cut we write

e, =a+bt+ ig
and for the square-root cut

u, =a+ bt+ig( t)". -

and

P„=w(-t)'"(yo+ y, t)

y, = w(-tP'(~, + X,t)

for a square-root cut.
For the P and P' residues several possibilities

are considered. In one case the residues are sim-
ilar to those used by Barger and Phillips, the
cyclic-residue model, '

The Pomeranchuk trajectory has a= 1 in all cases.
The residues for the p trajectory are paramet-

rized as follows:

y+„=y*„=&,e"i'sin'(-,'wu, )e' &,

y, 8= y*s = d, e'i'sin'(-, 'wu, )e' a,

(14)

(15)

y+ &= y*„=Roe~&'(u+ + 1)ef4g

y, e =yes =d,e"i'u, (u, +l)e' e,

with

y„=w(y, + y, t) and ys = w(&, + &,t)

for a logarithmic cut and

(10)

(12)

where P„and Qe are given by Eq. (12) for a log-
arithmic cut and Eq. (13) for a square-root cut.
As a second example, a parametrization similar
to that of Rarita etal. , the Chew mechanism, ' is
used. En this parametrization sin'( —,'wu+) in Eq.
(14) is replaced by u, (u, +1), and sin'(-,'wu, ) in

Eq. (15) is replaced by u, '(u, +1). We also test
the no-compensation mechanism, where sin'( —,'wu, )

TABLE III. Parameter values for the cyclic residue model. We have expressed the parameter values in units such
that @=f.=1, BeV=1. For the Pomeranchuk trajectory the parameter a has a fixed value of 1 in all fits.

Trajectory ho Yo

(a) Real Pomeranchuk trajectory, square-root branch cut, cyclic residue.

P
P'
p

1
0.52
0.57

0.18
0.96
0.90

0.21
0.16

53.9
35.9

1..98

2.88
1.14

-0.93

-4.86
9.67

34.9

1.73
0.96
0.71

0.52
-1.14

0.56
-0.26

-0.86
-0.50

0.01
-0.45

(b) Complex Pomeranchuk trajectory, square-root branch cut, cyclic residue. This is the best fit.

P
P'
P

1
0.50
0.57

0.03
0.91
0.88

0.13
0.13
0.16

27.5
36.2
2.03

2.81
1.09

—0.99

6.38
28.2
34.8

1.73
1.07
0.86

0.38
0.01

-1.13

0.18
0.14

—0.25

-1.15
-0.76
-0.43

-0.30
0.00

-0.43

(c) Real Pomeranehuk trajectory, logarithmic branch eut, cyclic residue.

P
P'
p

1
0.52
0.50

0.26
0.95
0.89

0.10
0.10

56.7
45.4
-4.47

2.92
1.20
0.04

-7.02
13.9
65.5

0.63
0.03
0.94

0.14
0.58

0.02
0.53

-0.46
—0.44

0.59
-0.24

(d) Complex Pomeranchuk trajectory, logarithmic branch cut, cyclic residue.

P
P'
P

1
0.51
0.51

0.24
1.05
0.88

0.09
0.13
0.10

29.0
53.4
-3.62

2.64
1.30

-0.05

-0.13
7.29

50.1

-0.47
—0.99

0.54

-0.28
-0.16

0.63

-0.01
0.08
0.67

0.28
-0.07
-0.33

-1.19
0.51

-0.16
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III. DATA AND RESULTS
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(19)

(20)
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FIG. 1. Theoretical curves for the best fit (cyclic
residue, complex Pomeranchuk trajectory, square-root
branch cut) to the m p charge-exchange differential cross
section. Data from Ref. 10.

(16)

in Eels. (14) and (15) is replaced by n, '(n, +1).
For a real Pomeranchuk trajectory the Pomeran-

chuk amplitudes are parametrized as follows (in
the cyclic residue case):

The high-energy scattering data used in this
analysis are taken from Refs. 3, 4, and 10-16 and
are listed in Table I. These include
(dv/dt)(m p-m'n), p(m p-ir' n), o„~(w'p), n(m"p),
(do/dt)(m'p-m'p), and P(w'p- w'p), with a total of
358 poirits.

