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Analyticity has been used to derive dispersive inequalities which bound the spacelike be-
havior of the pion's charge form factor in terms of the timelike variation of the modulus of
the form factor and the p-wave m scattering phase shift. The large charge radius, suggested
by the Serpukhov-UCLA measurement of me scattering, is only compatible with timelike data
which involve a large p-wave xx phase shift just above threshold.

I. INTRODUCTION

In recent years there has been a rapid accumula-
tion of data on the behavior of the pion's charge
form factor, E(t).' Colliding beam measurementsa
of o(e'e -w'w ) at Novosibirsk, Orsay, and Fras-
cati have furnished infoxmation on the size of
~E(t) ~

for timelike momentum transfer: 16m, 'a t
s4.4 GeV'. On the elastic cut, t, =-4m, '~t
«16m, ', the phase of E(f) is equal to the J=T=1

ww phase shift, 6,(f) (modulo w). Chew-Low extra-
polation techniques' can be used to infer 6,(t) from
observations of nN- me¹ Gn the spacelike inter-
val, -1.2~t~-0, 2 GeV', the behavior of the form
factor has been extracted from pion electroproduc-
tion experiments. ' In addition, the recent Serpuk-
hov-UCLA measurements' of pion-electron scat-
tering have provided direct access to

~ E(t) ( at
small spacelike momentum transfer, -0.04K t
s -0.02 GeV'.

These experimental results in the spacelike and
timelike regions should be correlated by the ana-
lyticity of the form factox. The standard method
of displaying that correlation is to write an ordi-
nary dispersive equality', i.e., Cauchy's theorem
is used to express F(t) at spacelike momentum
transfer in terms of a polynomial ("subtractions" )
and an integral of ImF(t) over the timelike do-
main. Thus, the computation of E(t) at spacelike

t requires knowledge of the following input: the
number and size of subtraction constants as weG
as the behavior of the modulus and phase of E(t)
over the entire timelike cut. In the case of the
problem considered here, this approach has the
disadvantage that it is usually necessary to con-
struct a model in order to estimate the subtraction
constants' and to estimate the phase of the form
factor for I;&16ng,'.

The correlation of spacelike and timelike expex i-
ments can be expressed in a more model-indepen-
dent way by using analyticity and a smaller amount
of timelike information to derive bounds on the
spacelike form factox'. The resulting dispersive
inequalities' "typically take the following form:
Knowledge of (F(t) ( or an upper bound on (E(t) (. on
the entire timelike cut is used to put upper and
lower limits on the value of E(t) for spacelike mo-
mentum transfer. This technique has several im-
pox'tRnt Rdvantage8 over ordinary dispersive equRl-
ities. First of all, it is not necessary to build
models for the (experimentally inaccessible) phase
of E(l) for t&16m„'. Secondly, the input informa-
tion includes only an upper bound on (not the value
of)

~
E(t)

~
in the timelike region This is sign. ifi-

cant since two-photon effects" may be sizable at
high timelike g; in that case, colliding beam mea-
surements of u(e'e - w+w ) determine only an
upper bound" on j E(t) ~

(provided that the effects of
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three or more photons are negligible). Finally, the
evaluation of dispersive inequalities does not re-
quire knowledge of the size of subtraction constants.
Several authors' "have computed these bounds
using the available data on o(e'e w'v ) (for
16m„' 6 t & 4.4 GeV'), supplemented with the rea-
sonable extrapolation of this data into unexplored
intervals (t, —=4m, ' & t & 16m, ', 4.4 GeV' & t &~).
They conclude that the pion's charge radius (r, )
must be smaller than the naive vector-dominance
value"; i.e. , r„2/r~'& 1. This bound is strongly
violated by the value of z„' indicated by a prelim-
inary analysis of the Serpukhov-UCLA experiment'.
(r„'/r„').„„=2.

In this paper we assume that the earlier numeri-
cal calculations erred in supposing that the time-
like data could be "smoothly" extrapolated into the
experimentally so far inaccessible regions:
(4m, ' &t& 16m, and 4.4 GeV' &t &~). We seek to
learn what sort of timelike data will bring the
bounds on the radius into agreement with the ex-
perimental result. This program is expedited by
deriving a modified dispersive inequality: Knowl-
edge of both the phase of E(t) [the T= J= 1 w2 phase
shift, 6,(t)] on 4m, ' & t & 16m„' and an upper bound
on

~
F(t)

~
on the inelastic cut (16m, ' & t & ~) is used

to put upper and lower limits on the spacelike form
factor. Notice that the input information now in-
volves the behavior of 6,(t) [but not ~E(t) jj on the
elastic cut, 4m ~ t ~16m, '. This is useful since
6,(t) [but not ~E(t) [] has been experimentally de-
termined on this interval. " In addition, the shape
of 6,(t) [as opposed to ~E(t) ~] on this interval is
meaningfully related to current theories of strong
i.nteraction dynamics. Therefore, the modified
dispersive inequality is more ideally suited to
exploit maximally the present collection of exper-
imental and theoretical facts. A numerical evalua-
tion of these bounds leads to the conclusion that
the large experimental value of x,' is consistent
with the timelike data only if 6,(t) is qui te lar/, e on
the elasH. c cu,t.

