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By studying the partial-wave expansions of multiparticle amplitudes we argue that analytic
properties in complex helicity are just a reflection of the familiar analytic structure in angu-
lar momentum. We give a criterion which determines when an asymptotic behavior in an
azimuthal angle (conjugate to the helicity) can be reached in a physical process. Our discus-
sion centers around the five- and six-point functions; the latter, being relevant for single-
particle inclusive processes, is considered in detail. One of the interesting features of an-
alytic structure in A. is that it depends in detail on what other variables one chooses in ad-
dition to the azimuthal angle conjugate to it. That singularity structure is found by examining
the partial-wave analysis appropriate to the chosen variables. Finally, a discussion of sig-
nature in many-particle amplitudes is given.

I. INTRODUCTION

In the study of the asymptotic behavior of hadron
amplitudes, it is possible to isolate processes in
which one of the "external" objects is a Reggeon;
namely, a "particle" both off the mass shell p'
= m' and off the spin shell n(p') =integer or half-
integer. The simplest scattering, of course, in
which a Reggeon makes its appearance is elastic
or quasi-two-body scattering. Here one measures
a Reggeon-two-particle vertex function as the
factorized residue of a pole in the complex J plane.
In processes involving more particles, one can
discuss Reggeon-particle scattering and produc-
tion. ' A degree of freedom suppressed in elastic
processes, the helicity of the Reggeon begins to
play a role in multiparticle problems. Qne may
view its appearance either as reflecting the non-
trivial dependence on azimuthal angles which en-
ters in five-, six-, . . . point amplitudes, or one
may recall that in four or more line amplitudes in-
volving particles with spin, the dependence on he-
licity becomes significant.

These azimuthal degrees of freedom, P, invite
one to inquire into the behavior of multiparticle
amplitudes as some cosP becomes asymptotically
large. ' Such behavior will be governed by the
analytic structure in the variable conjugate to P;
namely, the helicity. One is led thereby to investi-
gate the singularity properties, poles and cuts
especially, in complex helicity. From the outset
it is clear that singularities inthe helicity must be
thought of as on a somewhat different footing from
those in angular momentum or invariant energies.
This difference comes from our understanding of
particles as being classified according to irreduc-
ible representations of the Poincare group. Under
such a classification the spin J and-(mass)' =p',
apart from internal quantum numbers, are suffi-

cient to specify a state. When we consider $-
matrix singularities in J or p', or together as for
Regge poles with J' = o.(p'), we remain within this
Poincare invariant scheme. However, helicity has
quite a different character in the classification of
states. It labels the components of a representa-
tion and under a Lorentz transformation can change
or be mixed up with other helicities. In short it is
not a quantity that provides a Lorentz-frame-inde-
pendent characterization of a state, and to regard
singularities in helicity variables as somehow "dy-
namic" necessitates a major reorientation in our
views of what constitutes a particle. We will argue
in this paper that such a drastic move is not called
for, and that, indeed, singular"ities in helicity axe
kinematic reflections offamiliar analytic structure
in angular momentum. The way in which this
comes about will be given in detail in the discus-
sion of the five-point function found in Sec. II. The
relevant feature is the isolation of a I'(X —J') in the
double Sommerfeld-Watson transform in angular
momentum J and helicity X. This factor will en-
sure that a pole, say, at J= n in the angular mo-
mentum is a series of poles in X at A. = ~, ~ —1, . . . .
In this way we see directly the "kinematic" man-
ner in which J-plane structure goes over into A. -
plane structure.

We will then argue that the isolation of these
kinematic I' functions is enough to determine the
analytic structure in X in multiparticle amplitudes.
In particular we will study the six-point function
in a configuration appropriate for learning about
the three-Reggeon vertex, ' and during this study
we will develop a criterion for deciding when a
certain asymptotic azimuthal angle limit can be
reached in the physical region of an $-matrix ele-
ment. This becomes particularly important in the
investigation of inclusive processes.

It has been known to many people4 that there are

3018



ANALYTIC STRUCTURE OF MULTIPARTICLE AMP LITUDES. . . 3019

singularities in A. at ~, z —1, . . . and, in a sense,
our discussion of that point is meant to give a
stronger motivation than we have found in the lit-
erature. Particularly relevant to the present work
are the papers of White' and leis, ' the latter of
which has certainly stimulated many of our ideas
here. Beyond this pedagogical contribution, the
discussion of more general configurations than
five- or six-point functions and the criterion for
physical region asymptotic behavior in azimuthal
angles may have some value in further study of
multiparticle production. One of the additional
points we will emphasize is that the detailed struc-
ture in the A. plane will depend on exactly what
other variables one chooses in addition to the P
conjugate to X. The selection of those variables
will be connected with various multiple partial-
wave expansions whose significance will be given
by the kind of physical information one wishes to
extract from the multiparticle amplitude in the
cosp-~ limit.

II. RELATING ANGULAR MOMENTUM

AND HELICITY STRUCTURE

In this section we will first give a heuristic dis-
cussion of the manner in which certain kinematic
factors in partial-wave expansions enable one to
determine where singularities in helicity A. lie when
one has specified the analytic structure in the an-
gular momentum J. Our procedure will be to con-
sider in detail the five-point function in the kine-
matic configuration shown in Fig. 1. All external
particles are spinless, and for simplicity we will
take them to have equal mass, m.

We want to make a partial-wave decomposition of
this amplitude which enables us to look at the ana-

P

lytic properties of the helicity associated with a
Reggeon of mass t, =Q,'=(p, + p, )'. To make this
partial-wave analysis let us sit in a frame where

p, =(m, o, o, o),
and the other vectors are chosen to be

Q, =Mt, (cosh);, 0, 0, sinhg, ')

P)

FIG. 1. The tree graph appropriate for the partial-
wave analysis of the five-point amplitude A&. The as-
ymptotic limit of A

&
in the angle between the planes

formed by p&p3 and p2p5 is governed by the singularities
in the helicity attached to the (Q&p4Q2) vertex.

