
AZIMUTHAL CORRELATIONS OF HIGH-ENERGY COLLISION. . . 3145

SJ. W. Elbert, A. R. Erwin, W. D. Walker, and J. W.
Waters, Nucl. Phys. B19, 85 (1970).

R. Hwa and C. S. Lam, Phys. Rev. Letters 27, 1098
(1971).

~~M. Jacob and R. Slansky, Phys. Rev. D 5, 1847
(1972).

~2R. Panvini, High Energy Collisions, edited by C. N.
Yang et al. (Gordon and Breach, New York, 1969).

l3J. H. Friedman, C. Risk, and D. B. Smith, Phys, Rev.
Letters 28, 191 (1972).

4T. L. Neff, R. Savit, and R. Blankenbecler, SLAC
report, 1971 (unpublished),

PHYSICAL REVIEW D VOLUME 6, NUMBER 11

Double-Pole Model for the E&3 Form Factors

1 DECEMBER 1972

R. Qlshansky
Laboratoire de Physique Theorique et Hautes Energies, Paris, France

and

Pham Xuan Yem
Division de Physique Theorique, * Institut de Physique Nucleaire

and Laboratoire de Physique Theorique et Hautes Energies, Paris, France
(Received 17 July 1972)

The model of Gerstein, Gottfried, and Huang for the pion electromagnetic form factor is
extended to K)3 decays. One characteristic of the model is the appearance of double poles
which enhance the slopes of form factors. One gets A+= 0.05 and $(0)= —0.32.

I. INTRODUCTION

Conventional theories' fail to explain why the

$(0) parameter in K» decays is nearly equal to -1
as reported in several recent experiments. ' This
discrepancy follows from the fact that the slope Ao

of the scalar form factor fo(t) is generally predict-
ed to be small and positive (AD= 0.01-0.03) and the
slope A., of the vector form factor f, (t) is usually
assumed to be determined by a simple E*pole
(A.,=0.023). Since $(0) is proportional to the dif-
ference between A., and A.„whenever these param-
eters have the same sign and approximately the
same magnitude, $(0) cannot reach the value -1 as
determined by experiment.

In order to account for the experimental data,
one is forced to assume some mechanisms which
either modify Ao in such a way that it becomes neg-
ative (unconventional symmetry breaking, ' zero in
the scalar form factor, ' or second-class currents')
or to enhance A., (K* dominance through a dipole'
or second-class currents'). The effective dipole
form factor, known to describe the nucleon electro-
magnetic interactions, might be a universal feature
indicating that vector-meson dominance should be
expressed through second-order poles. Gerstein,
Gottfried, and Huang' (hereafter referred to as
GGH) recently considered a model for the pion
electromagnetic form factor that incorporates both
the constraints given by current algebra and the

duality property of strong interactions and that
gives rise to double poles in a natural way. The
model has some difficulties already pointed out by
Grisaru and Visinescus: (i) Contribution of the
diffractive part of the pion-pion scattering ampli-
tude has to be treated separately. (ii) The dis-
connected graph and the diffractive part must con-
spire in such a way as to make the form factor van-
ish at t =~. (iii) Only elastic scattering is con-
sidered in the intermediate states.

In the present note, the model of GGH is extend-
ed to the study of the scalar and vector K» form
factors. One assumes, as a working hypothesis,
that the W meson(in analogy to the photon) interacts
with hadrons through pair creation as in field the-
ory and that the t dependence of the form factors
arises from the lowest-order mK final-state inter-
action which is assumed to be a Veneziano type.
Since the $(0) parameter is proportional to the dif-
ference between the scalar and vector form factors,
it is reasonable to believe that in evaluating this
parameter from the model, the effect of the above-
mentioned difficulties may be attenuated. At first
sight, one might guess that since the Veneziano
amplitude is used, f, (t) and fo(t) will both have
double poles at positions determined by the E* tra-
jectory, and their slopes will be equal, yielding
g(0) =0. However, as we shall see, in more detail,
the residues of the poles are different and although
this difference leads to a negative value of $(0), it
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does not appear to be great enough to reproduce
the experimental value -1.

A somewhat similar approach has already been
given by Yamada' who considers a scattering of
Ã, w with spinless quarks (A., d'). The amplitude has
a pure Regge form (even in the low-energy region).
Double poles then also arise explicitly for the form
factors. However, the model makes use of some
unknown parameters (Regge residues, quark mass)
hence the slope A., cannot be predicted.