The analytical expressions for the modified
bounds are stated and discussed in Sec. G. Numer-
ical results are presented in Sec. III. Section IV
contains the statement and discussion of stronger
bounds, which follow from additi. onal assumptions
about the number and positions of zeros of the form
factor. Section V summarizes the major conclu-
sions of this paper. Appendixes A and 8 outline
the proofs of the analytical results which were
quoted in Secs. II and IV, respectively.

1. E(g) is analytic in the complex $ plane with a
cut at t, =-4m, ' &

g
= real & ~. In addition, E($)

must be polynomially bounded at infinity.
2. E($) is "real" in the sense that

3. Let t, be any number greater than t, . Then,
we suppose that the phase" of E(t), 6r(t), is known

on the interval t, &t & t, . On that interval F(t)
must have no poles which are superimposed on the
cut.

4. It is assumed that we also know a finite, posi-
tive definite function w(t) (defined on the cut) which
bounds jF(t) ~

from above,

(E(t) i &u(t), (2)

on t, ~ t &~ and which behaves as a power of t at
infinity,

u (t) ~ (const)t",

where n is any real number. Actually this condi-
tion can be replaced by a weaker one which simply
proscribes the exponential behavior of u (t) as
t oo,

In Appendix A it is proved that these hypoth-
eses lead to the following rigorous bounds on E(a)
in the spacelike region" (a ~ 0):

exp[-d(0)] —x
E(a) ~ exp[d(a)]

( ( )]

E(a) & exp[d(a)]
exp[- d(0)]+ x

1+xexp -d 0

where

(t )1/2 t 1/2
1 1 ) 0

& 1/2 1/I' o
~t, —aj + t,

(4)

( )
(t, -a)'/' In2c (t)

(t- a)(t —t,)'"

(t, —a)" '~, 6,(t)
(t- a)(t, —t)"' '

0

The above inequalities are transformed into
bounds on r„' when E(0) =1 is subtracted from each
side and each side is divided by a in the limit
a-0:

sinh[d(0)] —d(0) +Jzt,

II. STATEMENT OF DISPERSIVE INEQUALITIES

The derivation of the bounds on the spacelike
form factor exploits the following assumptions:

-sinh[d(0)] —d(0)1 2)

where
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g, '/' "
Inw(g)

2(g g )I/2
1

1/a t& 5 (g)
g2(g g)1/2

to

Note the following properties of these inequalities:
(a) These bounds are the strongest ones which

can be derived from the given input information.
Section IV contains a discussion of stronger bounds
which follow from additional assumptions about the
number and positions of zeros of the form factor.
Also, it is clear that these theorems can be easily
applied to other form factors [such as the vertex
for e'e - roy (see Ref. 17)] if the appropriate ex-
perimental input is available.

(b) The requirement that the upper bound exceed
the lower bound in Eq. (5) implies that the time-
like data themselves must obey the consistency
condition: d(0) ~ 0. For the timelike data used
here, d(0) is positive and quite small [d(0) =0.2
—0.4] .

(c) In the limit g, - go, Eqs. (4) and (5) reduce to
the dispersive inequalities derived in other pa-
pers. ' ' Notice that a large value of t, tends to
suppress the contribution of the (experimentally
uncertain) high-energy region to Eq. (5). There
fore, choosing g, = 16m, ' (see below) instead of

t 0 4~ as in previous analyses reduces the

l00.0

uncertainty in the evaluation of Eq. (5) by a factor
of 2.

(d) For all Practical PurPoses we will always
choose t, =16~,', the threshold of the inelastic
cut. Then with one exception, 5„(g) can be identi-
fied with the experimentally measurable J= 7= 1
vv phase shift, 5,(g), on the elastic cut (g, &g&g,).
If F(go) & 0, then 5z(g) may differ by the amount
av from 5,(g). However, in this case our final
bound is in general strengthened; therefore, we
will not discuss this possibility here. Note that
since F(0) = 1, F(g,)&0 implies that F(g) has a zero
point in the interval 0 &t &t, . For a related dis-
cussion of such timelike zeros, see Sec. IV and
Appendix B.

(e) If Eq. (4) or Eq. (5) is violated, it may be that
the wrong timelike data [5z(g) and w(g)] was used
or that the form factor is not analytic in the cut g

plane. Alternatively, the discrepancy may be at-
tributed to nonpolynomial behavior of F(g) at infin-
ity or to unphysical poles (superimposed on the
cut) in F(g) along g, & g & g, .

III. NUMERICAL EVALUATION OF BOUNDS

A. "Smooth" Timelike Data

The colliding-beam experiments' at Novosibirsk
and Orsay have measured IF(g) I for 0.34 &g&1.04
GeV'. The data are reasonably well fitted by the
modified, P-wave Breit-signer shape":

0.399
[(0.592- g)+ (1.41)b(g)]'+(1.99)k'g -' '

I 0.0:

w(t)

I.o

~ ~
~ ~

~ ~
~ ~

~ ~

where

&(g) = k '[k(g) - 0.504] —(0.0425)(g- 0.592),
(0.637)k g

'/'+ 2k
0.276

k(g) =(0.5)(g- g )' '

60

55—

O. I

O.OI

1.0
I I

2.0 5.0 4.0
(

~
)
. 0 7.0- 8.0

S,(t)
(deg)

50—
25—
20—
I 5—

i 0I-

~ ~

/

/

/

/ iO
/ P@

/

/ ,o
/

~
go ~ ~ ~ ~ ~ ..Oy

~ /
~ /

FORM g
/

~ ~ ~ ~

/

F0RM ~

I

0.25

~ ~
~ ~ ' ~~ ~ ~ ~'~ em

FIG. 1. Trial forms of ce{t)2, 'where zo(t) is supposed
to bound ~E(g)( from above.