=B,(g;)( t;, 0, 0, 0), i =1, 2 (2)

p, =B,(g,)( E„p,sin 8, cos Q„p, sin8, sing„p, cos 8,),

p, = B(g )2( E„p2sin 8, cos Q„p2 sin 8, sing„p2 cos 8,),

P, =(-,'t, —m')'". and E,

(4)

(5)

cosh(, =(m'+t, —t )2/ 2m', ,

cosh(2=(m'+t, —t,) /2m'~ .
(6)

(t)

We have chosen the Q; timelike so we may make an
ordinary O(3} partial-wave analysis. The B,(g) is
a g boost through the indicated angle.

These kinematics define a set of six variables,
cos8„cos8„ t„ t„g= P, —P„and P, + P„on
which the amplitude may depend. Rotational in-
varianee of the scalar amplitude forbids the ap-
pearance of the angle P, + P„so we have the five-
point function given in terms of the first five vari-
ables. We will for the moment pretend that P, and

p2 may be treated independently and will impose
this important constraint soon. Suppressing all
variables except 8, and p, we exhibit the depen-
dence of the five-point amplitude on them by writing
the partial-wave expansion

+Jj r(J, + ~, +1}
A, ( cos„8$,) = p g (2J, +1)P '(co~s8, )e'~'~&

( }
M~ q,

J~-p X~-- J~

where

r(J -x+1)
Pg( ) x( 1) Pg( )x

(1 x2) h/2

1) 2E,(Z —A., J+A+1;A, +1; ~2(1 —x)) for %~0, (10)

and P~(x) is the usual associated Legendre polynomial. The purpose in taking out the designated r functions
is most apparent in Eq. (10) because one can see from known properties of the hypergeometric function that
there are no associated J, A. singularities in P~~(x).'
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If there were no other singularities in X„we would now be able to conclude that a pole of M„(J„X,), say,
in J, at o, ,(t,) would, through the kinematic I' functions yield strings of poles at

(23)

(24)

from the first term in (22). In the second term, which involves the left-hand A., plane, a pole in M~(J„A.,)
at J', = o.,(t,} gives rise to singularities in A., integration at

&, = -o.,(t,), n, (-t,)+1, . . . (25)

A,, = o.,(t,) + 1, o.,(t„)+ 2, . . . . (26)

For P, -+i~ we want to pick up the poles from the second (first) term of (22) which lie furthest to the left
(right) in the X, plane. Since Ma and M~ are the proper functions to be continued in the right (left) half X,
planes, ' this is appropriate.

Because of our construction so far, were there no kinematic constraint on p, that it only enter A, in
the form Q = P, —$2, we would be strongly motivated to say there are no further singularities from Mz, z, in

In the representation (22} of A, (g„cos8,) we would then conclude that the asymptotic behavior in e'&i

with the other specified variables fixed is (cosP, )"& 'i~ for n, (t,) ) --,' plus 0((cosg, ) I '& ').
However, the invariance under z rotations of the scalar function A, tells us that if we go back to (8) and

restore 8~ and pm and write a double partial-wave expansion to exhibit their dependence also,
oo oo + Jy + J2

A, (cos8»cos8» P» Q, ) = g P g g (2J, +1)(2J,+1)e'"&~~ '~2~2

Jg=0 J2 =0 Xy =-Jy X2-——J2

F(J, + &, + 1) I'(J, + X2 i 1)

(27)

(29)

then X, must equal X, so only g = P, -' p, appears. This has the implication that singula. rities in both J', and

J„ the angular momenta conjugate to 8, and 8, are transmitted to A,, via the kinematic I functions we have
discussed at length.

This lesson is well known, we know, but we have belabored it here to show how it is that the rotational
invariance of A, or equivalently the covariance of the central (Q, Q, p, ) vertex in Fig. 1 links together the
otherwise independent helicities A., and X, . We are informed thereby to think of X, and its associated P, as
not connected with the external orientation of the plane of p, and p„but to attach it tothe central vertex to
exhibit its meaning.

By going to particle poles in I;, and t, in the function A„one sees directly that A., and X, are properly in-
terpreted as the helicities of the states with spin J„mass Wt, , or spin J„mass Wt, , respectively. The
rotational invariance of A, informs us that we may not separately continue in A., and X„even though we

may, of course, do so in J, and J,. Also by taking, say, just t, to a pole of spin J„helicity h„we see
that the continuation of the resulting four-point function Q2(spin J„h,) + p, - p, + p, in the angular momen-
tum Jy does not necessitate, indeed does not allow, a continuation in the he1icity A,, associated with J„ for
it is constrained to be the external helicity 5, . It is in this manner that we see why one never encounters
questions of complex helicity in two-to-two processes.

Returning to Eq. (27), if we define F„and F~ in analogy with (16) and (17),
2md

x,P'~(x, )-' dx, P'~(x ) e '~~A, (x„x» (28)

we may write the triple Sommerfeld-Watson transform

dX
A, (cos8„cos8„y)= . . . . . r(~ —J,)r(~ —J,)1(~+J, +1)

c 2i sznpA c 2m~ c 2
Jy

x I'(A. + J2+ l)(2J, +1)(2J2+ 1)(-e'@)~Fz(O'„J2, X)P&~(-x,)P~~ (-x2)

dJ, dJ
+ . . '. '. I (-~ —J,)r(-~- J,)1"(-~+J, +1)r(-~+J, +1)

~, 2i sing%. ~, 2pz ~, 2nz
Jg J3

x (2J, + 1)(2Jm+ I)(-e'~)"Pz "(-x~)Pz (-xn)Fz (J» J» &) ~
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Now we have exhibited the dependence on 8„8,and

p = p, —p2 and have extracted all the kinematic F
functions from the partial-wave amplitudes
E»(Z„J„X)which may be continued in the right-
half (left-half) X plane. We are strongly urged to
assume that these functions have no singularities
in A. and thus learn that the asymPtotic behavior in

