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A detailed analysis of SU(3) xSU(3) symmetry breaking by a 3,3) + (3, 3) linear term is
given, with no reference to a Lagrangian model and by carefully taking into account the SU(3)
noninvariance of the vacuum. Sum rules are derived and a detailed discussion of the k mass
and the 7-7’ mixing angle is given. By carefully handling the delicate problem of approxima-
tions, no inconsistency is found with the experimental data, in contrast with results that have
appeared in the literature. The over-all picture is instead in very good agreement with ex-
periments, thus showing that SU(3) xSU(3) symmetry breaking is a very precise framework
for discussion of elementary-particle symmetries. Corrections to SU(3) results, arising
from the SU(3) noninvariance of the vacuum, are discussed. It is found that, in general,
neglecting Az = (Ougl0) is a dangerous approximation. In particular, the value of the n-n’
mixing angle is shown to depend very strongly on Ag, a point which has not been realized in
the literature. A generalized Gell-Mann—Okubo mass formula taking into account the SU(3)
noninvariance of the vacuum is derived and it is found to be in extremely good agreement
with experiment, thus showing that SU(3) xSU(3) symmetry breaking may be even more pre-
cise than SU(3) symmetry breaking. The high degree of accuracy of the sum rules resolves
the ambiguity in the identification of the ninth pseudoscalar meson and provides a very pre-
cise determination of the -1’ mixing angle.

I. INTRODUCTION

The aim of the present paper is to analyze in de-
tail the consequences of SU(3)xSU(3) symmetry
breaking, such as mass splittings, relations be-
tween coupling constants, mixing angles, etc.!

The literature on the subject is very rich.? Still,

a detailed discussion of the results which follow
simply from the assumption of a (3,3) +(3, 3) sym-
metry breaking,® without reference to any Lagran-
gian model and without assuming SU(3) invariance
of the vacuum, is lacking. As a matter of fact,
what will emerge from our analysis is that SU(3)
xSU(3) symmetry breaking is a much better frame-
work for discussion of strong-interaction symme-
tries than the conventional SU(3) symmetry break-
ing. The relations we will obtain by studying SU(3)
xSU(3) symmetry breaking appear in much better
agreement with the experimental data than the
analogous SU(3) relations, obtained by neglecting
the vacuum noninvariance under SU(3). A typical
example is the Gell-Mann—Okubo formula for me-
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sons, the chiral version of which seems to work
extremely well. In this vespect, SU(3)XSU(3) sym-
melry breaking appears much move precise than
conventional SU(3) symmelry breaking.

Another impressive feature of the analysis is
the internal consistency of the set of sum rules ob-
tained. Independently of the input parameters one
chooses they all work with a high degree of accu-
racy. This may appear in contrast with some re-
sults discussed in the literature. The point is
that the problem of the approximations is a very
delicate one. For example, neglecting the n-n’
mixing angle 6 and/or the vacuum noninvariance
under SU(3) (both parameters are actually small)
may in some cases lead to bad results. This is a
phenomenon typical of the spontaneous breaking of
the symmetry. Small variations of the parameters
may lead to rather different results. Therefore,
very mild looking approximations (like neglecting
6 or Ay = (0 |ug|0)) may considerably change the
physical consistency of a sum rule. An example
of this is the determination of the xk mass, which
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appears to be rather critical and whose inaccu-
rate treatment may yield misleading conclusions.

In order to avoid difficulties of the type de-
scribed above, we will try to be as general as
possible. In particular, we will make no refer-
ence to a Lagrangian model, like the 0 model, or
to a semiclassical approximation. It will turn out
that some of the results obtained in the literature
by using a specific model are actually model-in-
dependent and follow only from the assumption of
a (3,3) +(3, 3) symmetry breaking. To get these
results we will use the functional approach to
quantum field theory, which does not require any
perturbative expansion or first-order approxima-
tions with respect to the breaking parameters. A
general discussion of this approach as well as its
connection to the semiclassical approximation are
given in Secs. III and IV.

A particular emphasis is put on the group-theo-
retical content of the relations obtained. It will
appear from our discussion that the Ward-like
identities are nothing but the group-theoretical
characterization of the spontaneous symmetry
breaking. In this respect they are the model-inde-
pendent features of the spontaneous symmetry
breaking, in the same way as the consequences of
the Wigner-Eckart theorem do not depend on any
specific model.

The breaking of SU(3)xSU(3) symmetry is ana-
lyzed in both the cases of isospin invariance (e,
=0) and of isospin breaking (e;#0) in Secs. VI and
VII. By using the third-order Ward identities we
may obtain relations involving only measurable
quantities like F,, F,, and masses (but not the
breaking parameters ¢,, ¢). This allows us to
determine the vacuum expectation values A,
=(0 |uol0) and A5 =(0 |s0), which characterize the
noninvariance of the vacuum in two independent
ways. The agreement is very good, showing the
remarkable consistency of the equations and of the
whole theoretical scheme (Sec. VI). Besides rela-
tions which have already appeared in the litera-
ture, we find two interesting sum rules involving
the n-n’ mixing angle and the x-meson mass [Eqgs.
(53) and (54)]. A careful discussion of these two
parameters is given in Sec. VIB. If proper care
is exerted, no inconsistency arises with the pres-
ently available experimental data, in contrast to
what has been claimed in the literature. Actually
the agreement seems rather good with an angle 6
being rather small.