0.07 to O. IO O. I5 t(Gev') 0.50 t,

FIG. 2. Trial forms of the J= T =1 xm phase shift,



3152 D. N. LE VIN AND S. OKUBO

We will use the expression in Eq. (6) as an upper
bound function, ur(t)', on the interval f, =16m,'
=0.312 GeV' ~ t ~1.0 GeV'. The experiments at
Frascati' have determined

~ E(t) ~
at a few points

in the range, 2.0 ~f ~4.4 GeV'. These measure-
ments can be represented by a "smooth" curve:

( ) (,
2.16 GeV

'f 2 (7)

(8)

where the scattering length (a,) and the effective
range (f) are given by

As a first guess we will use this same form for
m(t)' for 1.0 & t ~4.4 GeV'. For simplicity it will
also be assumed that Eq. (7) is an upper bound on

~F(t) I' in the unexplored region, t&4.4 GeV'. The
choice of w(t) described in this paragraph corre-
sponds to form 1 in Fig. 1.

Chew-Low extrapolation techniques' can be ap-
plied to the amplitude for mN —nmN in order to de-
termine 6,(t) [and, therefore, 6~(t)] on the elastic
cut: t, ~ I; ~ 16m, ' —= I;,. Relatively abundant data"
of this kind exist for t ~ 0.25 GeV'. However,
measurements in the low-energy region" (t, =4m, '
=0.078 GeV' «t ~0.25 GeV') are quite scarce. All
of these experimental results are reasonably well
represented by the "smooth" effective-range shape,

= 0.05,

f=-2.21 .
Equation (8) is plotted as form A in Fig. 2.

When form 1 of w(t) and form A of 6,(t) are used
to evaluate Eqs. (4) and (5), the resulting bounds
on F(a) and v, ' are those displayed in Fig. 3 and
Table I. The upper and lower limits on y ' are
close to the ones derived in an earlier calcula-
tion. " The measurements of the spacelike form
factor, extracted from electroproduction experi-
ments at the CEA (Cambridge Electron Accelera-
tor), ' are also plotted in Fig. 3. There is complete
agreement in that each point falls between the
upper and lower bounds of the dispersive inequal-
ity. A Serpukhov-UCLA collaboration has deter-
mined the spacelike form factor at very small mo-
mentum transfer (—0.04 m ts -0.02 GeV') by ob-
serving ne scattering. Eventually, without any
further assumptions each finite-t form factor
measurement from this experiment can be com-
pared with the bounds listed in Table I. Unfortun-
ately, at the present time these finite-f measure-
ments are not available. Instead the preliminary
reports' of the experimental results have quoted
only an effective radius of the pion; this value is
obtained by differentiating a "single-pole" function
which fits the whole collection of finite-t form
factor measurements. " The most cautious inter-
pretation of this fitting procedure indicates a large
charge radius":

Si(t 1: FORM A

' yr' = 2.02 a 0.58 .
VD " expt

(9)

I.O

F (a)

0.8

0.6

0.4

Since the bounds of Fig. 3 do not overlap the 1-
standard-deviation range of Eq. (9), we are forced
to conclude that the wrong timelike data [form 1
for w(t) and form A for 6,(t)j was used, or that
E($) is not analytic in the cut g plane, or that the
form factor behaves nonpolynomially at infinity.
Violations of analyticity and nonpolynomial be-
havior will not be considered in this paper. In-
stead we will try to learn what sort of timelike
data are consistent with Eq. (9) in the sense that

0.2—

TABLE I. Form 1 of zv(t) and form A of 6&(t) produce
these bounds on the form factor in the spacelike region
explored by the scattering experiments.

-a (QeV2) E (a): lower bound E(a): upper bound

0. I I I I . I I I I I

0 0.2 0.4 p 0.8-a (GeV )
1.0 l.2

FIG. 3. The bounds on r~ and the spacelike form
factor corresponding to the choice of timelike data:
form 1 of se(t) and form A of 5&(t). The experimental
(electroproduction) points are from Ref. 4.

0.01
0.02
0.03
0.04
0.05

0.98
0.96
0.94
0.93
0.91

0.99
0.98
0.97
0.96
0.94
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this data produce bounds on r,' which overlap the
1-standard-deviation range of Eq. (9); that is, we

require that the "consistent" timelike data yield
an upper bound on r, '/rvn' which is greater than
1.44. Now, Eq. (5) shows that the upper bound on

r, increases monotonically with increases

intro(t)

or 5,(g). Therefore, timelike data which is "con-
sistent" with Eq. (9) will involve a form of cu(t)
greater than form 1 and/or a form of 5,(t) greater
than form A.

where

2

)' (t ')'+r 'u' '/I 't '
P P P P

(10)

a. =-.(m ~ —f,) ' .
P P

Furuichi eI; al."have shown that a p' structure in

B. Larger w(t)

In this subsection we investigate the possibility
that the correct w(t) exceeds the "smooth" shape
of form 1 [Eq. (7)] at high momentum transfer
(1.0 GeV' ~ f ~~). For example, this might be the
case if there exists a high-mass vector meson
(p'). For t = mz