P is comPletely determined from the "dynamical"
Poles and cuts in J& and Jq.' This assumption,
which is very natural in the light of our remarks
about the Poincare group above, is borne out in
model calculations where the simultaneous x„x„
and P asymptotic behavior with t„ t, fixed has
been studied. '

Perhaps it is worthwhile once more to repeat the
procedure we have followed before going on to
more complicated, albeit physically more interest-
ing examples. We chose from the outset a kine-
matic configuration indicated by the "tree" graph of
Fig. 1 and designated more precisely by the kine-
matics (l)-(7) in the rest frame of particle 4. We
then argued at length that to find the singularities
in the helicity X„conjugate to p„which deter-
mine the asymptotic behavior of A, as e'~~-,
one must write a multiple partial-wave expansion
which exhibits all the constraints on A,, coming
from the Lorentz invariance of A, The partial-
wave expansion is, of course, suggested directly
by both the tree graph and the kinematics and must
be carried out in a frame which guarantees that

8„8„$„$2have their interpretation as polar
and azimuthal angles, so we are confident that
their conjugate variables are angular momentum
and helicity.

This last remark is relevant for the question:
What is the behavior of A, as cosQ-~, with cos8„
cos8„ t„and t, fixed? This limit is not accessi-
ble in any physical region of the five-point func-
tion, as we will discuss at some length below, but
one may ask it. If we define the energy variables
s =(p, + p, }', s, =(p, —p, )', and s, =(p, —p, )', then
this limit corresponds to s -~ while s„s„t„and
t, are fixed. From the point of view of the s-, t-
channel invariants, our question would seem to
have no answer for why should (cosP) t") appear
rather than (cosp) ~'1 or even (cosp)" t"1) where
u, =(P, —P,}2? That is, why, from the point of
view of channel invariants is the tree graph of Fig.
1 relevant to the limit s -~, t„ t2 sy s2 fixed? '

Our answer to this question is that in the limit
cosP-~, cos8„cos8„ t„ t, fixed, the four in-
variant dot products p, ~ p„p, ~ p„p, ~ p„and
p3 p5 al l become inf inite, while the other six
possible inner products among the momenta re-
main finite. The only choice of tree graph for
which P remains an azimuthal angle and for which
these, and only these, inner products are infinite

in this limit are Fig. 1 and its trivial variations
gotton by interchanging p, and p, or p, and p, or
both. To be more precise in what we mean by tree
graph, let us say that the crucial feature is that it
defines a way of choosing kinematics so that if p;
and p& as a pair connect to Q, , = p, —p, , then we

make a partial-wave expansion in the polar and
azimuthal angles 8;& and p;, of the plane of p; and

P& and look for poles in the conjugate variable J;&
of 8;,. and J,',.(Q,,2}.

If for A, we had chosen P to be the angle between
the planes of (p, p, ) and, say, (p, p, }, then in the
limit cosQ-~, we are not picking out p, ~ p2,

p, ~ p„p, ~ p„and p, ~ p, -~ as before. So a par-
tial-wave expansion which bad this interpretation
would be inappropriate for the limit we desire, and

we return to Fig. 1 as the only available tree
graph (including again trivial p, —p„p, —p, per-
mutations).

Another observation in this regard is that with
our parametrization, when p —~ so p, and p,
"move away" from the cluster p, p, p4, the fact that

p4 ~ p„p, ~ p, and (p, —p, ) ~ p, and (p, —p, ) ~ p, re-
main finite, singles out the pair p, p, and the sin-
gle particle p, as the correct subclustering. Again
we are led to Fig. 1.

Such a line of thought leads us to expect that as
e' -+~ with cos8y cos62 t] and t, fixed, the
function A., behaves as

A, (cos 8„cos8„t„t„p)
( e $)al( 1)f + ( e 4)a2(t2)f

$-+ oo

cos6i, &f fan%

(30)

where the f; are functions of the fixed variables
while n;(t;}& 0, are the rightmost poles in the J;
as they appear in the representation of A., by Eq.
(27). This suggestion is rather hard to verify in
models of particle production since the limit in
question does not occur in the physical region.
(The dual-resonance model may provide a useful
testing ground. ) When we come to the six-point
function, however, the limit analogous to this can
occur in the physical region and Eg. (39}then has
physical content. With that we close our discussion
of the five-point function and proceed.

III. AZIMUTHAL-ANGLE LIMITS OF THE
SIX-POINT AMPLITUDE

We turn now to a discus'sion of the six-point func-
tion, A.„concentrating on the kinematic configura-
tion in Fig. 2. This will be appropriate for the ex-
position of the triple-Reggeon vertex' and plays a
central role in the discussion of single-particle in-
clusive reactions near the end of the physical re-
gion."
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(1) ~(f„t„t,)&0

and

(2) ~(t„t„t,)&0,

(31)

(32)

where t; = Q . If the f; are either all positive or
all negative, we may be in case (1) or case (2). If
only one of the t; is positive or negative, we are
fixed in case (1). To see the significance of each
case, let us consider them in order. First sup-
pose alit;&0, and b(t„t„t,)&0. Thenwe may sit
in a Lorentz frame where Q, is along the time
direction:

/

Our procedure will be to make a multiple O(3)
partial-wave expansion of 4, and, as we have done
for A.„ to write Sommerfeld-Watson transforma-
tions to yield integral representations useful for
continuation to the crossed channel. Since we en-
counter for the first time a vertex with three
spacelike momenta (Q,Q, Q, ) we will have to dis-
tinguish between two different kinds of partial-wave
expansions depending on the sign of the triangle
function

Z(Q2 q2 q2) (q2+q2 q2)z 4q2Q2

We shall first discuss the kinematics for the pro-
cess p, + p, + p, - p,'+ p,'+ p,'as indicated in Fig. 2

and then give a heuristic argument as to how we
may use the O(3) expansion indicated by Fig. 3 and
analytically continue to the reaction under consid-
eration.