II. SCALAR AND VECTOR FORM FACTORS

Usually, the matrix element for the decay Ko-m l' v is written in terms of two invariant form
factors f, (t) and f (t) defined by (apart from the
conventional normalizations)

(~ (p.)lv," 'IA'(p, )) =(p, +p.)„f.(t)
+(P, -P.)„f (t)

with t= (p, —p, )'. The dispersion relation for f, (t)
receives contributions only from J =1 intermediate
states [hence f, (t) is called the vector form factor].
On the other hand, f (t) is not dynamically indepen-
dent and it is convenient to introduce a third form
factor f,(t) which is proportional to the matrix ele-
ment of the divergence 8&V~&

' which obviously
receives contributions only from s-wave interme-
diate states:

( '- ti')f. (t) -=( (P,) I &„v„"='I&'(P,))
=(m' q')f„(t)+ tf -(t),

where m and p denote the Rand m masses. The
scalar form factor

then $(0) —= f (0)/f, (0) is related to A., and A, by

((0)=, (X, -X,).

Now, following GGH, the K» form factors are ob-
tained through the Feynman graphs of Fig. 1 which
give the K» matrix element proportional to

i (2q -P)„A(t, s = q', u)
(2~)' [(q -P,)'- m'][(q -P,)' ~-'] '

(2)

where p„=(p, +p, )„, t=(p, -p, )', u=(p —q)', and

A(t, s = q', u) is the invariant amplitude for Ew scat-
tering in the isospin- —, state with squared c.m.
energy t and squared momentum transfer s =q'.
We assume that the AI = —,

' rule is quite adequate
in semileptonic strangeness-changing weak inter-
actions, as is well confirmed by experiments.
The scalar form factor f,(t) is obtained from Eq.
(2) by multiplying (2) by 4&

——(p„-p,)„. Thus we
have

(2v)' ~ (q'-2q P,)(q' 2q P.)-

By multiplying Eq. (2) by the projection operator
D„=tp„—(m' —pi)k„, we obtain for the vector
form factor

(2v)' (q' 2q P,)(q' —-2q" P.)

f.(t) =f, (t)+ . .f (t) (
20

q) (4)

and the vector form factor f, (t) are dynamically
independent.

If we define A., and Ao as the logarithmic deriva-
tives of f+(t) and fo(t), respectively, at t =0, i.e.,

I f.'(o) I f.'(o)
v' f, (o) ' '

I
' f.(0) '

The scattering amplitude A, (t, q', u) which enters in

Eqs. (3) and (4) is assumed to contain the Vene-
ziano terms (narrow resonances with Regge as-
ymptotic behavior) plus a diffractive part contain-
ing the Pomeranchukon. Correspondingly, the
form factors f+(t) and f,(t) can be decomposed as

Pj

FIG. 1. Feynman graph for K&3 matrix element through
K n K n. interaction.

It is plausible that for small t, f~(t) = f P(t), since
QGH have argued that the diffractive contribution
to the pion form factor represents a small correc-
tion except at large t. For the K„decays, where
we are only interested in the domain of small val-
ues of t, it is not unreasonable to assume that the
difference f, (t) —fo(t) is essentially given by the
difference f«(t) —fo(t). Also when we consider,
not separately the form factors, but their differ-
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ence, the contact term (which comes from the disconnected graph) does not intervene and by studying the
difference f,(t) —f,(t) it is hoped that the previously mentioned difficulties of the GGH model can be miti-
gated. From Eqs. (3) and (4), neglecting g' with respect to m', we have finally

2it d, A "(t,q', u)
2

t
f+{ f' (2»)'(t-m')' J (q' —2q p )(q'-2q p ) m'

Here in Eg. (5) we consider only the nondiffractive
part (or Veneziano terms) of the scattering ampli-
tude, that we denote by A"(t, q', u). Next, we ex-
amine ihe nondiffractive part of the Em scattering
amplitud~. Using the standard notation

A(s, t, u)=5„,A'(s, t, )u+'[~„, 7] A-( s, t, u),

where o., P denotes the n-meson isospin, the Kx
amplitude is given by

A ' =A. +22

Following, '0 let us write down g' in the Veneziano
form:

A'(s, t, u) = ,'P[V(n»-~-(s), o.p(t))+ V(n»g(u), np(t))],

where P = f»~», '- Bw and V(x—, y) is defined by

r(1 —x)r(1 —y)
I (1-x-y)

The scattering amplitude A"(t, q', u) in Eg. (5) is
then

&"(t, q', u) = -kP[3 V(~»*(t), o', (q'))

—«&»*(u) ~,(q'))].