' the modulus of F(t) would be ex-
pected to conform to a P-wave Breit-signer
curve,

1E(t)1 might be compatible with the Frascati data
points if the mass, width, and strength parameters
are

m, 2 = 2.84 GeV~

I' =0.15 GeV,

=0.4 GeV' .
The effects of such a resonance can be estimated
by choosing w(t) at every point (on 1.0 GeV' ~ t &~)
to be the lardier of the expressions in Eq, (7) snd
Eq. (10). The resulting upper-bound function is
plotted as form 2 in Fig. 1. When sv(t) is given by
form 2 and 5,(t) is given by form A, the corre-
sponding bounds on r, ' and E(a) are those exhib-
ited in Fig. 4. Once again the electroproduction
points are compatible with the bounds on E(a), but
the Serpukhov-UCLA result violates the bounds on

2
r ~

The situation is not significantly improved even
if the strength parameter is increased to the value:

p
= 0 .9 GeV' . In that case the upper-bound func-

tion, ur(t), is increased to the highest curve (form
3) of Fig. 1. Since form 3 exceeds all Frascati
data points by a wide margin, it should constitute
a valid upper bound on any reasonable p' peak.
Form 3 of go(t) and form A of 5,(f) produce the
bounds listed in Fig. 5. The 1-standard-deviation
range of the Serpukhov-UCLA data still does not

I. O

Pi(t): FORM A

1. 0
8)(t): FORM A

F (a) F(a)

0.8 0.8

0.6 0.6

0.4 0.4

0.2— 0.2—

0 I I I I I I I I I I I

0 O. 2 0.4 p 0.8 1.0-a (GeV 1.2
0 I I I I I I I I

0 0.2 0.4 p 0.8 l.O, l.2

FIG. 4. The bounds on r~2 and the spacelike form
factor corresponding to the choice of timelike data: form
2 of so(t) and form A of 6&(t). The experimental (electro-
production) points are from Ref. 4.

FIG. 5. The bounds on r~ and the spacelike form
factor corresponding to the choice of timelike data:
form 3 of ce(t) and form A of 6&(t). The experimental
(electroproduction) points are from Ref. 4.
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overlap the bounds on r, '. In fact, the inclusion
of a p'bump hardly increases the upper bound on
r„at all. ' A dimensional argument supports this
observation: the p and p' contributions to r, '
should be proportional to m ' and m ', respec-
tively. Since m ' «m ', the inclusion of a p'
term is expected to change r, ' by only a small
amount.

It is also possible that the correct form of w(t)
exceeds form 1 in the very high energy region
(i &4.4 GeV'}. For example, this might be true if
the form factor is actually constant ("pointlike")
for t &4.4 GeV'. In that case w(t)' should be given
by Eq. (7) for 1.0 « i ~4.4 GeV' and by

2.16
w(i) =

(4 4)2

for t &4.4 GeV'. When this upper-bound function
is used in conjunction with form A of 6,(t), Eq. (5)
produces the inequalities

F (a)

I.O

0.8

0.6

0,4—

0.2—

8j(t): FORM B

0.0 ~ r, '/yvn' ~ 1.2 .
Therefore, this method of increasing w(t) does not
make the dispersive inequalities consistent with
Eq. (9).

The three examples iri this subsection clearly
demonstrate that reasonable increases in w(t) alone
will not bring the bounds on r„' into agreement with
the Serpukhov-UCLA result. It seems unlikely that
IF(t) ~

is really huge (say, asymptotically rising)
at high momentum transfer. Therefore we can
draw the following conclusion: Bounds on r, ',
which are consistent saith the SerPukhov-UCLA
result, zvill be Produced only by timelike data,

~which includes a phase shift exceeding form A.

C. Larger 5&(t)

0
0

I I I I I I I I I

0.2 0.4 p 0.8 I.O-a (GeV )
l.2

lowing parameter choices determine phase shifts
which yield bounds on r, ' in marginal agreement
arith the SerPukhov - UCLA measurement:

form B

t~ =0.105 GeV',

I ~ = 0.065 GeV',

(a,m, ') = (10.6)(a,m, ')

FlG. 6. The bounds on r~ and the spacelike form
factor corresponding to the choice of timelike data: form
1 of zv{t) and form 8 of 6~{t). The experimental {electro-
production) points are from H,ef. 4.

In order to learn how much 6,(t) (t, ~ i ~ t, ) must
be increased, consider the following set of peaked

phase shifts'.

form C

t~ =0.195 GeV',

I'~ = 0.05 GeV',

(a, m, ') = (1.1)(a,m, ')„,
where A~, tB, and I'~ are phenomenological pa-
rameters to be determined. Since there is rela-
tively reliable data" on 6,(f) for t & 0.25 GeV', we
will demand that all phase shifts agree with the
experimental measurement at t = t, = 16m„' = 0.312
GeV',

t~ =0.225 GeV

form D I ~=0.03 GeV',

(a,m, ') = (0.42)(a, m, ')„.

This single constraint reduces Eq. (11) to a two-
parameter family of curves. "

A computer was used to evaluate the bounds when

6,(i) is given by a representative sample of the
above shapes and w(t) is given by form 1. The fol-

Here (a, m, ') =0.033 is the current-algebra value
for the scattering length. " These phase shifts are
graphed as forms 8, C, and D in Fig. 2; notice
that all of these curves are significantly enhanced
relative to form A. The corresponding bounds on
~,' and F(a} are displayed in Fig. 6 —Table 11,
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TABLE II. Form 1 of w(t) and form B of 6&(t) pro-
duce these bounds on the form factor in the spacelike
region explored by the scattering experiments.