An interesting feature steadily emerging from
the analysis is that SU(3) noninvariance of the
vacuum is small but not negligible with respect to
the chiral noninvariance (\g/2,~20-25%). This
raises the question of how good are the convention-
al SU(3) results obtained by neglecting A;. This

point is discussed in Sec. VID, where corrections
to SU(3) arising from A, are analyzed. An inter-
esting result is a generalized Gell -Mann-Okubo
(GMO) formula

4F, m?=3fgm,?* - Fym,?
+3(m,? —m,?) sinb( f, sind - f; cosé)

(see Sec. VID for details). The angle 6 may be
carefully determined from an independent equa-
tion (which connects it to F,/F,), giving 6~2°58",
It may be surprising that the angle 6 is so small
with respect to the value obtained from the conven-
tional GMO formula. The reason is that the cor-
rections to the GMO formula mainly arise from
the 2, #0 effect and not from the mixing angle 6
[in contrast with the conventional SU(3) scheme,
where 0 is introduced ad koc to adjust the GMO
formulal. The generalized GMO formula with this
small value for 6 is in very good agreement (about
1%) with the experimental data. The previous
equations can be also used to obtain sum rules in-
volving n’. Their high degree of accuracy re-
solves the ambiguity about the ninth pseudoscalar
meson by giving 1’ =X°958). The choice E(1422)
would make the sum rules work rather badly.

The implications of SU(3)xSU(3) symmetry
breaking about the coupling constants are dis-
cussed in Sec. VIE.

The case €;#0 is analyzed in Sec. VII. Sum
rules are obtained but the check with experimental
data is difficult because some of the parameters
involved are not known. The general features
which emerge are that the mixing between m° and
the n-n’ system is very small, and the results of
Sec. VI are essentially unchanged. This is not a
trivial result because, from what is known about
spontaneous symmetry breaking, even a small
perturbation like €4u; could cause reasonable
changes especially in the mixing angles.

II. BROKEN SYMMETRIES

The importance of broken internal symmetries
in elementary-particle physics has been realized
for a long time. Only recently, however, spon-
taneously broken symmetries* have been sug-
gested to play a fundamental role in the classifica-
tion of elementary particles.’ In order to clarify
the discussion we will distinguish between two
cases of broken symmetries:

(i) Wigner-type symmetries. The simplest case
of broken internal symmetries is realized when
(a) the Hamiltonian has definite and simple trans-
formation properties under the group G describ-
ing the given symmetry:



K=z

H:Hinv +gbeeak; (1)

(b) the “basic” fields of the theory transform in
the first approximation as a representation of the
group G:

[Qa, ¢i(x)]=2” ¢j(x), (2)

where Q% are the generators of the group® (sum
over re_f)eated indices is always understood, un-
less explicitly stated otherwise); (c) the vacuum
state is approximately invariant”® under the group
G:

Q*0y~0. (3)

A situation of this kind is realized, e.g., for the
isospin symmetry. Mass splittings, relations be-
tween coupling constants and transition rates,
etc., are easily computed in this case by simply
using the Wigner-Eckart theorem. For definite-
ness, these broken symmetries will be called the
Wigner-type. They will not be discussed in detail
in this paper.

(i) Nambdu-Goldstone-type symmetvies. A
more involved situation is realized when the vacu-
um is not invariant, rot even approximately, un-
der G. In contrast to the previous case (i), now
one does not expect to recover a fully symmetric
theory in the limit g—- 0. Rather, the limit of sym-
metric Hamiltonian corresponds to the spontane-
ous symmetry breaking, as discussed by Nambu
and Goldstone.* For simplicity, we will denote by
Nambu-Goldstone broken symmetry the more gen-
eral case g#0.°

Even if the generators Q“ fail to exist as well-
defined operators as a consequence of the spon-
taneous symmetry breaking, it is reasonable to
assume that the basic fields ¢,(x) transform local-
ly as a representation of the group G, in the first
approximation.*®

It is not difficult to realize that in the Nambu-
Goldstone type of symmetry breaking the Wigner-
Eckart theorem is not as helpful as in case (i) and
one has to find a new method for computing mass
splitting, relations between coupling constants,
etc. An attempt in this direction is discussed in
this paper.

IIl. LAGRANGIAN FORMULATION

In order to simplify the discussion we will con-
sider the “semiclassical” approximation first.
The general features and the equations so ob-
tained remain unchanged in the quantum-field-
theory case, as we will prove in Sec. IV. The ad-
vantage of the semiclassical approximation is that
here the method is not obscured by the problems

SPONTANEOUS BREAKINGS OF CHIRAL SYMMETRIES. II... 303

connected with the functional formulation of quan-
tum field theory and by the singular functions ap-
pearing there.

