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~5V. B. Berestetskii, Sov. Phys. —Usp. 5, 7 (1962); T.-T.
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The contribution to the W vacuum-polarization tensor
from the graph under consideration here is real on the
mass shell; but this is not so for the (ve)-loop contribu-
tion, for example. We discuss this case in more detail
in Sec. IV E.

~~One can verify that in the (It)3 theory all one-loop graphs
are correctly evaluated by dispersing the whole graph
in the manner we explain, We discuss the validity of
the procedure here because the complications of spin
are not entirely trivial.

It is the coefficients of J&'& J&&~~ g ~ and J&'~ J &&& ~

which are actually dispersed.
~T. D. Lee, Phys. Rev. Letters 26, 801 (1971).
We note that the singularity as R ~ 0 (m&~ ~) im-

plies that models such as that of S. Schechter and Y. Ueda,
Phys. Rev. D 2, 736 (1970), which attempt to remove the
neutral currents without introducing additional leptons,
are nonrenormalizable. Although for p decay the singu-
larity is only logarithmic, one-loop contributions to
non-charge-exchange processes will diverge quadrati-
cally in this limit.

2~It is important to emphasize that we are calculating in
terms of renormalized coupling constants. Thus we do
not explicitly include external line corrections. This is
to be contrasted with earlier calculations (cf. T. Kino-
shita and A. Sirlin, Ref. 7) of the radiative corrections
to the Fermi theory where the answer is expressed in
terms of the unrenormalized Fermi constant t".

Because of the vanishing neutrino mass the divergent
part of the first two graphs of Fig. 4(d) has exactly the
right structure to be removed by renormalization.

This is not true for the analogous graphs for the process
ep, ep, for example. There one must combine graphs
such as these with graphs involving scalar particles in
order to cancel a divergent contribution which does not
correspond to renormalization subtraction. Cf. Ref. 6.

The identities

+&y&p&8 —l'e) ( p +& &a&~&) = a J
p

are helpful in calculating these contributions. Also
note that we hold s fixed in dispersing graphs 3(f) and

3(g), and u fixed in dispersing graphs 3(h) and 3(i), as
noted following Eq. (23). We consistently neglect lepton
masses in obtaining the expressions given; note that m,
&s, u&m~ .2

24H. H. Chen and B. W. Lee, Phys. Rev. D 5, 1874
(1972).
2~One problem which must be considered in introducing

such particles is the absence of triangle anomalies.
Actually, the Weinberg model has such anomalies and is
consequently not renormalizable unless the anomalies
are canceled by the introduction of heavy leptons or
hadrons. We have ignored the anomaly problem in this
paper since it does not arise until one goes to higher
orders in perturbation theory. For further discussion
see C. Bouchiat, J. Iliopoulos, and P. Meyer, Phys.
Letters 36B, 519 (1972); D. Gross and R. Jackiw, Phys.
Rev. D 6, 477 (1972), and H. Georgi and S. L. Glashow,
iMd. 6, 429 (1972).
2~The T * product is defined by subtracting a c -num-

ber part:

T*(AB) = T(AB) —(T(AB))o .
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We introduce dynamical considerations onto the light cone in the form of the static bootstrap.
We obtain (1) the prediction that the asymmetry in the deep-inelastic electron scattering on
polarized deuteron targets is small, and (2) a relation between F2 + F2", F2, and F&&". The
"physical origin" of these results is discussed. The result (2) also follows as a "chiral-limit
theorem. "

I. INTRODUCTION

Just as our understanding of electromagnetic and
weak interaction allows the measurement of the
matrix elements of the local currents, ' the as-
sumption of light-cone dominance' enables the ma-
trix elements of an infinite collection of local op-

erators to be measured in deep-inelastic scatter-
ing experiments. These are the local operators
contained in the so-called bilocal operators defined
on the light cone. Unhappily, what one can say
about these operators has so far been limited.
Their Lorentz tensor property is presumed known. '
They are also believed to transform like SU(3) sin-
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glets and octets. 4 In order to make further theo-
retical statements about these operators, one has
to introduce "dynamics" at some point. In this
paper our dynamical input appears in the form of
the reciprocal bootstrap, as studied at length by
Dashen and Frautschi. " It will become ayyarent
that the static approximation is applicable for our
purposes. Our main results are