—a (GeV2) F (a): lower bound F (a): upper bound

TABLE III. Form 1 of w(t) and form C of 6&(t) pro-
duce these bounds on the form factor in the spacelike
region explored by the scattering experiments.

-a (GeV2) F (a): lower bound F (a): upper bound

0.01
0.02
0.03
0.04
0.05

0.98
0.95
0.93
0.91
0.89

0.99
0.97
0.96
0.95
0.94

0.01
0.02
0.03
0.04
0.05

0.98
0.95
0.93
0.91
0.89

0.99
0.97
0.96
0.95
0.94

Fig. 7 —Table III, and Fig. 8- Table IV, respec-
tively.

In each case the electroproduction points are still
compatible with the bounds on I'(a), and the Ser-
pukhov-UCLA result is marginally in accord with

the bounds on y„'. Since the upper bound on y, '
depends monotonically on 5,(t), phase shifts which
exceed forms B, C, and D will produce bounds
which overlap even more with Eq. (9). Conversely,
any phase shift which is not as large as forms B,
C, and D will give bounds inconsistent with Eq. (9).

D. Discussion

The three preceding subsections show that a
large pionic charge radius of the Serpukhov-UCLA
variety must be associated with a significantly en-

hanced low-energy J= T=1 mm phase shift. The
only alternatives [violation of analyticity or a huge

l E(t) l at high momentum transfer] seem even
more unlikely.

Experimental evidence neither supports nor de-
cisively rules out the notion of an enhanced phase
shift. The meager experimental measurements"
of 5,(t) for t &0.25 GeV' indicate a phase shift of
form A rather than forms B, C, or D. However,
these data may not be completely reliable since
they depend on a delicate Chew-Low extrapolation
of the amplitude for mN- mnN. From an analysis
of K~ decays it is possible to determine the aver-
age low-energy value of (50 —5,), where 5,' is the
Z= T=0 mw phase shift. lf 5,(t) is negligibly small
as in form A the recent K, 4 experiments" give an
s-wave scattering length which exceeds the cur-

l. O

Si(t): FORM C

1. 0
8 (t): FORM D

F (a) F (a)

0.8 0.8

0.6 0.6

0.4 04

0.2— 0.2—

0 I I I I I I I I I

0 0.2 0.4 2 0, 8 l.O-a (GeV )
l.2

0
0

I I I I I I I

0.2 0,4 p 0.8 l.O-a (GeV )
l.2

FIG. 7. The bounds on r„2 and the spacelike form
factor corresponding to the choice of timelike data: form
1 of w(t) and form C of 6&(t). The experimental (electro-
production) points are from Ref. 4.

FIG. 8. The bounds on r„and the spacelike form
factor corresponding to the choice of timelike data: form
1 of w(t) and form D of 6&(t). The experimental (electro-
production) points are from Ref. 4.
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TABLE IV. Form 1 of w(t) and form D of 6&(t) pro-
duce these bounds on the form factor in the spacelike
region explored by the scattering experiments.

—a {GeV~) . E(a): lower bound I' (a): upper bound

0.01
0.02
0.03
0.04
0.05

0.97
0.95
0.93
0.90
0.88

0.99
0.97
0.96
0.95
0.94

rent-algebra prediction" by 2 stsndard deviations.
Therefore, an enhanced fI,(t) of types 8, C, or D
will result in an s-wave scattering length which
disagrees even more violently with current alge-
bra.

Most theoretical work indicates that 5,(t) takes
form A. However,

'

these same theoretical con-
siderations generally involve some sort of
"smoothness" assumption which would be violated
by a large, rapidly varying phase shift of types 8,
C, and D. Therefore, these theoretical calcula-
tions cannot rule out the existence of an enhanced
phase shift; rather, they can only predict some of
the properties of 6,(t) under the assumption that it
is a smooth function. For example, the current-
algebra scattering length" is much smaller than
the scattering length of phase shift B; but, this
does not imply that form B is totally out of the
question. From the beginning the current-algebra
proof assumes a small value of a, in that the nn

scattering amplitude is assumed to be "smooth"
(have a "weak cut"). Therefore, current algebra
cannot be used to demonstrate that the scattering
length is small; rather, it can only predict the
magnitude of a, unde~ the assumPtion that a, is
small. This point of view has been emphasized by
Sucher and Woo." Thus, there are no strong theo-
retical arguments which show that 6,(t) is small.
On the other hand, it is certainly difficult to find
theoretical models which would explain an enhanced
phase shift. For instance, form 8, which has a
very large positive scattering length, is tradition-
ally associated with a nw scattering amplitude con-
taining a bound state below threshold. ' However,
from a theoretical point of view, it is very risky
to make a mechanical extrapolation of a phase shift
formula to the region below threshold. In addition,
from a phenomenological point of view, a bound
state below threshold would be stable against
strong decays and should have been observed al-
ready. It should be mentioned that several au-
thors" have bounded the hadronic part of (g„-2)
from below in terms of r, ' and the p-wave nw phase
shift. These lower bounds exceed the expected
(p-dominance) contribution to (g„—2) if r,' is as-

signed the Serpukhov-UCLA value and the p-wave
phase shift is represented by form A. It would be
interesting to know how this lower bound changes
if the phase shift is increased to form B, C, or D.