There are two cases to be distinguished'

[~(t„t„t,)]"'
sinhq, = 2~

[~(t„t„t,)]"'
sinhl, =

2~t, ~t,
(37)

Q =(0, 0, 0, v'-t ).
We may orient Q, and Q, in the x-z plane

q, =B,(e,)(0, 0, 0, 0 t,)-
and

q, =B,(e,)(0, 0, 0, V-f, ),

(38)

(39)

The role played by b(t„ t„ t, ) is explicitly shown
here. Were it negative, we would not be able to
orient the vectors Q, and Q, in the f-z plane by real
z boosts from their rest frames.

The set of vectors (33)-(35) is invariant under a
rotation about the z axis, and this will lead to a
conservation of the usual helicity at the central
vertex. As we have seen in the five-point function
of Sec. II this constraint means that analytic
structure in, say, X„ the helicity of the "state"
with momentum Q„will be related to the analytic
structure in J, and J„ the angular momentum of
the states with momenta Q, and Q„as well as to
the analytic structure in J,. If all the t; are nega-
tive with ~(t„t2, t, ) &0, a similar analysis may be
presented. '

Suppose we are now in case (2). To reach this
take all Q; spacelike, and proceed to a frame
where Q, is along the z axis

q, =gg„0, 0, 0),

Q, =B,(q, )(vt, , 0, 0, 0),

Q, =B,(q, )(~t, , 0, 0, 0),

(33)

(34)

where R,(0) is a rotation about the y axis by 0, and

sing, = [ ~(t„t„ t,)]"'-
(41)

1 3

[-~(t„f„f,)]"'
(42)

Pp

Because we can choose the orientation of the vec-
tors Q, and Q, in the x-z plane, the set of momen-
ta (38)-(40) is invariant under a y boost, which is

PB I

Pg

FIG. 2. The tree graph defining the kinematics for the
partial-wave analysis of the six-point amplitude A6 in
the regime where the Q; are spacelike. If 4(Q&, Q&,
Q3 ) & 0, the asymptotic limit of an azimuthal angle (y-
boost angle) associated with the (Q&Q2Q3) vertex can be
reached in physical region of A 6,. the single-particle
inclusive process is an example.

Pc Pc

FIG. 3. The tree graph appropriate for the partial-
wave expansion of A 6 when Fig. 2 is analytically con-
tinued to the regime Q~, A~, Qg & P.
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a noncompact operation, rather than a z rotation,
a compact operation, as in case (1). This invari-
ance means that the "boost helicities" X, (Ref. 11)
conjugate to a y-boost angle will. be conserved at
the (Q, Q, Q, ) vertex, and the analytic structure in
the 1; will reflect the singularities in the J; enter-
ing the vertex.

It is important to note that because in case (2}
real y-boost angles have replaced real z-rotation
angles as the azimuthal variables, we expect to be
able to reach asymptotic limits in a physical re-
gion of A., by allowing these y-boost angles to be-
come large. The explicit behavior of A., in these
limits will be determined by the singularity struc-
ture in the boost helicities, and that structure is
apparent in the multiple partial-wave expansions
analogous to (29).

In the following we will make a triple O(3) par-
tial-wave expansion of A„choosing the Q, time-
like, and give a heuristic argument as to how this
is to be applied in the regime where tl(t„ t„ t, ) & 0
and the Q &0. A crossed-channel partial-wave
expansion can be given directly for the physical
case where the Q,. are spacelike and tl(t„ t„ t, ) is
negative.

First we establish the kinematics for Fig. 2

which are relevant for the three-to-three scatter-
ing p, + p, +(-p,')-(-p, )+ p,'+ p,' whose forward
discontinuity in the missing-mass variable 8'
= (p, + p, —p,')' yields the single-particle inclusive
cross section for p, + p, - p,'+missing mass W."

All of the Q; are spacelike for the six-point func-
tion described, and in the inclusive process t, = t,
while t, =o. If we evaluate tt(t„t„ t, ) for t, =t, &0
and t3-0 from below, then

E = (m' —' t )'—" q = -'(-t )' ' (47)

where m is again chosen as the common mass for
all external spinless particles.

In exactly the same fashion we parametrize p3
and p~y

P2 tt(~2)g2(X2t 4t P2}P2 (48)

and

P3 Z3(X3t ~3t P3}P3

with

p = (E 0, 0, 4. )

and

(49)

(50)

(51)

and remembering that it is invariant under y
boosts, we see that A, depends only on y, —y3 and

g3 ' and not al 1 three y; . This is prec isely the
analog of the restriction on A, in Sec. II to depend
only on p, —p2.

To go from frame E, to the regime where the Q,
are timelike we make a complex Lorentz trans-
formation B,(2im) and continue the t; to positive
values".

Since we have spinless external particles, there
is no dependence of A, on the 2-rotation angles P, .
That leaves us with nine variables: t„y,, and

(i = \, 2, 3) one of which is redundant. Writing
out A., as a function of the momenta

A.(R,(t,)B,(X,)B.(&,)P'„B,(X.)B,(&,)P:,

R,(4}B,(X.)B.(4}p2),
(52)

&(t„t„ t, ) i.. ., = t, (t, —4t,), (43) B,(-.'im)q,"=(Wt„o, o, o) . (53)

and we see that the ~ function goes to zero from
below, and therefore case (2) is appropriate.

We specify the four-vectors p;, p, and Q; in a,

frame E„where Q, sits along the 2 axis and Q,
and Q, are in the x-z plane; that is, we employ
Eqs. (38)-(42).' In E, we give p, by taking a
standard p, vector

B ( 2271)B (X)-B (zilf) =R„(—lX),

B,(--.'i~)B„(~)B.(-.'i~) =R,(i ~),

(54)

(55)

Under this Lorentz transformation the operations
B„B„,g, necessary for the kinematics in case
(2) behave as

Pl=(B1 o o n) (44) and

in a fra.me where Q, = (0, 0, 0, v' t, } and parametr—ize
it by the SO(2, 1} little-group element

~,(X„&„e,) = B,(X,)B.(&,)R.(y, ),
which takes it to another frame where Q, is solely
along the z axis. Then by performing a y rotation
by the 81 of Eq. (41) we reach E„ that is,

B,(-3ill)R, (8)B,(2 ill) =B,(i 8) .
This suggests that x-rotation angles play the role
of azimuthal angles in the multiple O(3) partial-
wave analysis we are now ready to carry out.