(1) the relation

—',[E,'~(u)) +E, ((u)) = (1+c)E,"~((u) + (1 —c)E~"((o),
(a)

/

0
I

U

where c -1.7 is a constant to be specified later in
Sec. III, and

(2) the prediction that the asymmetry in deep-in-
elastic electron scattering on a polarized deuteron
target is much smaller than the corresponding
asymmetry on a polarized nucleon target.

Several other results, less accessible to experi-
ments, may be found in Secs. III and IV. On the
basis of previous exyerience with the reciprocal
bootstrap, we expect these predictions to hold to
within 20%%uq or 30%.

%e briefly recall the reciprocal bootstrap in Sec.
II. The predictions (1) and (2) are explained in
Secs. III and IV, respectively. In Sec. V we dis-
cuss the chiral-limit theorems and other related
approaches to our problem. Some technicalities
are relegated to an appendix.

II. RECIPROCAL BOOTSTRAP

In the standard SU(3) Chew-Low model, ' one con-
siders HB- IIB scattering and imposes the condi-
tion that the potential due to the exchange of octet
(B) and decuplet (b ) baryons in the crossed (u)
channel produces the octet and decuplet baryons as
resonances and bound states in the direct (s) chan-
nel. As is well known, the self-consistency re-
quirement leads to the correct f/d ratio for IIBB
coupling. In the limit of small II mass, a u-chan-
nel partial-wave amplitude with orbital angular
momentum L crosses only into an s-channel ampli-
tude with the same orbital angular momentum L.
The static model is tractable because of this cru-
cial feature.

Dashen and Frautschi' generalize the Chew-Low
model to cover the reaction IIB- XB where X is
"anything" that has a definite mass, angular mo-
mentum, and SU(3) transformation property. The
mass of B is taken to be much heavier than the
mass of II. The "mass" of y is supposed to be
small enough for the static approximation to hold,
the standard self-consistency requirement may be
imposed to determine the f/d ratio of the XBB
coupling and the ratio of XBB coupling to XB& cou-
plings (Fig. 1).

0
8

I
ilrr'

FIG. 1. The exchange force of octet B and decuplet
b in the g channel (a) is required to produce the octet
B and decuplet 4 in the s channel (b) in IIB-gB scatter-
ing.

Suppose X has spin S. Then the XBB coupling may
be defined in the rest frame of one of the barygns B
as follows: Couple S to the orbital angular momen-
tum L of the y around B to form K =L+S and then
couple K to the spin 0 of B to form a total angular
momentum of —,'. The allowed values of K for EBB
coupling are K = 0 and 1. (Any given Lorentz-in-
variant XBB coupling reduces to the form Supup

+Vupoup in the nonrelativistic limit, where up
= Pauli two-component spinors. S corresponds to
%=0, while V corresponds to%=1.) The yBb, cou-
pling proceeds similarly, with K allowed to be 1
and 2.

The crucial feature of the static approximation
now states that couplings of a given K cross only to
couplings with the same K. The crossing matrix
depends only on K and not on S and L. Heuristical-
ly speaking, the baryon B at the XBB and XBE ver-
tices only knows that it was hit by a bundle of angu-
lar momentum K and not the composition of the
bundle. The total crossing matrix is a direct prod-
uct of the K crossing matrix and the SU(3) crossing
matrix.