In the semiclassical approximation the theory is
described by a Lagrangian L, which is a function
of the basic classical fields ¢,(x), i=1,...,n:

L=L(g,).

The spontaneous breaking of the symmetry is re-
alized by the existence of one extremal point for

the function L(¢,), i.e., a point ¢, =constant=¢,,
where!!

oL
—_— =0. 4
<a¢i)®=$ @

When expanded around the extremal point, the La-
grangian shows explicitly the symmetry breaking:

- 1/ oL - S YN S
5

with a clear interpretation of

%L )
- —= = M?,,=M?
<a¢i3¢f 6=3 Y !

as the mass-squared matrix,

(5o8590) 4
20,00,00,) 5.5 51"

as the coupling constant between the i,j,% modes,
etc.

A better understanding of the symmetry break-
ing is obtained by discussing its group-theoretical
content. To this purpose, it is useful to choose
the following representation for the generators G*

L8
G— ’é’ii‘i’jr‘)‘ , (6)

where g7; is the matrix representation of the gen-
erator gf‘, in the vector space spanned by the

basic fields ¢;. Under an infinitesimal transfor-
mation the fields undergo the following variation:

i~ ¢; +€b%,,

6°¢,; =il G*, ¢,] =250, , (M
or, in a compact form,

0% =[G ¢]=g°¢ .

Similarly, the Lagrangian function transforms in
the following way:

L-~L+eb°L,
6“L=-1G L] (8)

=(§“¢),.a%kz,.
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The above equation is a trivial consequence of Eq.
(1) and it does not seem to have deep implications
at first sight. However, if 6°L is specified inde-
pendently, then Eq. (8) fixes the transformation
properties of L under G°, and therefore it con-
tains the basic information about the symmetry.
Our philosophy will be to exploit as much as pos-
sible Eq. (8): As we will see, all the physical in-
formation like mass splitting, relations between
coupling constants, etc., can be obtained from
Eq. (8).

In the following, we will regard 6“L as a given
function of the fields ¢;, so that Eq. (8) can be
considered as a group-theoretical statement on
the transformation properties of L.

We are interested in the derivatives of L at the
point ¢ =, since they have a physical interpreta-
tion as mass matrix, coupling constants, etc.
Since the left-hand side of Eq. (8) is regarded as
known, Eq. (8) and its derivatives provide the rele-
vant information about the mass-squared matrix,
the coupling constants, etc.

First of all, the condition of spontaneous sym-
metry breaking, Eq. (4), gives a constraint on
8%L, at the point ¢ =@:

agy 2L (5o _

Furthermore, the derivatives of Eq. (8), at the
point ¢ =@, give information about the mass-
squared matrix,

L oL a06°L

[ (£°¢)+ &5 —] = (——)

9¢;0¢, = 2B 90, s =g 3d; Jo-3
99 2o =& i Jo=3 (10)

ie.,

(M2 ) -5 —(‘?TL)M , (11)

where again

%L
M, _( ) :
ik 8¢ia¢)k b =¢

In a similar way, the second derivatives of Eq. (8)
give

&iin&a1P1) -5 E(aa—L gad
ije\8r1P1)gp =6 3¢;3¢,-3¢,,—“ v
926°L
= MZ’ o ”+( > s
[ g ]IJ a¢ia¢j dl:(ﬁ
(12)
where

[Mz,g"le;EMzikg& —_giakMzkj . (127)

Equation (12) yields nontrivial relations between
the coupling constants and the symmetry proper-
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[K=2]

ties of the mass-squared matrix.

The above procedure of evaluating the deriva-
tives of Eq. (8) at the point ¢ =¢ can be further
pursued. In this way, one gets a chain of equa-
tions, each of which relates the n-point coupling
constants to lower-order coupling constants. For
example, four-point couplings are related to three-
point couplings by the following equation:

~8iin(& T Dp) 0= 5= Eimog i * Eimo& i

o 936L
TBiiskpr= 3;99;9¢0p)0=5
(13)

As we will prove in Sec. IV, the chain of Egs.
(9), (11), (12), (13), etc., corresponds to the
chain of Ward identities one gets in the quantum-
field-theory case as a consequence of the spon-
taneous symmetry breaking. In both the classical
and the quantum-field-theory case, the above
structure of Ward-like identities appears as the
group-theoretical characterization of a spontaneous
symmetry bveaking. The relevant information
contained in these equations as well as their phys-
ical interpretation will become clear in Secs. V,
VI, and VII, where the above method will be
applied to concrete physical examples.

IV. BROKEN SYMMETRIES IN QUANTUM FIELD
THEORY: FUNCTIONAL METHOD

The natural objection to the results of Sec. III
is that they may be confined to the semiclassical
approximation and that large corrections may be
expected in the quantum-field-theory case.'?
Another difficulty of the semiclassical approxi-
mation is that it is essentially based on Eq. (5),
and a nonanalytic behavior of the theory would
raise serious doubts about the validity of this ex-
pansion. There are in fact indications that a non-
analytic behavior of the theory occurs whenever
the symmetry is spontaneously broken.*?