In Table II we give the values of X' for the best
fits to this data in the cyclic-residue case, Eqs.
(14) and (15). The results include both a real and
complex-conjugate Pomeranchuk trajectory and
square-root and logarithmic singularities at the
branch point. The corresponding parameter values
are given in Table III. We shall present the re-
sults for the Chew and no-compensation mecha-
nisms later.

The best fits to the data were obtained for the
cyclic residue model with a complex-conjugate
Pomeranchuk trajectory and square-root singu-
larity at the branch point —the y'= 761 case. The
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FIG. 2. Fits to the x p charge-exchange polarization data for (a) p~b =5.0 BeV/c, (b) 5.9 BeV/c, (c) 8.0 BeV/c, and
(d) 11.2 BeV/c. Data from Refs. 3 and 11.
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fits in this case' are shown in Figs. 1-5. The y'
value and quality of fit for charge-exchange scat-
tering, Figs. 1 and 2, are very good and are com-
parable to Refs. 1 and 2, as we should expect. The
results of the fits to the elastic scattering data,
Figs. 4 and 5, are also good and are comparable
to previous work. ' "'"

IV. DISCUSSION

We shall divide the discussion into several parts:
(1) ComParison of trajectory and residue mod

els. In Table II we observe some variation in X'

values for different cases involving a real and a
complex Pomeranchuk trajectory and logarithmic
and square-root branch cuts. We do not regard
these differences in g' as significant and feel that
in the CRP model using the current parametriza-
tion the data are not able to distinguish either the
type of singularity at the branch point or whether
the Pomeranchuk trajectory is real or complex-
conjugate. Our reasons are these. First, the

graphs of fits to the data for each of the four cases
do not show significant differences in over-all qual-
ity even when the g' = V61 case is compared with
the X'=1154 case. Secondly, the main qualitative
features of the data, for example, the existence
of a dip in the charge-exchange differential cross
section, are successfully fitted in all four cases.
Finally, data are not sufficiently accurate nor is
the theory sufficiently well developed to judge the
quality of different fits on the basis of small or
even intermediate differences in y'.

We compared our fits to the data using the cyclic
residue model with the fits using the Chew and no-
compensation mechanisms. This comparison was
made on the basis of a reduced data set with about
100 representative points. The fits for the cyclic
residue model have a slightly better value of X'

than for the Chew and no-compensation mecha-
nisms. However, the quality of the fits is about
the same for all three cases with the exception of
the elastic polarization data for which the cyclic
residue model is slightly superior. All three cases
are in reasonable agreement with the data.

(2) ProPerties of the trajectories. From Table

(0)
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FIG. 3. Fits to (a) ~+p and 7l p total cross sections and
to (b) e (m+p) and n (x p), the phase of the forward ampli-
tude for ~ p and n p elastic scattering. Data from Refs.
12 and 13.

IO

Lo

CD

E

I

t
CL

IO ==

IOO

IO
'

0 2

IO

-4
IO 0.0

I

0.4 0.8 I.2

—t (BeV/c)

I

1,6

FIG. 4. Theoretical curves and data for (a) (do./
dt)(~+p-~+p) and (b) (do/dt)(n p 7t p). Data from
Refs. 14 and 15.
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FIG. 5. Fits to the elastic polarization data as follows
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(a) x+p and x p at p»=6 BeV/c, (b) x+p and x p at p»
BeV/c, and (d) n'p at phb=17. 5 BeV/c. Data from Refs. 4 and

III the trajectories for the best fit, X'=761, were

n p
= 0.57+ 0.88t+ 0.16(-t)'"i,

n~ =0.50+0.91t+0.13(-t)'/'i,

n~ = 1+0.03t+ 0.13(-t)'/'i .

(21)

(22)

(23)

Except for the slope of the Pomeranchuk trajectory
which is smaller in the X'=761 case, the parameter
values here are co~parable to other parameter

values in Table III. The p parameters for the best
fit agree quite closely with the values obtained by
Desai etgl, ' and the p and &' trajectories are ap-
proximately exchange degenerate. The parameter
values for the real parts of the three trajectories
are similar to the values which have been obtained
in previous real-pole fits to the mN data. "'

We note that the value of g, Egs. (8) and (9), is
in the range 0.1&g~ 0,2 for all complex-conjugate
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FIG. 6. Phase of A' + and A'& at p» =6 BeV/c. The
phase remains near m/2 for all t.
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and ImA' ImA' are shown at phb =6 BeV/c. These
functions vanish at t =-0.26, —0.26, and —0.29 (BeV/c)2,
respectively.
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trajectories. The BMZ approximation is best for
small values of Imn 1n(v/vo), and thus it is con-
sistent that reasonably small values of g are ob-
tained.