In particular, if g belongs to an octet, the f/d
ratio of the XBB coupling depends only on whether

X has K = 0 or K = 1. This fact emyowers Dashen
and Frautschi to derive a number of interesting re-
sults, all of which are in rough agreement with

available experimental information. " Since many
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of these results had been reviewed elsewhere, ' we
mention here only the two relations:

do'

dt 2
—(w-p- m'~)

do'—(w p-vZ )dt

cfg

dt 2
(& —P- p'~)

(&'P—-p'&")
dt

These follow from the static prediction for the ra-
tio of K= 1 XBB and X Bb couplings and are sup-
posed to work- for t small enough so the static ap-
proximation holds and for s large enough so Regge
exchanges are relevant. The relation (2) was re-
discovered recently by saturating the Reggeon-

particle amplitudes in the triple-Begge formula
and was shown to agree well with experiment. '
The relation (3) also appears to be consistent with
present data. ' Combined with the more standard
successes, "the essential correctness of these
relations contributes to our confidence that the
static bootstrap (and our predictions) contain some
truth.

III. THE LIGHT CONE

Let us now turn to the light-cone commutator of
two currents. Define'0

J„'(r, x) = V„'(x) +rA „'(x), r = al; a = 0, 1, . . ., 8 .

Then

[J„'(r,x), J,'(r', y)] =0, rex'

[J„'(r, x), J,'(r, y)] =if„,JL S» & ~ J, (r, S, X, a) —i re»„„Z,(r, A, X, A)] e (A, )6(h')

+d.„[S„„„Z,'(r, A, X, ~) ice„„.Z—,'(r, S, X, ~)], e(~.)6(~'), (6)

where X=-', (x+y) and b. =-,'(x -y). The bilocal operators J(s) are expressible in terms of local operators

ff even

Exactly the same expansion holds for Z(A) except
that the sum runs over odd n. The local operators
V &. . . and A. &. . . are Lorentz tensors andP' ' 'aff p an
pseudotensors, respectively. Although we have
written down the light-cone commutator in the
form given by the quark-gluon model, it will be-
come apparent to the reader that our essential re-
sults are much more general.

The experimental structure functions are given
by

(u
' F2'(r, (u) = if„,G~ (r, (u) +d.„G„'(~,~),

F; (r, (u) =r [if.„G„'(r, (u) +d,„Ge(r, (u)],

where

(8)

(9)

P +1

(PIZq(t, S; O, b. )Ip') = —" d~ e"~~~G'(y, ~)
m

+&

(PI~„'(r, A;0, a)IP) = -" f d~e" ' G„'(r, u)).
-1

(10)
As is well known, these equations express six
structure functions in terms of five unknown bilocal
functions and thus imply the relation first given by
Llewellyn Smith. "

To proceed further we now substitute for y (as
introduced in Sec. II) the local operators V„'. . .„„
and A „'.. . and immediately learn that these oper-
ators transform as SU(3) singlets and octets. This
fact has already been presumed in writing down Eq.
(6). That octet enhancement at short distances is
intimately connected to the hadron spectrum and
the reciprocal bootstrap is of course well known. "
Note that the static approximation is eminently
suitable here since we are interested in the value
of C~ in the zero-momentum-transfer spin-aver-
aged matrix element

(PIV,', ."„,Ip&=p„, "P„,C.+ ~ ~ ~ (11)

and the operators V„' . . .„"carry" zero mass.~a' ' '&s
The coupling in Eq. (11)obviously corresponds to
K=O for all J and the discussion in Sec. II immedi-
ately informs us that V„',. . .„has the same f/d
ratio independent of O'. This universality of f/d ra-
tio on the light cone means that

a constant independent of e.G~(&) G'(~)
A S4

(12)

(To avoid convergence questions, we note that
relations of this type should be interpreted as re-
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lations between the direct measures of the light-
cone operators, namely the integral moments,
rather than between the structure functions. Thus
Eq. (12) would read in part

independent of n. For notational simplicity we con-
tinue to deal with the structure functions. ) The
prediction given in Eq. (1) now follows, after con-
sulting Eq. (S). Since this relation holds just as
well in the Regge limit &u-0, the universal f/d
ratio on. the light cone is in fact the f/d ratio of the
spin-nonflip coupling of the tensor trajectories. In-
deed, in the Dashen-Frautschi schema, all K=0
couplings have the same f/d ratio and these include
also the medium-strong, electromagnetic, and
weak mass differences. " TGhe reciprocal bootstrap
determines f/d to be about -4, which should be in-
terpreted to mean that f/d is. large. For f/d vary-
ing between -2.5 and -3.3, we find the constant c
ranging from 1.9 to 1.57.