In summary: The dispersive inequalities show
that the large measured pion radius requires the
existence of a large low-energy p-wave mm phase
shift. Although this possibility seems unlikely,
current experimental and theoretical evidence does
not necessarily exclude such an enhanced phase
shift; on the other hand, the origin of the required
enhancement is quite puzzling.

IV. ZERO-DEPENDENT BOUNDS

Equation (4) comprises the strongest inequality
which can be proved from the four assumptions in
Sec. II. However, stronger bounds can be derived
if these four input assumptions are supplemented
by an additional hypothesis concerning the zeros
of the form factor. In order to state that extra as-
sumption, first define the following functions:

tj
Q($) =exp — dt

~(&)f(() g(g)

Then, the added input assumption is that f(g) has
one and only one zero" (at a known location) in the
complex $ plane with a cut at f, ~ /=real &~. As
shown in Appendix B, it follows that this zero must
be positioned on the real axis (say, at g=t„).
Furthermore, it can be proved that the above as-
sumptions lead to the bounds listed below. For t„
&a &0:

P(a)- ( ) exp d(a) —[d(P) e}alai)((
(12a.)

P'(a) - (( ) exp d(a) —(d(P)+)nlall( )
For a&t~&0:

F(a) ~ exp d(a) —[d(0)+ln)o. )]—
1 —lxx 1 —x-

(12b)

F(a) ~ exp d(a) —[d(0)+in)o, ~]1 —(xx 1+ x

For a&0 and t~& 0:

E(a) ~- exp d(a) —[d(0)+ln)o. (]1 —GX 1+x
(12c)

5'(a) ~ — exp d(a) —[d(0) + ln j o.
~ ]I —AX 1+x



CAN THE PION'S CHARGE RADIUS BE LARGE 'P 3157

Here, a, x, and d(a} are defined as in Sec. II while
n is given by

If we let g-0, then this gives

I
z (o) —d (0)l 2t

d(0) . (13')

The following observations should be made:
(a) Equations (12) and (13) are the strongest

bounds which can be proved from the specified in-
put hypotheses. As expected, these inequalities
are all more restrictive than Eq. (4}. For differ-
ent values of t„, Eqs. (12) and (13) describe over-
lapping sets of bounds, each of which lies com-
pletely inside the overall range described by Eq.
(4)

(b) The requirement that the upper bound exceed
the lower bound in Eqs. (12) and (13) leads to the
following restrictions on the positions of possible
zeros: If f($) has one and only one zero and it is
located at ( = t„&0, then t„must lie in the follow-
ing interval:

-4t, exp[-d(0~)
(I —exp[- d(0)] ]' (14}

If f($) has one and only one zero and it is located
at ( = t„&0, then t„ is restricted to

4t, exp[-d(0) J
(I + exp[—d(0)] )'

For typical timelike data [e.g. , form 1 of ur(t),
form A of t),(t), and t, = 16m,'], these conditions
are

-~ &t~ &-20 GeV2

and

0.308 Gev &t~&ty 0.312 GeV .
(c) In the limit t, - t„Eqs. (13) and (13') reduce

to a result derived independently by other authors. "
(d). In principle, these stronger inequalities can

be used to learn something about the number and
positions of zeros of the form factor. For instance,
if all the experimental measurements of the space-
like form factor do not lie within the bounds as-
socjated with a particular value of t~, then we

In the limit that t„--~ or t~- t „ these inequal-
ities become bounds which follow from the assump-
tion that f(() has no zeros in the cut $ plane:

P(a) exp d(a) - d(0) ( ")

F(a) ~ exp d(a) —d(0)—1+ &

could rule out the possibility that f(g) has a single
zero which is located at t„. In practi'ce, it appears
that the present experimental data is not sufficient-
ly accurate to draw such conclusions. As an illus-
tration, suppose that we ignore the Serpukhov-
UCLA experiment and use forms 1 and A to rep-
resent w(t) and 5,(t), respectively. Then it turns
out that all of the lower bounds described by Eqs.
(12) and (13) for t~ &0 barely lie above the overall
lower bound of Eq. (4). Since the electroproduction
points in Fig. 3 also fall near the lower bound of
Eq. (4), the experimental error bars overlap with
the bounds associated with all possible t„&0.
Therefore, we cannot learn anything about possible
spacelike- zeros other than what we already knew
from Eq. (14). Equations (12) and (13) will be use-
ful only when the electroproduction measurements
are more accurate or are taken at higher momen-
tum transfer.

V. CONCLUSIONS

Analyticity has been used to derive dispersive
inequalities which bound the spacelike behavior of
the pion's charge form factor in terms of the time-
like variation of the modulus of the form factor
and the p-wave mm scattering phase shift. These
techniques provide a clean method of exploiting
maximally the current experimental data on the
pion's form factor. A large variety of timelike
data produces numerical bounds on the spacelike
form factor which are compatible with recent pion
electroproduction measurements. However, the
large charge radius, suggested by Serpukhov-,
UCLA observations of ne scattering, is only com-
patible with timelike data which involves a large
p-wave phase shift just above threshold. Indepen-
dent experimental and theoretical considerations
neither support nor decisively rule out the exis-
tence of such an enhanced phase shift.