As a matter of fact, if one tries to interpret the
results of Sec. III as a tree approximation of the
quantum-field-theory case, one is faced with the
difficulty of proving that the tree approximation
is a very good approximation and that the correc-
tions are very small, at least in the low-energy
case. An alternative and more convincing way
of discussing the quantum-field-theory case is to
look at the problem from a completely different
point of view. Instead of attempting to justify the
semiclassical approximation as a tree approxi-
mation, we will prove that the equations obtained
in Sec. III, if suitably interpreted, remain valid
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in the quantum-field-theory case, with no approxi-
mation. This is not surprising; as stressed be-
fore, the chain of Eqgs. (9)-(13), etc., are essen-
tially the group-theoretical statement of spon-
taneous symmetry breaking. Their deep group-
theoretical content does not depend on whether

the treatment is semiclassical or quantum-field-
theoretical, just as the results of the Wigner-
Eckart theorem are independent of the formulation
adopted.

The discussion of the spontaneous breakdown of
symmetries in quantum field theory is suitably
done by using the functional method.?* To simplify
the discussion we will consider the case in which

J

Z(e) = -z‘1n<y0 Texp[if A L e () + ei(x)_tg.-(x)]]

= —iln<go

corresponding to the modified Lagrangian

L'(x) = Lgee(x) + L jny (%) + €;(x) 3 (x)

€;(x) describing c-number external sources. [In
Eq. (16), ¥, L;y(x), and ¢;(x) denote ¢y, L, (),
and ¢;(x) in the interaction picture.] The limit
€;(x)~ constant = ¢; will yield the original Lagran-
gian (14) and will be performed at the end. By
performing a Legendre transformation one may
introduce the c-number functions

0Z

M(x)zm=<¢ol¢i<x)l¢o> (17)
and define the action integral'®
A(A)EZ(A)—f dix[e;(x) — €]0 (%)
W) +e, f N(Ddix. (18)

Here Z(}) is obtained from Z(e) by expressing the
€;(x)’s as functionals of the A;(x)’s through Eq.
(17) (Legendre transformation).

It is easy to prove the following equations:

'57??7)=—[5i(x)— &l, (19)
¥A  BW
o (x)ox;(y) ~ 6x;(x)dA;(y)
=A™ (0 ), (20)
5°A B 5°W
62 (X) 6X; () 60,(2) ~ X, (x) 62, (3) 624(2)
=Tjxlx, 3, 2), (21)

k)

Texp|i [ d{ L9+ €000 +[(0) - & u (0]
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the field theory is described by a Lagrangian L(x)
of the form'*:1%

L(x) = L e (X) + Ly (x) + €;¢5(x) , (14)

where L. (x)+ L, (x) =L, (x) is invariant under
the given group G, ¢; are constants, and ¢;(x) are
the basic local fields in terms of which the La-
grangian is constructed and which transform
locally as a representation of the group G:

di(x)~ g5 9,;(x). (15)

Following the standard procedure'® one introduces
the functional

£(> ) (16)
etc., where A™;;(x, y) is the inverse of the
“propagator”

8450x, )= Wol T (9: () 0, (9Do) = X (N, (y) - (22)

and I'(x, y, 2) is the amputated three-point function.

The above equations (19)—(22) suggest that the
action functional A()) can be interpreted as a
classical action integral for the classical fields
2i(x). As we will see, the analogy with the clas-
sical case is very strong.

In order to get the group-theoretical transfor-
mation properties of A(X) we consider the follow-
ing infinitesimal transformation of the “classical
fields” x;(x):

i () = X (x) + €6%0;(x), (23)

8N (x) =g 55, (%) . (24)
To the above transformation of the A;(x)’s will
correspond a variation of the functional A())
given by

SA
6°‘A=Jd“ AN (x) —— . 25
xgu J(x) GA‘O{) ( )

The above equation may look like a trivial identity
if A is a known functional of the X;(x)’s. However,
if %A is assigned independently, the above equa-
tion has a deep group-theoretical content because
it becomes a statement about the transformation
properties of A under the group G. The nontrivial
question which arises at this point is how can one
assign 6°A by the knowledge of the transformation
properties of the Lagrangian. In the semiclassical
approximation, Eq. (25) was written for the La-
grangian itself and there was no problem in mak-
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ing assumptions about 6°L. Here, the group-
theoretical behavior of A looks less direct, and
one would rather like to make assumptions about
the transformation properties of the Lagrangian
L or of the Hamiltonian density H. These last
quantities have in fact a more direct physical
meaning'’ than the functional A(A). The connection
between 6°L and 6°A is given by the following:

Statement. Under a transformation 6%); =g\,
the change 6%A in the functional A is given by the
vacuum expectation value of the change 6*L of the
Lagrangian under the transformation 6% ¢;(x)
=g ;(x):