Unlike the Llewellyn Smith relation, "which in-
volves I'3 - I"3", our relation involves I",' +I"2" and
presumably may be tested directly on the deuteron
with due allowance for Glauber corrections (or on
heavy nuclei). There is some hint that our relation
Eq. (1) may not be far wrong. " Clearly, universal-
ity of the f /d ratio on the light cone also leads to
relations involving deep-inelastic AS = 1 neutrino
processes beyond those implied by SU(3)." The in-
terested reader may work these out for himself us-
ing Eqs. (8) and (9).

IV. POLARIZED TARGET

%Ye next consider deep-inelastic scattering on
polarized targets. One is then interested in the
K=1 coupling up~oup of the operators A„', . . .„ to
octet baryons. Reasoning as before, we immedi-
ately deduce that the f/d ratio of this coupling is
the same as the f/d ratio of the IIBB coupling, say.

G1'(~) = (( +
1 )A(~) = (1+())A(~),

(13a)
G)"(~)=

(
—1+ )1((~)= (-1+-,')A(~),

where A is some unknown function and G;(i = 1, 2)
denotes the spin-dependent structure functions as
defined in Ref. 15, for example. %e have us.ed the
value n = -', as determined from IIBB couplings.
Physically, the small number —,

' reflects the small-
ness of the qNN coupling to the &'NN coupling.
Hence

GP((o) + G& "((u)

2GP((o)
(13b)

Aside from Qlauber corrections, which we pre-
sume can be taken into account, deep-inelastic
electron scattering from polarized deuterons will
show almost no asymmetry. %e remark that par-
tonlike models predict large asymmetry for deep-
inelastic electron scattering from a polarized pro-
ton target, "as is evident from angular momentum

But this does us little good until the somewhat fu-
turistic experiments of deep-inelastic neutrino
scattering on polarized targets are done. How-
ever, we now recall that in the reciprocal boot-
strap the singlet operator does not have K =1 cou-
plings. This may be understood heuristically as
follows. The determination of the XBB coupling in
the reciprocal bootstrap amounts to projecting out
the s-channel octet baryon in the diagrams of Fig.
1(a,). The group-theoretic structure may then be
summarized by the self-consistent diagram in Fig.
2. Now K =1 couplings are largely generated by
decuplet b. exchange (rather than B exchange) in
the crossed channel. (This is well known for IIB- IIB.) Since 1 does not appear in 8 x10, the sin-
glet K =1 coupling to octet baryons is suppressed.
This fact also manifests itself physically in the ab-
sence of low-mass SU(3)-singlet pseudoscalar me-
sons" and of an axial-vector baryonic current.

Thus we find

B 8 (O, h 8,8
8 8

FIG. 2. Projecting out the s-channel baryon pole in Fig. 1(a) is equivalent, as far as group-theoretic structure is
concerned, to coupling the s-channel IIB state to I3. The schematic relation (a) + Q) - (c) is only a part of a matrix
equation.
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V. THRESHOLD DOMINANCE AND

OTHER APPROACHES

Let us try to produce another argument for a uni-
versal f/d ratio on the light cone. Recently, Li
and Pagels" have stressed that, in the chiral limit
p/M-0, intermediate states consisting of a few
Goldstone mesons may dominate certain dispersion
relations. This enables them to make a number of
interesting observations. In particular, by as-
suming that the octet-baryon matrix elements
(p'~S" V„'~p) satisfy an unsubtracted dispersion rela-
tion in q' = (p —p')', they obtained the f/d ratio of
the baryon mass differences in terms of the f/d
ratio of the IIBB coupling.