When we expand the first term V(u»~(t), n~(q')) of
the right-hand side of Eg. (6) as a sum of q' poles
and put them in Eg. (5), we thus obtain an infinite
sum of triangular graphs, each of which can be
evaluated by- using the Feynman technique of aux-
iliary variables. After that, the results can be re-
summed to yield as expression involving V(o.»4,(u),
nz(q')) itself [see Eqs. (7) and (8)]. As for the
second term V(n»~(u), o.~(q')), this technique can-
not be carried out since here the residues at the q'
poles (contrary to the first term) are no longer in-
dependent of q' (for off-mass-shell particles, t+q'
+u is not constant). However, if we proceed in the
spirit of GGH, i.e., if we assume that the Vene-
ziano formula is also valid for off-mass-shell par-
ticles, then we find out that the contribution of the
second term V(n»~(u), a ~(q')) to the integral (5)
can be neglected with respect to that of the first
term V(u»g(t), u p(q')). '"

After rather lengthy calculations, we get

f.{t) fo(t) =
2 1—5 . . dye(T, y) «o'»*(-~'~), o', (-~'y))

PT Bg 0

y+(y'+4y)'"+ &[(y'+ 4y)'" -y] 2+y- (y'+4y)'"
(1+~)' 2(1 + 'r+ y) 2(l+ a+y)(1+ v)'28-,

[~'+ 4~'+ 5v + 2+y{7'+3~+ 2)](1+4/y)'" —[T'+ 47'+ 3~+y(T'+ 37 —2)]
y+ (y'+ 4y)'"+ T[(y'+ 4y)'" —y]

and 7 =-t/m'. In the same way, we get for the nondiffractive part of the vector form factor f, (t) the follow-
ing expression:

f+( ) =2 15
vt 3 P

dy g, (r, y) V(a»~(-m'~), o.p(-m'y))

with

2' —(1+q)' y+(y'+4y)' '+ r[(y'+4y)' ' —y] 2+y —(y'+4y)' '
(1+r)' 2(1+ T+ y) 2(1+T+ y)(1+ 7)'

~'+2r'+5r+2+ 7y(3 —7')+ r(1+ 7){1+T+y)(1+4/y)'"
y+ (y'+ 4y)'"+ ~[(y'+ 4y)'" -y]
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By examining Egs. (7) and (8) we discover that f, (t) and fo(t) possess double poles lying on the K trajec-
tory. In addition to the function I'(1- o.r+(t)}already factored out of the integrals, the remaining integrals
also have poles at the same points nrem(t) =n which are produced by the behavior of g (v, y) and g, (r, y) for
large y.

III. NUMERICAL RESULTS

By taking P =8m, nr~(0) =0.28, c.~(0) =0.48, n'
=0.89 GeV, we thus obtain A. + —A0=0.02'7 which
then yields $(0) = -0.32 through Eq. (1).

b. The A,,Parameter.

f.(f) = I +f+'(f) + f'(t),
where f,"(t) is already given. by Eq. (8). Since we
have no reliable way to evaluate the diffractive
part f~(t), it is only a subject of speculation. How-
ever, as shown by GGH in their model, fP(t) would

represent a small correction except at large values
of t. Since in the K» decays, we are only inter-
ested in small t, we assume that f~+(t) is nearly
flat, so that A,, can be approximately given by the
slope of f",(t). We thus have

with

G(X) =g, '(o, X)

dyV(o. » (0), o.z(-m'y)) [G(y)],

(10)

+ c.'m'g, (0, y) [g(0.72) —g(0.24+ n'm'y)], (11)

where /= I"/I' is the logarithmic derivative of the
I function. With the same numerical values of P,
o.~~(0), ~o( ),0and a' as above, we get X., =0.05.
Evaluating f v+(0) from Eq. (8), we find that it is
quite different from zero [fv+(0) =0.25], then it is

a. The g (0) Parametex. The derivative of Ec(. (7)
taken at t =0 gives us

2 Oo

A =
2 18

dy g (0, X)V(& (0), a (™9))
(8)

necessary to assume that f«(0)+f~(0) =0 in order
to preserve the Ademollo-Gatto theorem f, (0)= 1.