Also, if a few points in the spacelike region are
accurately measured and if these data are used as
input, then we can improve our bounds for other
spacelike points by a method similar to the one
given in Appendix B. Moreover, if [ E(t) ~

on the
interval t, & t & t, is measured in colliding beam
experiments, we can test its consistency with re-
lated dispersive inequalities. " At any rate, a
more precise measurement of 5,(t) in the low-en-
ergy region or of (F(t) ~

in the interval t, &t &t,
is clearly desirable.
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APPENDIX A: PROOF OF GENERAL BOUNDS

In the following we outline the method of proof
which is used to deduce the dispersive inequalities
[Eq. (4)J from assumptions 1-4 in Sec. II.

To begin with, it is necessary to define a few re-
lated functions. First, let Q($) denote the Qmnhs-
type function:

(G(t) (=w (t) (A7)

for all t~ t, on the cut. Finally, let B(g) denote
the following ratio:

(A8)

If follows that B(g) is a "real" function which is
analytic in the g plane with a cut at t, & ]= real

It is normalized at the origin such that

seen that G(t) satisfies the "boundary condition"

{Al) B(o)= G(0)-' &o

and obeys the simple "boundary condition"

(Ao)

Q(i) = finite nonzero constant,
t ~+on

and also

Q(i+ ic) = (Q(i) (e"~'",
where e &0 and i, & t &t, Next, de. fine f($):

(A2)

(A8)

Q($) is a "real" function which is analytic and non-
vanishing in the complex g plane with a cut at t,
«$ =real &i,. Hereafter we assume that 5„(t) is
continuous on the interval t, & t & t, . If we were to
allow 5z(t) to be discontinuous by an amount v (or
-w) at a point t=A(i, &A. «t.,), then Q(g) could have
a pole (or zero point) at t = A. (in addition to the cut).
Anyway, Q(]) satisfies

Q(o) =1,

IB(i) I «1 (A 10)

for all t~ t, . Because of our assumption of poly-
nomial boundedness for F(t) and of a similar prop-
erty for M (t}, B($) is also polynomially bounded at
infinity. Then, a version of the Lindelof-Phragmen
theorem due to Nevanlinna" may be used to prove
that the inequality (Alo) is valid at infinity; it fol-
lows from the maximum modulus theorem that
IB(g) I

«1 for all $ in the entire cut plane. Note
that the polynomial boundedness of B($}is crucial
for the validity of this result. For example, an ex-
ponentially increasing function f($) = exp[(t, —$)' ']
satisfies (f(t+ie) I

=1 on the entire cut; neverthe-
less, it leads to f (t) -~ along the negative axis in
contradiction to the last inequality. Finally, ob-
serve that the previous definitions" imply

~(t)
Q(g)

' (A4) ~(t) =Q(t)G(t)B(&) . (A11)

f(g) is a "real" function which is analytic" in the
$ plane with a cut at t, & t'=real &~. Notice that
the cuts of E(g) and Q($) have "canceled" so that
f(g} is analytic along t, & [=real & t, . f(g) obeys
the normalization condition f(0) =1 and also satis-
fies (see assumption 4 in Sec. II)

If(i)I & w(i) =- (A5)

Here the square root is taken to have a branch cut
along the positive real axis with positive values on
the upper cut. G($) is a "real" function which is
analytic and nonvanishing. in the $ plane with a cut
at t, & ( = real &~. In addition, it can be easily

for all i ~ t, . The asymptotic behavior of w(t) and
Q(t) [see Eq. (A2) and assumption 4 in Sec. II]
guarantees the existence of the exponentiated inte-
gral:

/ x/2

G(g) =—exp%
t

(A8)

Now, suppose a is some spacelike momentum
transfer (a &0). We want to find bounds on E(a) in
terms of 5„(t) (t, &t&t,) and w(t) (i, &f &~).
Since Q($) and G(() are completely determined by
5„(t) and w(t), Eq. (All) shows that F(a) will be
bounded by 5z(t} and w(i) if we can find upper and
lower limits on B(a) in terms of 6z(t) and w(t). It
is convenient to use the following mapping in order
to transfer the problem from the g plane (complex
i plane) to the z plane:

((-~)'"= ~ "( ) (A12)

P(z) -=B[&(z)] . (A13)

If we denote x (0 & x&1) as the z-plane image of t
= a, then the problem is to bound P(x) in terms of

This transformation maps the whole $ plane into
the open unit disk in the z plane, the upper and
lower cuts in the $ plane (at f, & )=real &~) onto
the lower and upper unit semicircles in the z plane,
and the points $ =0, t „~into z =0, -1,+1. In the z
plane the representative of B($) is P(z):
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6„(t) and M)(t). First note that the properties of
B(g) imply that P(z) is a "real" function which is
analytic on the open unit disk, Iz I

&1. Also Eq.
(A9), Eq. (Alo), and the subsequent remarks re-
quire

l~((+ie) I
=1 (A20)

f($) =&(h)f(5), (A21)

on the cut $ ~ t, . Secondly, if f($) should develop
a pole at t= t„ it is convenient to use

p(o) =G(o)-' &0,

IP(z) I
=1 (A14) (t, —t)"'-(t, —t,)" "

(t -t)"'+ (t —t )"*} (A22)

IP(z)l &1

for all Izl &1. In that case p(z) satisfies the hy-
potheses of the Schwarz lemma, ' it follows that

tl(z) —p(o)
[1—P(0)P( )j

for all Iz I &1. At the real point x, P(x) is real;
therefore, Eq. (A15) becomes

(A15)

for all I z I
- 1.