Following these authors, we write an unsubtract-
ed dispersion relation for H,',(q }where

&P.'I V„', . . .„,IP, & =P„, P„H; (J, q')+ ~ ~ ~ .
Here P=P, +P,' and q=P~-P,'. Now suppose the

two-meson state dominates ImH;, (q') as illustrated
in Fig. 3. %rite

H~~(Z& 0) = f~(-i f~~~)+d~d

(the subscript I. reminds us of the light cone). Let
r„,(X) = A(-i f„,) +d„, be pr. oportional to the B'B'Il'
coupling with its f to d ratio denoted by A. = f,/d„
=(1 —n)/n, with o.= 2s.

According to Fig. 3,

H;, (z, o) = .d„r„.(~)r„,(~)c„ (14)

where C~ is a "dynamical" constant dependent on
some cutoff mass which varies with J. By now it
should be abundantly obvious that the universality
of f/d ratio on the light cone is valid. It also

conservation.
In fact, unlike the discussion in Sec. III this re-

sult already follows from an SU(2) bootstrap since
2&&-', does not contain an SU(2) singlet. To estimate
the accuracy of our prediction we note that the
same physical mechanism' is responsible for the
smallness of the isoscalar magnetic moment p, ~
+ p,„(and for the fact that the &u trajectory is large-
ly spin-nonflip). " (Here p~ and p, „denote the total
magnetic moment. ) Experimentally

p, p+ p„0.88

p, -p. -4.70
' '

This sort of error margin is consistent with the
error found in other predictions of the reciprocal
bootstrap.

The reason why the SU(3) bootstrap is mentioned
in this section at all is to show that, if one should
so fancy, one may derive relations involving neu-
trino scattering on polarized targets. The reader
is again invited to work" these out for himself.

yQ

e ---- f

FIG. 3. The contribution of the two —Goldstone-meson
state to H,'~P, q ). The dashed lines represent II.

should not surprise the reader that we obtain the
same f/d ratio Li and Pagels obtained for the bar-
yon mass differences, namely that

(f /d),(// )L 3 3(f/d) 2 (15)

(We shall show how this follows from Fig. 3 in the
Appendix. ) This expression for (f/d)z, has a pole
at (f/d), = I/v 3, which is close enough to the ex-
perimental value (f/d), = —', to inhibit us from
drawing any conclusion from Eq. (15) other than
that (f/d)~ is large.

How may the above discussion fail? The as-
sumption of unsubtracted dispersion relations for
H,', amounts to saying that the structure functions
may be calculated in terms of more fundamental
parameters. The universal f/d ratio depends crit-
ically on the dominance of the two-meson states.
It would appear unlikely that if four-meson states
are important, the ratio of their contribution to
that of the two-meson states is independent of J.
Also, the structure of Fig. 3 suggests that it rep-
resent a vestigial manifestation of a Compton scat-
tering graph in which the virtual photon scatters
on a meson. %hether this is consistent with the
Callan-Gross relation' is hard to say and depends
on the specific model. (Since the Callan-Gross
relation is satisfied for meson targets, one may
argue that this picture is in fact not inconsistent
with data. )

VI. DISCUSSION

Our program here is a simple and modest one.
Recognizing that deep-inelastic scattering mea-
sures the static properties of light-cone operators
and that only two couplings to baryons, u~ u~ and
u~o'u~, are allowed in the static limit, we proceed
to draw up a list of relevant phenomenological
facts. For %=1, say, the list reads as follows:
(1) smallness of the isoscalar magnetic moment,
(2) the absence of low-mass SU(3)-singlet pseudo-
scalar mesons, (3) smallness of the qAVcoupling,
(4) the absence of an axial baryonic current, (5}
the fact that the ~ trajectory and the Pomeranchuk-
on are largely spin-nonf lip. One may then argue in
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favor of the following statement: Whatever the
dynamics of physics in the static limit may be, the
same dynamics that is responsible for the phenom-
enological pattern above woufd also lead to a sup-
pression of the isoscalar spin-asymmetry in deep-
inelastic scattering. Similar reasoning applies to
the K=O couplings. From this point of view a
gross violation (larger than the expected 20-30)
of our relations by data may be interpreted as an
indication that the concept of local operators on
the light cone may not be a useful one.