With these hints we parametrize the six-point
amplitude of Fig. 3 as follows: Work in the frame
+c where

Pl RW(~1)81(Xlt alt Pl}Pl '

Further, it is easy to see that

q, =(v~„o, o, o),

q„=B„(e„)(Mi„,o, o, o),

(57)

(58)
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and

QB=B.(eB)(~4 o o o), (59)

Clearly we do the same for p~ and p~ finding

P =B„(e,)R,(x,)R ($ )R (Q )P', (65)

with

[t (t„,t„t,)]"'
sinh e„= (60)

and

&c' =R.(XC)R,(&c)R.(AC~&'c ~ (66)

[&(t„,t„t,)]"'
(61)

We parametrize pA by an O(3) little-group element

zA(xA 4 4A) -R.(xA)RA4)R. (AA)

which takes it from a standard vector

PA'=(BA o o eA)

(62)

(68)

PA B (eA)R (x )R (5 )R (4 )P (64)

in a frame where QA=(vt„, 0, 0, 0) to another frame
where QA is purely along the time axis. To take it
to Ec we apply B„(e„)so

with

q,.=(-.'t,. —m')'~2, f =A, B, C. (67)

Once again the spinlessness of the external par-
ticles tells us that A, does not depend on the P,,
and the invariance of A., under x rotations reminds
us that A, depends on the eight variables: t;, $;
for j =A. , B, C and y„—g~ and y~ Xc

With these kinematics in hand we can carry out
the triple O(S) partial-wave analysis on A, . The
only tricky point is to relate the rotation functions
in the basis where J„is diagonalized on the left
and j, on the right, which is natural for the O(2)
labeling R„(X)R„($)R,(p), to the usual R,R,R, func-
tions. By noting that R,(-2w)R, (X)R,(2w) =R,(X) we
can give the partial-wave expansion

2( .(eA)R.(XA)R,(4)PA'». (Xc)R,(t'c)PC B.(eB)R.(XB)R2(~B»B)
F(A., + J,. +1)

(2J,-+1) P ~( cso(],. +-2'2'))
j=A,B,C J~ =0 X. .=»J. ~Jj

xexp(iAAxA —ixBxB —ixcxc)M(JA, XA, JB, XB,JC, XC, tA, tB, tc) . (68)

In order that A, depend only on the differences yA gc and y~ yc we require Xc =X~ Xa. Remembering
from our discussion of A., that we must, even beyond considerations of signature, continue separately posi-
tive and negative helicities, we divide the X, sums in (68) into six regions:

I. A~~ O, A~~ O, X~=A~ —A~~ 0;
II. A.„o-O I, ~ 0 A, &0

III. A.~~ 0, A,~&0, A.~~ 0;
IV. A,~&0, A,~&0, A,~&0;

V. A,~ & 0, A,~ & 0, A,~ ~ 0;

(69)

(70)

(Vl)

(72)

(73)

VI. A.„&O, A. ~O, A. &0. (74)

We must define different amplitudes to be continued into the right-half or left-half A, plane for each helic-
ity. We will designate by a subscript g,. or I., the amplitude continued in the right- or left-half plane for
each j =A, B,C. Thus the quantity M~»~„~ will be continued into the right-hand plane of ~„, A~, and X~;
its definition in terms of A., is

+1 +1 +j.

MRARBRCPAxA) ~B: xB& ~C xc)6'kA-kB, QC
= ~ «Ap&" (~A) 2 «Bpg~ (&B)2 «C+ j (+c)

1 -1
2 7f

XB B+ B BA2(~A~ ~B~ gc, X„,XB, Xc =0),27T, 0 2'
(V5)

where x, = cos((,. + 22). Amplitudes to be defined in left-half planes are defined using P~ as in (17) and
(28).
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We may follow all the steps in the discussion of A, above to write Sommerfeld-Watson transforms for
each of the six regions. Since there seems to be no particular point in writing out six such long formulas,
we will give the transform for region I only, leaving the others to the patient reader. We choose to elimi-
nate A.c in the writing, and find

gegion I /+g lxA& xst xc~ XA XCP XB XC}

dAg
~ ~ ~ ~

d Ag
c

cq 2i sinn', A cx 2i sinn'. » "ACyA B

dJ,.
. (2j +1)I'(X, —J,)I'(X, + J;+1)P~'(-x;)

J. 2r2

(76)

where Xc is to be set equal to A.„—Xs in all expressions, and x,. = cos(g, + 2w) = —sing,
The partial-wave coefficients M~ and M~ are taken to have only dynamical poles or cuts in the J,. and to

have no further singularities in the A, . With this assumption, the asymptotic behavior in, say, yA is gov-
erned by the singularities in X„which reflect, via the I' functions in (V6) and its companions for the other
regions, the singularities in J„, J~, and Jc.

Taking this example further we find that for singularities in J,. at n, (t,-) &0., there are two terms in the
leading asymPtotic behavior of A, as XA--i with x„, x~, xc tA, Ia Ic and y~ held fixed; set pc=0.
These two terms come from poles in X„at n„(t„)or at as(ts)+nc, (tc). So

(x. t X X ) ~ ( e&xA)+A(~A)Q (x. t, X ) +( e xA)aB~tB)+ac(tc)Q (x t X )

x&, tg, x& fixed

The identification of two terms in the asymptotic
behavior in an azimuthal angle for A, has been
made in a paper by Low and coworkers. ' Their
definition of poles in helicity differs somewhat
from ours, and their method of derivation is cer-
tainly remarkably dissimilar; however, their re-
sult is equivalent to (77).