For the moment suppose that P(z) is not identi-
cally unity on the closed unit disk. Then, the max-
imal modulus theorem implies that

Then, f($) has no pole and satisfies

+LE' = +gE (A28)

for g ~ t, . On the other hand, if f(g) has a zero
point (instead of pole) at g = t„ then n can be taken
to be negative in (A22). In that case, the resulting
dispersive inequality will be much stronger than
previous ones. Finally, if F(b) (t) &0) is accurately
measured in future experiments and if the data are
used as input, then we can improve our inequality
for other spacelike points by exploiting the Schwarz
lemma again. To see this, let A. be the image of 5
under the mapping in Eq. (A12), and set

p( )- p(0)
x[1—P(0)P(x) j

P(0) —IXI .p. P(0)+ Ixl
1 —Ix I p(0) I+ I x I p(0)

(A18)

(A 1V)

1-~*z p(z) —p(Z)
1-P(~*)P(z)

'

Then, the techniques of this section can be used to
show

lr( ) I= 1

The last relation also holds even if P(z) is identi-
cally unity on the unit disk; therefore, Eq. (AIV)
is true in every case. Now, Eq. (A14) and (A17)
can be combined to give

G(0) ' —Ixl — — G(0) '+ ixl
1 —

I IG(0) ' 1+ IxlG(0} ' '

(A18)

Since G(0) is known in terms of 5~(t) and (e(t), we

have succeeded in bounding P(x) or B(a) in terms
of 5J,(t) and v)(t). Substituting Eq. (A18) into Eq.
(All) gives upper and lower limits on F(a) in terms
of 5z(t) (to & t &t,) and a)(t) (t, &t &~). Algebraic
manipulation cast these bounds in the form of Eq.
(4)

Before closing this section, it is worth making
the following technical observations: First, we
could have simplified our proof considerably if we
had used

tt(t)=»tt —(t —()' ' dt
( )(, ).t, )

0

(A19)

instead of G(g) as given in Eq. (Al). (d(() has prop-
erties similar to those of Q(g) in addition to the
fact that it also satisfies

for all Iz I
& 1. This process can be repeated if

more than one spacelike point is to be used as in-
put.

APPENDIX B: PROOF OF ZERO-DEPENDENT BOUNDS

This appendix sketches the proof of the stronger
inequality [Eq. (12)j, which follows fram the orig-
inal four assumptions of Sec, II supplemented by
an additional assumption about the nature of the
zeros of the form factor.

The additional hypothesis is that f (g) [defined in
Eq. (A4)j has one and only one zero" (at a known
location) in the cut $ plane. Since "reality" implies
that this zero must be on the real axis, its position
will be denoted by tN. Let n be the image of $ = t„
under the transformation, Eq. (A12). The@, in
analogy to the proof in Appendix A, we seek to
bound p(x) in terms of n, 5~(t} (t, & t & t,), and
a)(t) (t, & t & ~}.

The added assumption mentioned above implies
that P(z) has one and only one zero (located at z
=n) in the entire open unit disk. In order to ex-
ploit this extra information, define a new' function
p, (z):

In l(1- nz) —,
pg(z) =

( )
p(z) ~
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p, «)=l I
'G(0) '»

and obeys the "boundary condition"

(B2)

P,(z) is a "real" function which is analytic and non-
vanishing on the open unit disk. It is normalized
such that

or

lnP, (x) —lnP, (0)
x[lnP, (x) + lnP, (0)]

for all lz I
&1. At z = x, this relation becomes

(B8)

I p, (e*') I-1 (B3) [p (p)](&+ I~I)/(&-I~I) & p (x) & [p (p)](&-I*I)/(&+ I*I)

lnP, (z) —lnP, (0)
z[lnP, (z) + lnP, (0)]

(B5)

),(z) is also analytic on the open unit disk. In ad-
dition, a straightforward computation, which util-
izes Eqs. (B3) and (B4), shows that

l),(e")I- 1 . (B8)

Applying the maximum modulus theorem to y, (z),
we find that

(Bv)

Therefore, the maximum modulus theorem re-
quires that either lp, (z) i&1 for lz i&1 or p, (z)
=P,(0) for all lzl- l.

Assume for the moment that P,(z) is not identical-
ly unity on the unit disk. Then, the above state-
ments imply

(B4)

for all Iz I
&1. In this case it is possible to define

another function:

(B9)

The above inequality also holds if P,(z) is identi-
cally unity on the unit disk; therefore, Eq. (B9) is
valid in every case. Equations (Bl) and (B2) trans-
form the last equation into

& [Io, IG(p)]-(~-I*I)/(~+I I)

(B10)

Since G(0) is determined by 5z(t) and w(t), Eq.
(Blp) constitutes the desired bound on P(x) in terms
of o. , 5z(t), and w(t). Substituting Eq. (Blp) into
Eq. (A11) gives upper and lower limits on F(a) in
terms of o., 5~(t), and w(t); the result can be put
in the form of the bound to be proved, Eq. (12).

If F(() has no zero point in the entire cut plane,
then we replace P,(z) by P(z) in Eq. (B5). The re-
sult is equivalent to letting t„-t, in Eq. (13), as is
stated in the text.
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