(8) The crossover zero. We shall discuss the
position, movement, and mechanism of production
of the crossover zero in the CRP model. To do
this, me define crossing even and odd amplitudes,
A'~' andA. '~ ~, by

(24)

mith similar definitions for B~ ~ and B~ ~. We use
the symbol 4 to represent the difference in the w p
and m'p elastic cross sections,

(25)

According to the usuRl arguments~ ' mhlch 1 e-
main valid for complex poles, the contribution of
the spin. -flip amplitudes may be neglected in com-
puting 6, and hence

~-Re[(A'~')*A' -&]=lmA'~' ImA'-

+ReA'&'& ReA' &. (26)

For a real Pomeranchuk trajectory, Reg~= 0 and
the approximation

fits with a complex Pomexanchuk trajectory me did
find that ReA~/ImA~= 0. This fact is illustrated in
Fig. 6 where the phases of A.& and A. '&+~ are plotted
versus -f at p„b =6 BeV/c .The phase of both am-
plitudes remains near w/2 for all t. These results
are not surprising, since ReA'~'i/ImA'~'~ must be
small at t =0 in order to agree with data on the
phase of the forward amplitudes. Thus, even for
I complex, a-ImA, ' &. Of course, with either a
real or complex Pomeranchuk trajectory there
mill be a slight difference in the position of the
zeros of A and ImA'~ ~, and this difference mill
depend in a complicated may on the exact model
and parametrization used.

To illustrate these points explicitly, me have
plotted b, , Re[(A' ' )*A' i], and ImA'~+~lmA'~ i

at phb = 6 BeV/c in Fig. 7. The zeros of these
quantities occur at t=-0.26, -0.26, and -0.29,
respectively, and this agrees with our previous
lscusslon.
In Fig. 8E is plotted versus -t for p„b=6 and

200 BeV/c. The zero in b, moves from t = -0.26
at P„b =6 to f = -0.4V at P» ——200 BeV/c. The move-
ment of the crossover zero to larger -t as p» in-
creases is a general featuxe of the CRP model, as
we shall now demonstrate. " From Egs. (I) and

(4), we obtain
Rex'~'& ~0
ImZ'~'& (27)

can be made. It follows that the zero in K mill
oeeur in roughly the same position as the zero in
Imp'~ &.

With a complex Pomeranehuk trajectory the sit-
uation ls more complicated. The approximation ill

Eq. (27) may or may not hold, depending on the
phase of the Pomeranchuk amplitude. In the actual

(28)
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O
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FIG. 8. A=(do/dt)(7t' p) —(do/dt)(z+p) at p& b
=6 and

200 BeV/c. The crossover zero shifts from —0.26 at
6 BeV/c to —0.47 at 200 BeV/c.

l

2.0
-0.8

0.0 I.O
I
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FIG. 9. Theoretical values of I'(x p ~ n) at phb
=5, 20, and 60 BeV/c.
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where o,s =Ben, o.
&
=1m', and g, „is the phase of

y, „. Using Eq. (10), this becomes

p CX~

ImA' =2I y+„I — cosQ,
0

where

(30)

The zero in ImA. ' corresponds to P =-»/2. " Thus,
for fixed t, as v increases, g increases and the
crossover zero shifts to larger values of -t.
There is evidence to indicate that this feature of
complex Regge poles agrees with experiment. '4"

(4) Polarization. The new charge-exchange po-
larization data show a maximum of-about 60'%%uo at
t= -0.4 and a zero at t= -0.6. The CRP model
fits these results very well as is evident in Fig. 2.