In this paper we present a specific example of
low-energy dynamics, namely the Chew-Low stat-
ic bootstrap. How good is the static approxima
tion? There has been no known study of the accu-
racy of the static approximation as a function of
the spin S of X. However, one may anticipate that
for large S, L, becomes large and the approxima-
tion becomes poorer and poorer. Thus, in terms
of moment sum rules over the structure functions
our results are presumably more accurate for the

lower moments [cf. Eq. (10)]. In other words, Eq.
(1) and Eq. (13b) are expected to break down in the
threshold region (ur - 1).

We note that the group-theoretic structure in

Fig. 3 bears a certain resemblance to that in Fig.
2(a}. This formal connection will be spelled out in
detail in the Appendix. Since the static-model
bootstrap and the chiral-limit theorems are both
based on the smallness of p, /M, it is not surpris-
ing that they may be related. Another approach
based on p, «M is the sidewise dispersion relation
in the threshold dominance approximation, "which
amounts to calculating the three diagrams in Fig.
4. Two of the diagrams have appeared formerly
[in Figs. 2(a) and 3]. The static-model bootstrap
also shares the approximation MB/Mz, —-1 with (non-
relativistic) SU(6). Sure enough, SU(6) would also
predict" the universal (f/d) ratio on the light cone
(to be ~ for K = 0 and to be —, for K = 1) and the ratio
of EBB coupling to yBb, coupling (to be roughly the
same value predicted by the static bootstrap). It
is also well known" that some of the SU(6) results
are reproduced by saturating the chiral algebra by
octet and decuplet baryons. [In this light then, the
rediscoveryb of Eq. (2) is not surprising at all. ] It
is tempting to conjecture that the light-cone opera-
tors generate an algebra. Our results may then
follow by approximate saturation. We close by ex-
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APPENDIX

As explained in Sec. IV the octet K=O coupling
H„, (corresponding to 8'Bbg') is the solution of
the bootstrap equation, a piece of which reads

(Al)

Here y is a "dynamical" constant and I'„,(X}is
the IIBB coupling introduced in Sec. V. This equa-
tion is schematically represented in Fig. 5 and
appears as a piece of the mass-difference calcula-
tion of Dashen and Frautschi. " These authors dis-
cuss in detail all the effects ignored in (Al). De-
fine the 8-by-8 matrices

(F')b, = if„, a-nd (D')b, = d„,

and write H, ,=bf(F') +bd(D') , bWith t.he aid of
the identities

tr Daabac 1 dabcr

7

(A2)

(AS)

tr DaDbFc 5 if abc (A4)

tr FaFbFc b if abc

we evaluate (Al) to give'

(A6}

~ gx'+5

-SX f(SX' —1) 1

(A6}

For n varying between 0.66 to 0.69, this equation
gives f/d varying between -1.3 to -1.4. This
crude calculation barely suggests that f/d may

pressing the hope that the (somewhat mysterious)
connection between all these approaches of the last
two decades will become better understood.

FIG. 4. Sidewise dispersion relation calculation of
XBB coupling ignoring the existence of the 4.

FIG. 5. Schematic representation of partial bootstrap
equation for K= 0 coupling.
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be large. The much more sophisticated calcula-
tion of Ref. 23 gives f/d ranging from -1.5 to -3.

In the threshold dominance calculation, however,
H„, is the solution to Eq. (14). Using the sym-
metry property 1'„,(X) =1„,(-X) we see that

(A t)

is given by the second column of the matrix in
Eq. (A6) with A, - -A, . This reproduces the result
of Li and Pagels cited in Eq. (14). For a varying

between 0.66 and 0.69 this equation gives fjd vary-
ing between -6.6 and -3.3-. In the sidewise dis-
persion approach presumably the two (f, d) vec-
tors in (A6) and (Av) are to be added. The pre-
cise connection between these considerations is
unclear to us. Within the context of the reciprocal
bootstrap, there exists an argument that the con-
tribution of t-channel singularities is small. ~" On
the other hand, in the chiral-limit theorem there
is no motivation for considering the baryon-anti-
baryon intermediate states either.
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