8% A(N) ={Po 6% LIy - (26)

Proof. Since we will be concerned only with the
case in which 6°L is linear in the fields, we will
give the proof for that case. The proof then be-
comes very simple. Since W(X) is an invariant
functional of 2,2 one has

6°A=0"W +€;8 php(%)
= €sg?k7\k(x)

= (Wol0% LIy, -

As a consequence of the above equation, the group
transformation properties of A()) are tightly
bound to the transformation properties of L(x) and
one may make assumptions either on L(x) or on
A(M). Equation (25) has the same form as Eq. (8)
of Sec. III, and assigning the function 5%A is
equivalent to assigning y,|6* L|¢,), in close anal-
ogy with the semiclassical approximation.

Now in the limit €;(x)~ ¢;, Eq. (19) gives

—=0. (27)

This is the analog of the extremal condition, Eq.
(4), of the semiclassical approximation. If the
explicit form of A is known, the above equation
determines the values of \;(x)— constant=2;, for
which the symmetry is broken. However, even if
A is not known, Eq. (27) is very useful: The group
transformation properties of A fix the “directions”
of the vector X; = constant for which spontaneous
symmetry breaking occurs. We do not insist on
this point, which has been discussed in detail else-
where.'®

In conclusion, the treatment of Sec. III applies
step by step and one gets the following equations
[in the limit €;(x)~ constant= ¢;]:

€g72;=0, (28)
5_1-'1(0)5?»)\12:5&5», (29)
]——‘ii (0,0)g ;= -[a%0), 2%, (30)

|o

etc., where A~(0) is the Fourier transform, at
zero momentum, of A~Y, and I'(0, 0) is the Fourier
transform of the amputated vertex function, with
external legs at zero four-momentum.

It is easy to recognize in the above equations the
Ward identities obtained by Glashow and Weinberg,®
with a completely different method. The advantage
of the present formulation is that the chain of Ward
identities emevges as the result of successive
derivations of a single equation (25), which con-
tains the basic information about the group prop-
erties of A without any reference to a specific
model."

Equations (28)-(30) become identical to Egs. (9),
(11), and (12) in the following case: (i) the renor-
malization constants of the fields ¢;(x) may be
considered equal within a very good approximation,
and then put equal to 1, by a redefinition of the
fields; (ii) the two-point functions A;; are domi-
nated by poles, so that at zero four-momentum
one may neglect the continuum and obtain

lim A7 (p?) =lim (p25;; +M?;) =M?,;,
,z_.o ,2-.0

where M?;; has the physical meaning of a mass-
squared matrix.

In conclusion, if we introduce the abridged no-
tation

=X by, e=€dy,

where ¢, is the unit vector in the direction i, the
previous equations can be written, in the basis
where the mass matrix is diagonal, in the follow-
ing more convenient form:

Ei[ga’ )‘]i“-ot (31)
m(i)z[_q_d!)\]i:[_qa9 €]i, (32)
&iin[ G, M= mty -mE)[G, Ah

(no sum over ¢ and j),
(33)

—gmz[Q“, h]x=g.-j,[9°‘, &)k]!’ +gm[£“, qBi]P
+8inl G, 51, - (34)

Here i denotes the charge conjugate of the particle
i and

—i[_gay &I]# =§lt);

are the matrix elements of the generator G® in the
representation spanned by the particles under con-
sideration. The general Ward identity is
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- 5 - 3 ceeqgln=1) a B
-ggf;gz- .. i,,[_G_a’ 7\]¢"=gE'iI1]li)g' e ‘n-xl’[ga’ 4’51]!’ +g§’;[il2)] v i"_lp[ga, ¢12]p+ +gi'1'i2- .- [i,,_llp[g s ‘P;,,_I]p ’

where [Z{] means that the index 7 is to be omitted
and gf'l'fz -+ i, is the nth-order coupling constant
between the particles ¢,,7,, ..., i,

The application of the above treatment to specific
physical examples, in particular SU(3) xSU(3),
will be done in Secs. V, VI, and VII.

V. BREAKDOWN OF CHIRAL SU(3) XSU(3)

In the following we want to apply the previous
general results to the case of chiral SU(3) xSU(3)
symmetry.

In this case the physical situation indicates that
the only fields with nonvanishing vacuum expecta-
tion value can be u, ug, and u, [with the standard
notation, where ; and v;, ¢=0,1, ...,8, represent
the scalar and pseudoscalar 0* mesons, belonging
to the (3, 3) + (3, 3) representation of SU(3) xSU(3)].
In addition, the most commonly accepted idea is
that the strong-interaction Lagrangian is SU(3)

X SU(3)-invariant except for a linear term trans-
forming according to the (3, 3) +(3, 3) representa-
tion, namely,3

L=Ly+€y+ €Uy + €515 .