In Fig. 9 we have plotted the theoretical values
of charge-exchange polarization at P„b

——5, 20,
and 60 BeV/c to show the energy dependence in our
model. We note that the maximum value of polar-
ization near E=-0.45 increases and shifts to larger
values of -t as p» increases. We also find that
the zero near t = -0.6 is energy-independent. This
latter fact is easily understood from the energy in-
dependence of the term sin[Ps —g„+arg(o. ,)] which
is responsible for the vanishing of polarization in
our model. Unfortunately, the data are not suffi-
ciently accurate to test these characteristics of the
fit.

The CRP model agrees fairly well with the new
elastic polarization data, although there is a small
difference between theory and experiment in the
&i'p data at p„b = 6 BeV/c.

The elastic polarization P(n'p) is given by the
equations

Po(s'p)=PO(s p) and P,(s'p)=P, (m p), and we may
now use Po and P, to discuss the symmetry charac-
teristics of the polarization data.

In Fig. 5 it is evident that the data show an ap-
proximate mirror symmetry, that is P(s'P)=

P(m-p), and therefore we expect that Po will dom-
inate over P, in any model which fits the data. This
is verified for the CRP model in Fig. 10 where the
contributions of P, and P, to the elastic m P polar-
ization at ph, b = 6 BeV/c are plotted.

The polarization does show some asymmetry
which cannot be ignored in an accurate fit. For
small -t, I tI s 0.6, the magnitude of P(v'p) is gen-
erally a little larger than the magnitude of P(m p).

- For larger -t the asymmetry is reversed:
IP(w p)I& IP(s'p)I. However, there are large un-
certainties in the experimental results for

I
tI& 0.8,

and the exact degree of asymmetry is poorly de-
termined. From Fig. 10 we note that P, & 0 for

I tI
& 0.8 and Pi&0 for I tI& 0.8, which is consistent
with the above discussion.

In P, there are terms which result from the inter-
ference of a Regge pole with itself, namely,
Im(A'B&*), Im(A'&. Bpi), and Im(A&B&). Although
these terms vanish identically for real poles, they
may result in significant nonzero polarization with
complex poles and residues. This fact has already
been demonstrated in charge-exchange scattering
where the entire polarization results from p-p in-
terference. However, the fitting program has ad-
justed the trajectories and residues in such a way
that the value of P, remains fairly small and is
consistent with the data.

In general, either large or small contributions
from terms involving the interference of a pole
with itself are possible and the CRP model pro-

(
y

)
sill &@ Im(A gapB g&p)

16ws'is (do/dt)(m 'P)
Combining this relation with (24), we obtain

P(s'p) =+P,(s'p) +P,(m'p),

where P, and P, are defined by

sin8,
Po(7f p)

GO

Z:
O

0. I

Xl

0.0

O -0. I

C3

—02—

P& qs = 6 BeV/c

~ ~

~ ~ ~

P (7T p)

P0 ( 77 P ) ~ ~ ~ ~ ~ ~ ~

P (77. p)
I

1m[A'~'&B& &*]+1m[A'~ B~+& ]
(do/dt)(s 'p)'

(33)

sinI9,
Pi(m p) =—

1m[A'~'&B&' &*]+1m[A'&-&B&-&*]

(do/dt) (s'p)

O -05—
I—

N -04—
CC

-0.5—
O~ -0.6

0.0
I

04 0.8, I.2

(BeV/c)

1.6 2.0

Since (do/dt)(s'p)=(do/dt)(m p), it follows that

(34) FIG. 10. Po Pg and P for r p elastic scattering at

pub =6 BeV/c. These quantities are defined in Eqs.
(3&)-(34)
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vides a high degree of flexibility in fitting polar-
ization data that is not available in real-pole mod-
els.

The double-zero structure of the elastic polariza-
tion near t = -0.6 may be explained as follows. For
t small, iA'~' i»LA'~ i. Combining this with Eq.
(27) and the approximate mirror symmetry of the

data, we obtain

the CRP model provides excellent fits to the wN

charge-exchange and elastic scattering data. We
have discussed the detailed features of complex
Regge poles in wN scattering and have observed
that the data show no strong preference for either
a real or complex-conjugate Pomeranchuk trajec-
tory or for a logarithmic or square-root branch
cut.

(35)

Since Reg has a double zero in our model, we
should expect that Po, and hence P(w'p), will show

approximately the same structure. This explana-
tion of the double zero agrees with the usual real-
pole analysis. '

(5) Concludhng remarks. We have shown that
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