In the limit X„--i~with Xs, t&, and $,. fixed, the

plane p„p„' is "moving away" from the cluster of
four momenta p~, p~, pc, and pc. Since the inner
product of pA or p„' with any of these vectors is be-
coming infinite, while any of the inner products
among these vectors is remaining finite, one may

properly inquire why the tree graph of Fig. 3
should be considered in this limit. That is, why

not take a tree configuration where p~ and pc and

pc and p~, say, define a set of pairs for a partial-
wave expansion and thus encounter (-e'x&) && s ~&~'&

in the limit. The key to the answer is that as gA

i~, Xs,—$,, t, fixed, the quantities p. „~(ps —ps),
p,' (p, —p,'), p„(p, —pc), and p„'- (p, —pc) re-
main fixed. This requirement among dot products
singles out the pairing (pe ps}, (pope} of Fig. S.

We include just a few words about the results in
this section before we proceed to the single-parti-
cle inclusive process. The limit (VV) is the same
as the limit in Eq. (20) if we choose n~(te) =0; that
is if we take the residue of A, at a spin-zero pole
in t~. We know that this limit on A, does not occur
in a physical region of A, since once we take I~
= m' to reach the spin-zero pole, we have

&(t„, ts, tc) & 0 and cannot make it negative by con-
tinuing in tA and tc to negative values. When we let

tA, t~, and tc be continued to negative values such
that b(t„, ts, tc) &0, then by our construction, the
Sommerfeld-Watson transform of (76) etc. is use-
ful for yielding the asymptotic behavior in the
azimuthal angles X„and g~ continued to the y-
boost angles X, and X, encountered in (52). The
criterion for an azimuthal angle asym-ptotic limit
to occur in a physical region of a multiparticle S-
matrix element is that for some tree-graph con-
figuration there be a vertex of three spacelihe mo-
menta Q, , Qz, and Qq such that 4(Q~, Qz, Qz ) & 0.
The asymptotic limit of an azimuthal angle associ-
ated with this vertex is governed by singularities
in the conjugate helicity as given by multiple
Sommerfeld-Watson transforms such as (V6).

Finally, let us mention an elementary reason
why there are two terms in the leading behavior in
X„- i~ as in -(VV). If we consider the vertex cor-
responding to a particle of mass v t„, spin J„de-
caying at rest to Mt~, Je +Mt~, Jc moving along the

Pi 1

o

missing rnpss Q/

FIG. 4. This shows the single-particle inclusive pro-
cess as the W discontinuity of A6 at t&=t2=t, t3 ——0.
The limit s~™,t, W fixed for this cross section in-
volves only a y-boost angle becoming infinite.
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z axis, then the helicity A.„is restricted to be less
than the smaller of J„or J~ + J~ by conservation of
angular momentum. The I functions in the decay
matrix element which yield this restriction, when
continued in helicity and angular momentum, re-
sult in precisely the two terms of (t7). Said in
other words, one of the lessons of the multiple
partial-wave analyses is that the singular ties in
compLex helicity axe bounded by the maximum
sense values allocated to ordinal helicity.

IV. AZIMUTHAL-ANGLE LIMITS IN THE

SINGLE -PARTICLE INCLUSIVE REACTION

We now propose to take the formalism we have
built up for finding the location of helicity singu-
larities in Sommerfeld-Watson transforms of mul-
tiparticle amplitudes and apply it to an analysis of
the single-particle inclusive distribution for p]+ p3- p,'+anything. The regime of interest to us will
be when the initial energy s =(p, + p,)'-~ while the
momentum transfer t = (p, —p,')' and the missing
mass W' = (p, + p, —p,')' are held fixed. We will
demonstrate first that this limit of the forward A.,
can only be reached by taking an azimuthal angle
to infinity. As usual we will encounter from each
of the six regions of the Sommerfeld-Watson trans-

j./2
sin8 = 1-—' =-sin81 4t 2& (t8)

so

8~ =-82= 8. (79)

Writing out the vectors p,' and p2 we see

form two terms in the asymptotic behavior of A.,
in this limit. One term in each limit will be
shown to have no dependence on the missing mass,
and thus only one of the possible terms from each
region will contribute to the inclusive cross section
which is extracted from the forward A, by taking
the. absorptive part in 8". We will show that the
term which survives in the s -~, t-, W'-fixed lim-
it describes a Reggeon-particle absorptive part
with maximum helicity flip in the "crossed" (with
respect to W') channel. ""

In order to discuss the kinematics of A., appro-
priate to the inclusive reaction we must take t, = t,
= t and then let t, -O from below. At the same
time we must set py p2 and lt will follow that

p,' = p, and p,' = p, after that.
We choose X, =O, as we always may, and letting

t, =t, =t, the y-rotation angles (41) and (42)
which orient Q, and Q, in F, become

p,'=(E cosh4 csohy„Esinh), cos8 —qsin8, E cosh), sinhy„-qcos8 —E sinh$, sin8)

and

p, = (E cosh), cosh'„E sinh), cos 8 —q sin 8, E cosh), ishnltq cos 8+E sinhg, sin8),

(80)

(81)

where E = (m' ——,t)'" and q = (-~t)"'. Equating
these vectors yields

Xz=X2=X~

cosh), = cosh), ,

cos 8 sinhg, = cos 8 sinh ), ,

and

2qcos 8= -E sin8(sinhg, + sinh$, )

(82)

(83)

(84)

(85)

as t, -0, cos8 goes to 0 and the requirement that
(84) hold on the way to the limit [that is, (84) and
its derivative with respect to 8 at 8=0] means

(i=4=(

The four-vectors p; and Q; have become

q, =(o, g-t, 0, 0),

q, =(0,-&-t, o, o),

Q, =(0, 0, 0, 0),

P„=(Ecosh', ,'4-t, E sinhy, 0), —

P, =(E cosh', ~2 —v'-t, E sinhX 0)

p, = (m cosh)„m sinht„0, 0) .