IV. CONCLUSION

A recent experiment by Chien et a/. " indicates
&at A., =0.05+0.01. If this result is confirmed,
the use of a dipole form factor for f, (t) offers an
attractive explanation for the strong I, dependence
which is observed and suggests that vector-meson
dominance of form factors might be expressed
through second-order poles rather than simple
poles.

A theoretical explanation for the appearance of
double poles is provided by the QGH model and
here this idea is extended to K» decays. By study-
ing the difference A.o

—A.„ it is hoped that some of
the difficulties of the model will be diminished.
Although the value of A., is indeed enhanced, the
value of Ao is also increased by the appearance of
double poles and. the net result $(0) = -0.32 is still
small (in magnitude) in comparison with experi-
ment. The model produces a larger and improved
magnitude for g(0) than do conventional theories
which assume that f, (t) and f,(t) are dominated by
simple K* and a poles, but does not provide a com-
plete explanation of the data.
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Analyticity has been used to derive dispersive inequalities which bound the spacelike be-
havior of the pion's charge form factor in terms of the timelike variation of the modulus of
the form factor and the p-wave m scattering phase shift. The large charge radius, suggested
by the Serpukhov-UCLA measurement of me scattering, is only compatible with timelike data
which involve a large p-wave xx phase shift just above threshold.

I. INTRODUCTION

In recent years there has been a rapid accumula-
tion of data on the behavior of the pion's charge
form factor, E(t).' Colliding beam measurementsa
of o(e'e -w'w ) at Novosibirsk, Orsay, and Fras-
cati have furnished infoxmation on the size of
~E(t) ~

for timelike momentum transfer: 16m, 'a t
s4.4 GeV'. On the elastic cut, t, =-4m, '~t
«16m, ', the phase of E(f) is equal to the J=T=1

ww phase shift, 6,(f) (modulo w). Chew-Low extra-
polation techniques' can be used to infer 6,(t) from
observations of nN- me¹ Gn the spacelike inter-
val, -1.2~t~-0, 2 GeV', the behavior of the form
factor has been extracted from pion electroproduc-
tion experiments. ' In addition, the recent Serpuk-
hov-UCLA measurements' of pion-electron scat-
tering have provided direct access to

~ E(t) ( at
small spacelike momentum transfer, -0.04K t
s -0.02 GeV'.

These experimental results in the spacelike and
timelike regions should be correlated by the ana-
lyticity of the form factox. The standard method
of displaying that correlation is to write an ordi-
nary dispersive equality', i.e., Cauchy's theorem
is used to express F(t) at spacelike momentum
transfer in terms of a polynomial ("subtractions" )
and an integral of ImF(t) over the timelike do-
main. Thus, the computation of E(t) at spacelike

t requires knowledge of the following input: the
number and size of subtraction constants as weG
as the behavior of the modulus and phase of E(t)
over the entire timelike cut. In the case of the
problem considered here, this approach has the
disadvantage that it is usually necessary to con-
struct a model in order to estimate the subtraction
constants' and to estimate the phase of the form
factor for I;&16ng,'.

The correlation of spacelike and timelike expex i-
ments can be expressed in a more model-indepen-
dent way by using analyticity and a smaller amount
of timelike information to derive bounds on the
spacelike form factox'. The resulting dispersive
inequalities' "typically take the following form:
Knowledge of (F(t) ( or an upper bound on (E(t) (. on
the entire timelike cut is used to put upper and
lower limits on the value of E(t) for spacelike mo-
mentum transfer. This technique has several im-
pox'tRnt Rdvantage8 over ordinary dispersive equRl-
ities. First of all, it is not necessary to build
models for the (experimentally inaccessible) phase
of E(l) for t&16m„'. Secondly, the input informa-
tion includes only an upper bound on (not the value
of)

~
E(t)

~
in the timelike region This is sign. ifi-

cant since two-photon effects" may be sizable at
high timelike g; in that case, colliding beam mea-
surements of u(e'e - w+w ) determine only an
upper bound" on j E(t) ~

(provided that the effects of