The use of the functional method enables us to
obtain results which hold for any quantum-field-
theory model with a (3, 3) + (3, 3) linear breaking.
No assumption is needed about the form of the
quantum-field-theory Lagrangian and no reference
is made to a specific Lagrangian model (like the
¢ model). In this way our results are model-~inde -
pendent and may be regarded as a check of SU(3)
X8U(3) symmetry with the only assumption of (3, 3)
+(3, 3) symmetry breaking. This has to be com-
pared with the results of the many papers dealing
with SU(3) 0 model, where it is not clear which
are the consequences of SU(3) xSU(3) alone and
which are the results depending on the structure
of the 0 model. In addition, Eqs. (31)-(35) are
not the consequence of a first-order approximation
in the breaking parameters €;, which has repeatedly
been questioned.?° Therefore they are not affected
by the difficulties arising from nonanalytic be-
havior of the theory with respect to the breaking
parameters ¢;."°

In this case the physical limit of terms appearing
in the functional equations is the following:

€. (x) l €; #0 when ¢ corresponds to u, ug, u,
i =0 otherwise,

(35)

xi(x) =<0 s (x)I0)

A; #0 when i corresponds to ug, ug, U
T1 =0 otherwise.

A few comments concerning the above chain of
Ward-like identities may be useful. Equation (32)
generalizes the content of Goldstone’s theorem.

In the limit €~ 0, the “modes” i, for which [G®, A];
remain different from zero when €~ 0, correspond
to Goldstone bosons:

m({)z(f-’ 0)= 0 if [gd, )‘]i #0.

To identify these would-be Goldstone bosons, one
should know the behavior of A as €~ 0, and this is
in general a very delicate limit. As far as SU(3)
XSU(3) symmetry breaking is concerned, one ex-
pects that the physical solution of Eq. (27) has the
following properties:

limx, #0,

€0

limxg #0, (36)
€—0
so that when € -0, all the pseudoscalar octet be-
comes massless. In general, however, there are
solutions'® for which Eq. (36) holds. For conve-
nience, we will call “possible” Goldstone bosons
all the particles i for which [_C_J_“, Al; #0, X being
taken at its physical value. With this terminology
the chain of Ward identities give the nth-order
coupling constants involving at least one “possible”
Goldstone boson in terms of lower-order ones.
Thus, by recurrence relations one may express
coupling constants of arbitrary order in terms of
the masses. The spontaneous breaking of the sym-
metry gives therefore strong restrictions on the
coupling constants of arbitrary order with a “pos-
sible” Goldstone boson. Unfortunately, the cou-
pling constants appearing in Egs. (31)-(35) cor-
respond to zero four-momentum and the extrap-
olation to the physical value is not trivial. We
will discuss this point later. For the moment, we
would like to remark that the chain of the Ward
identities provides also a simple method for ob-
taining relations between masses (or in general
between coupling constants of the same order).
This is the case when a coupling constant g(") of
order n is expressed in several independent ways
in terms of the coupling constants g("‘”. Then,
by a direct comparison, some relations between
these g("'“ constants are obtained. For instance,
by comparing the third-order constants appearing
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in the chain, we can obtain some relations between
masses, mixing angles, and the parameters 2;,
as we shall discuss and exploit in detail in the
following sections.

In Sec. VI we will consider the case

€,=0 and X, =(uy),=0,

i.e., the case of conserved isospin, for both 0*
and 1* multiplets of mesons.
The more general case

€,#0 and A, #0,

where isospin is also broken, will be discussed in
Sec. VII. In particular we shall discuss carefully
the effect of these nonvanishing terms on the pre-
vious results. We will show that the corrections
are actually negligible because €, and 2; are rather
small. We emphasize that this result is by no
means trivial; it is known in fact that, in the case
of the spontaneously broken symmetries, the pres-
ence of a very little term might, in principle, pro-
duce very large effects, in particular as far as
mixing angles are concerned.

VI. BREAKING OF CHIRAL SU(3) X SU(3)
DOWN TO SU(2)

A. Mass Splitting and Breaking Parameters

We consider now the case when €, €, and A,
={uy) 0 Ag={ug), can be different from zero, where-
as €;=0and A;=0.

The first Ward identity (31) shows simply the
consistency of this choice of nonvanishing param-
eters. The second-order identity (32) gives

K= %ﬁ (38)

Kg= ;a (39)
_ V2 sinf+ (V2 €, - €,) cosh

=T, sinf+ (V2 1, - Ag) cos’ (40)
,_ V2ecos0-(V2e,-€,)sinbd 1)

T V22gc080 - (V22— A,) Sind ’

where 7 means (mass)? of the 7, etc., K ¢ denotes
the scalar partner of the K (sometimes denoted
by « in the literature), and the angle 6 describes
the n-n’ mixing:

=Dy cosb+ D,sind,

7’ =~y sinf + ,cos6. (42)

There is a certain arbitrariness in choosing the
input parameters in order to determine the re-

maining ones. A detailed discussion will be done
in Secs. VIB-VID. For the moment, we note that
the PCAC (partial conservation of axial-vector
current) hypothesis provides an independent way
for evaluating the parameters A, and A, [and then
€, and ¢, through Eqgs. (37) and (38)]:
Fo=3)Y3(V2r,+2y),
4
Fe= GBIV Er =32, (43)

Thus, by using the experimental estimates F,
=0.96m,, F,/F,=1.28, one obtains®! from the
above equations

Ag=0.99m,, A,=-0.22m,,

€,=9.92m %, (44)

€=-12.86m,>.