The invariants s and S' may be expressed in
terms of y, t, and $, as

(88)

(89)

(9o)

(91)

(92)

(93)

and

sinh$ = ——cot) (8't)

s =(p, + p, )'

=2m~+2mEcoshycosh], —mv' tsinhF, , (94)-

which implies that in the limit t, -O, (-0.
We have three variables left in the forward limit

of A, . They are y, an azimuthal boost angle, $„a
polar boost angle, and t, a momentum transfer.

and

~'=(p, .p. —p,')'

= m'+t —2m@'-t sinhE3. (95)
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XA XB zXi X& 0&

(A = )B =0; )C = -i g2

(96)

(9'I)

The limit s -~, t, W2 fixed can clearly be achieved
only by )(- -~, 4, t fixed; that is, it is an azi-
muthal angle limit in which no polar angle $ be-
comes large. We have given, if not established,
a rule in the discussion around Eq. (30) that one
must employ the partial-wave analysis dictated by
one's choice of polar and azimuthal angles to lo-
cate the singularities in helicity in the Sommer-
feld-Watson transform which yield the azimuthal
angle limit being considered.

We return, therefore, to the 0(3}analysis of A,
for the tree graph of Fig. 3. The following identi-
fication of variables for the forward A, is made
with the help of (54) and (55):

and

tA=~a = t~ t3 =tC =0. (98)

We know that in the Sommerfeld-Watson transform
of each of the six regions (69)-(V4) the singulari-
ties in A reflect, via the explicit kinematic I' func-
tions, singularities in the J's. For the case we
now adopt of poles in J,. at n,.(t,-) &0, the region
which gives the leading asymptotic behavior as
X - -~ is region III. The partial-wave amplitude
must be continued into the right-half plane for A, A

and A.c, and the left, for A~. Furthermore, since
XA

= X~ = i X, the asymptotic behavior in X is gov-
erned by A.c = A.A

—X~, so let us eliminate X~ in
making the Sommerfeld-Watson transform which
reads with forward kinematics

'. (2Z, + I)r(~A - ZA)l'(X„+ @A+ I)1'(~c —Zc)r()le+@, +I)
cx 2g slnmXA 2islnrAc '--"A mgA C

x I'{A.c —XA —ZB)

x I ()(c —)lA+ J~ + 1)P~A(0)P~~B(0)P~c(sin F c)

X( e ) MRAIBRC(~At ~Aint ~A Ct~Ct C} ' (99)

We have argued that the partial-wave coefficients M defined in this manner contain only poles and cuts in

the J, (dynamical singularities) and are regular in the )l/.
In the limit X- -~ there are two contributions to the asymptotic behavior of A",'jp'" I . The first comes

from the )lc pole in I'()lc —J'c) which is just the Zc = nc(0) pole transferred to the Xc plane. This contribu-
tion has its $c behavior explicit since we must do the Jc integral around the nc(0) pole. The second leading
contribution comes from the pair of I' functions I"()lA —Z„)I'()lc —)lA —J~) and occurs at )lc = n„(t„)+ nB(tB)
with RA= n„(t„),XB =-nB(tB). The $2 dependence is not specified here. We then read from (99)

A,"~'""'()(,E„t) ~ (-e ") c ')P~cs', I(-i sinh(2)E, (t)+(-e ") " ' '"B '
E2(g» t, ))A=nA, )lB =-nB),

g3, t fixed

where E, and E, are unknown functions of the specified variables. From Eq. (10) for nc(0) &0 we find

P„c((',)'( isinh), ) = -(cosh(, ) «')/2 «')Nn, (0) +1),
so noting

e "= s/mE cosh)2

(100)

(101)

(102)

in the limit we have taken, we learn that the first term of (f00) has no dependence on $2. Changing over to
s, W2, and t we may rewrite the limit (100) as

E,(W', t, ) „=n„(t), ~, = -n, (t))A"~'""'(B W' t) (-s)"c ' E {t)(-s}"A' +"B '
8 1 [ t/ (I/l(/l2t 22)]ttA(t)+aB(t)

t
g 2, g fixed

(103}

When we take the absorptive part in W' of this formula to extract the contribution to the inclusive cross
section from Region III, we pick up

~A(t)/tyB(t) E2(ll t t& ~A nAt ~B nB)
2' [gl/2(W2 t 2)]tXA+ttB (104)

Every other contribution to A, from the other five regions is either of the form (-s)'"c(')E(t) or it has low-
er powers of s than (104). We thus reach the important conclusion that the leading contribution to the in-
clusive cross section in the limit s-~, W, t fixed (as depicted in Fig. 4) is just (104). Since P2 is propor-
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tional to the t, -channel amplitude for Q, (helicity o.„)+ Q, (helicity -ns) - p, + (-p, ), this is precisely what
we expect xo

Our reaching this result lends strong support to three of the basic steps we have been carrying out: (I)
Our assumption that the partial-wave coefficients such as M~ ~ ~ contain only dynamical singularities in

A B C
the J,'.; (2) our argument that the helicity singularities in a multiple Sommerfeld-Watson transform are,
therefore, to be read off from the kinematic I' functions; and (3) our rule that the partial-wave analysis for
which one defines the polar and azimuthal angles E and y is the one to employ when the azimuthal angle be-
comes asymptotic even though no polar angles become large.

V. DISCUSSION AND CONCLUSIONS

By considering the five- and six-point amplitudes in some detail we have developed a set of operational
instructions for locating the singularities in helicity appearing in multiple Sommerfeld-Watson transforma, —

tions of many-particle amplitudes. These instructions have just been repeated at the end of Sec. IV where
we also argued that the application of our procedures to the single-particle inclusive process yields the
proper answer.

We have also argued that an azimuthal-angle asymptotic limit of a many-particle amplitude can occur in
a physical region of that amplitude when one encounters in some tree graph a vertex where three spacelike
momenta Q„Q„and Q, meet with b, (Q,', Q,', Q,') & 0. As we showed, following Ref. 3, in this kinematic
configuration an azimuthal z-rotation angle which is bounded in physical regions is replaced by a y-boost
angle, y, which may lie anywhere along the real line.