Let us now examine the third-order Ward identi-
ties (33). In the case where the generator G” is
one of the generators (F¢+iF,)/V2, FS, or
(F3+iF%)/V2, Eq. (33) takes the simple form

8ije=(mg;? =m;)®)Cy;, (no sum over ¢ and j).
(45)

In Table I we have collected the values of C;;, for
this case. Taking as G the generator F3, and
putting

2 2
F,= ﬁ)\s siné + (ﬁ o= (%)1/2)\8>0089 ’

2 2 (46)
F =75 2gcos0 - <_\/? Xo— (32;)“2A8> siné,
we obtain from the same Eq. (33) the following
relations:
gﬂoﬂgﬂFTl+gﬂo1rgT)'F1]'=(%)1/2("— ﬂs); (47)

1

&groxgnF n +&xoxgn F yr = -33)*K -K ), (48)
and
EmgF n+&mg F

=V2(n-ng)cosbssin(6 - ) + (2)"*cosbsinf |,

gn’nsnFn +gn’nsn’F n’

=V2(n' -ngcosbscos(d - 6) — (3)/%sinf sinb]
EmnE n+ Eangn ' Fuy (49)

=V2(n -1 -sinb s sin(6 - 6) +(2)/%cosfcosf sls

EnmpF n+&nmg'F ot

=-V2(n' - n’s)[sinf scos(6 — 6) + (2)?sinb cosb 4] ,
where 6 is the 1 -7’5 mixing angle defined as in
Eq. (42), and

cos6=(2)"2, sinf= % (50)
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TABLE L. g5 = gy =m(;%)C 14 .
G i j k Cim
(Fg+iF 2712 0 K° K} VR, —Fp)7! ((8Y)
n K° K$ -@WHF ,~Fy) ' cosb .2
n’ K K @)V (F . —Fg) sing 1.3)
) K} K} 2 VR —Fp)t 1.4)
ns K} K% -@)VA(F , ~F ) 1cosbg (1.5)
ns K4 K% GWAUF . —Fg) 1sinbg (1.6)
o0 E*0 K% 2V _F )7t ©n
¢ K*0 K —@W(F , =Fg) 1cosb, 1.8)
w E*0 K} GWA(F , —Fy) lsing, 1.9)
A0 RS K% 212 F  F )7t {1.10)
b4 ):4A K —&)W2F , —Fg) lcosb, 1.11)
w4 K4 K GWF  =Fg) 1sing, 1.12)
F} KO K% w0 -2712p -1 1.13)
n % 0 212F “1gsin(6+0) 1.14)
n’ i 0 212F “lcos (0 +0) (1.15)
0 s 0 212F ~1sin(@ 5 +0) (1.16)
w0 n4 0 212F “1cos(0g+6) 1.17)
A p- 0 —2V2%p 1 @1.18)
b4 K*0 70 —2"Vyp 1.19)
(Fi+iF§2T12 0 K} K -2712F 1 1.20)
n K K 6712F,71(2%/2 5in6 — cos) 1.21)
n’ K} K? 67V2F 1232 cos6 + sinf) (1.22)
K i) K? -2712p 1 (1.23)
K0 ng K° 6”V2F 71232 sinbg — cosby) (1.24)
K né K 67V2F 71(2%2 cosfg +sindy) (1.25)
A0 E*0 K —27V2ip 1 (1.26)
4 0 KO 2712t .27
K ¢ K -BG)V2iF cost, (1.28)
K w KO G)W2iF ! sing, (1.29)
b4 E*0 K° G)2iF ™ cost, (1.30)
wy E*0 K —@)V2iF ! sing, 1.31)
For the sake of completeness, we add some 8nt kK= 8t KOk
simple comments. First, it is easy t? see that _ ﬁg ox-x
the use of other generators does not give further " s
information. For example, starting from the gen- =-V2 g, ogoxo,
erator (Fg—iF,)/V2 instead of (F,+iF,)/V2, we
would obtain the “charge conjugate” relations. Enk =k = Enkoxy -
Similarly, starting from the “charged” genera- These relations are clearly a consequence of the
tors (F,+iF,)/V2, etc., we would obtain the cou- residual SU(2) symmetry. All the other indepen-

pling constants between charged particles, e.g., dent coupling constants not listed in Table I and
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involving at least one possible Goldstone boson
are zero. The present method does not give any
information about coupling constants involving only
Ts Ns N5

We note that Eq. (33) holds also if the fields
labeled ¢ and j do nof belong to the same multiplet
of the fields which are “responsible” for the break-
ing. In our case, e.g., the indices ¢ and j can label
the multiplet of the vector (1*) mesons p, K*, ¢,
wand A, K,, ¢,, w, which can be accommodated
in the (8 +1,1) +(1, 8 +1) representation of SU(3)
xSU(3). In Table I we give also the coupling con-
stants we obtain in this case (6, and 6, are the
mixing angles between w and ¢, and their axial-
vector partners w, and ¢,, respectively). The
Ward identity generated by F; is instead

grgxxonk o +&rokxon Fyr = —i(3)"*(K , -K*). (51)

As in the case of the 0* mesons, other coupling
constants can be obtained from those appearing in
Table I and Eq. (51), by simply taking into account
the residual invariance SU(2) and charge conjuga-
tion.