In the two examples, A, and A6, we have treated, the covariance of a vertex with which the azimuthal an-
gle was associated leads to a coupling of the singularities in the helicities entering the vertex. One may
ask whether in higher-point functions somehow helicity singularities are not passed from one end of the
process to the other, therefore, making the singularity structure in helicity unspeakably complicated' We
can see from the tree-graph configuration for A, given in Fig. 5 that this will not occur, and any helicity
communicates only with the neighboring helicities at any vertex. In the partial-wave expansion of the graph
in Fig. 5, one encounters the product of rotation functions

(105)

where J; and 8; are the angular momentum and polar angle associated with Q;. Covariance at the vertices
I and II requires X, = A, y A2 and X5 A4 A3 respectively. However, except in the very special configura-
tion where 8, =0 (that is, forward internal Reggeon scattering), there is no coupling of X„say, with X, or

There is an amusing point here, however, for the analytic structure in A.„say, will reflect through the
familiar kinematic I' functions the singularity structure in J', (Q', ), J,(Q,'), and J,(Q,'). Since the line carry-
ing Q, or Q, could have been composed in a variety of ways from the p„p,', p„P,', p„and p~, and since
the pole and cut structure in J, or J, may depend on this, we see that the analytic structure in A,, may vary
with the tree graph considered. An example of this occurs when we have internal quantum numbers. Sup-
pose we choose the charges of the spinless particles, call them pions as in Figs. 5 and 6, to be as in those
figures. In each case the charge carried by Q, is +I, with even G parity. In Fig. 5, Q, carries charge -l
with even G parity, and Q, carries charge 0 with G even. In Fig. 6, Q~ carries charge 0 with G odd, and
Q, carries charge +I, G odd. Clearly the singularities in X, will be different for the two configurations.

A final set of remarks concerns signature, which we have avoided until now in order not to draw attention
from the main issue of analytic structure in helicity. The arguments of Goddard and White' and Weis' tell

p
, p 7T p I p

p~ 7r

p &+

7T p

7l pg

FIG. 5. A tree graph for A. 8.

sr+ p

p ~p
I

FIG. 6. Another tree graph for A 8.
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us to regard the Sommerfeld-Watson transforms we have given as appropriate for signatured amplitudes
which have only "right-hand cuts" in the variables cosy and cos), azimuthal and polar cosines. These
arguments are exceedingly plausible but rest on an assumed analyticity structure in the cosines for multi-
particle amplitudes. That analyticity could prove false.

Let us see, however, what consequence such an addition of signature will have for us. To identify the
signatured amplitudes consider, for example, our A, as a function of z = e'~ and x=cos8, . We wish to write
a double dispersion relation in z and x and use the definition of M„and M~ given in (16) and (17) to find
partial-wave coefficients which can be continued in J and A. , the conjugate variables to 0I and (t). We will
write the formulas for M„only. Assuming then sufficient analyticity for A., we can use the dispersion re-
lation'

+~ p(x) ))
A n (x) z ) dx dz (106)

to write

(J) ~)= dz'z' ~ ' dx' Qx(x))
1 Xp

~I [[P(x', ') —(-1)' 'P (-x', z')]+ (-1)"'[P(x', -z ') —(-1)' 'P (-x', -z')]],
(107)

where we have started the x' integration at x, and noted the symmetry Q~~(-x) = -(—1)~ "Q„"(x)for the "sec-
ond-kind functions" Q~~(x). We see that it is appropriate to continue separately J even and odd and X even
and odd, so we define a helicity signature v~ =+ and a usual J-signature 7.J =+ and signatured partial-wave
coefficients

x([p(x', z') —T~T„P( x', z')] -—T~ [p(x', -z') - T~T„P( x', z')]-],

which coincides with M„(J, A.) for J even (odd), T~ =+1 and X even (odd), T„=+1.
We now perform a Sommerfeld-Watson transform on the sum

(108)

g g(2J+ l)z "P,"(x)M„(J,Z)
X=p

which becomes

(109)

. I'(X —J)I'(A. + J+1)(2J +1)~ ~ ~

dA. dJ
2i sine' c 27t iJ

in c+

x Q z[(-z) +T),(z)"]n[P~(-x)+ ~T TP ~( x)] M'&'~( J)&). (110)
~ XB"g

The significant feature of (110) is that the product T~ T~ of J and A. signatures appears In ever. y siInultane
ous J and X continuation, then, roe u)ill find the product of T~ and the associated T~

If we apply these considerations to the inclusive process discussed in Sec. IV, we see that since $A= (B
=0 we always encounter Pz(0)(l+ T+T&) for these and so must have Tz = T~ for A and B Writing th. e full con-
tribution to 2",~'" which has a W' discontinuity, we have in the limit s -~, W', t fixed

(Tg + e e~A ) (Tg + e+)e~B )
~Region III ~ p o(A+aB

ee-+ e)o sinful(X~ Sing Qg
S2 t fmA 'JA" JB

dJcx Q 2
—.— I'(o)A+ aB —Jc)1 (nA+o(B+ Jc+1)(2Jc+1)MB»z JBB &c(Jc) t)

x[P+Q B(—cos(tc+ nII))+ T~AT~B T P A+ B(cost p + nr))]- (111)

where o.A=nA(t), o(B=nB(t), and because Ac=RA-XB we have noted T~ =T„„T~ =-T~„T~ here Thus we see.
the result of Einhorn et al. that the signature factor for Jc in this limit must be TJ TJ„vJ . It is curious
that because of the special kinematics of the inclusive reaction, one does not employ the full signature
structure of the six-point function. In general, for a configuration which is not forward, we now see, that
the signature product rule given in Ref. 17 does not apply. When in the Jc integra). EII. (111)a specific pole
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contribution from Jo = o.o(0) is picked up, the discontinuity in cosgo(W ) would contain the factor

(112)

This is the famous factor ensuring the vanishing of the "triple-Pomeranchukon" vertex' and its presence
in our treatment is a consequence of the dyna, mical assumption we made that M(Zo, t) does not have any fur-
ther singularities, let alone fixed poles.
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