B. 7-n' Mixing Angle and K Mass

There is a first immediate use of the third-order
Ward identities. As already noted, a given cou-
pling constant can appear several times in the set
of these identities, being related to different gen-
erators G”. This is the case, e.g., of the con-
stant g,ozoxg Which appears in Egs. (I.1), (1.13),
and (1.20) of Table I. Then, an obvious compari-

J

(KS- ﬂ)2[8+3(1’-ﬂ')(n"‘ 17) —4n+n,—2ﬂ]+2(Ks—7T)[

(K - m)? K-1

Using the masses of 7(134.97), K(497.76), n(548.8),
and 7’(957.7), we obtain the following solutions
for the K ¢ mass:

my =938 MeV, my =698 MeV,
and correspondingly
6=-48', 6=-15°.

These results are very near to those obtained by
Glashow??; the values of mass of K s however, do
not appear to be supported by the physical situation,
which seems to suggest a K ¢ mass in the region
1080-1260 MeV. Actually, the previous Eq. (55)
is somewhat “unstable” in the sense that very
small variations of some masses yield a relatively
large change in the K i mass. In fact, the vari-
ation &K s around the previous value K ;=938 MeV
may be expressed in terms of the variations of

the other masses appearing in Eq. (55) by the fol-

(n=-mn’'-m

son of the respective right-hand sides gives mass
relations. In this way one gets

K-1  K-K;
F.,-Fy F,
_T-Ks . (52)
Fg

Actually, the second identity is a consequence of
the first one, and vice versa. This is a quite gen-
eral result, i.e., only one relation can be obtained
in these cases, since one of the three generators
involved can be obtained from the commutator of
the other two, and therefore “depends” on them.
The previous relation (52) can be also obtained
directly from Eqgs. (37)-(39) and (43) and has been
given also by other authors. Using the same trick
for the coupling constants g,zoxq [Egs. (1.2), (1.21),
and (48)] and g, zoxo [Egs. (1.3), (1.22), and (48)],
we obtain the two fosllowing independent relations:

_3Es-1Dn-K)
2\/'2‘tan9-1_3(K_1r)(n_Ks), (53)

_ 2 Es-m(n' -K)

2V2 cot6+1= 3_§—(K—7T)(TII—KS)’ (54)
having used Eq. (52). A very nice feature of these
two relations is that they do not involve the param-
eters € and X.** The above equations look suitable
for discussing the K ¢ mass and the mixing angle
6 (for both of which the experimental values are
not yet well established). In particular, the equa-
tion for K g resulting from (53) and (54) is

X7 —2(n+n'—2n)]+3(n—11)(17’—1r)=0.

(55)

r

lowing relation:

0K ¢=33.00K - 32.46m+1.36n' +0.767.

This shows that K ¢ is relatively unaffected by
variations of n’ and =; instead, a variation of only
1% in the masses of 7 and K yields a change of
about 22% in the mass of K5. For instance, putting
in Eq. (55) K =503 MeV and n=544 MeV, we obtain

my = 1148 MeV.

With these values, the angle 6 turns out to be 5°
50’. A better determination of 6 will be given in
Sec. VID.

C. PCAC Coupling Constants

In Sec. VI A we have used the experimental esti-
mates of F, and F, to determine the breaking pa-
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rameters ¢,, €;. Now we can check the consistency
of the theory. Since we have relations not involving
€, and €; we may determine F, and Fy from the
values of the masses. In particular we can evalu-
ate, by means of Eq. (52), the ratio F,/F,. By
varying the mass of K g between the values 938 and
1148 MeV, we obtain

Fy/F,=1.36-1.22,

very near to the experimental value and the PCAC
hypothesis. Equivalently, one has

Xg/Xo==(0.28-0.18).

This, in turn, enables us to determine the sym-
metry-breaking parameters €, €; by using Eqs.
(37) and (38). We get

c=¢€/€y= =(1.30-1.29),

€/2=(10.16-9.94)m 2.

It is worthwhile to stress the “stability” of the
Gell-Mann parameter ¢ under variations of K g
mass in the range we have considered. In addition,
we can see that increasing the K ¢ mass reduces
the breaking of SU(3) symmetry. Finally we want
to emphasize at this point that these values are
obtained in a way which is completely self-con-
tained in our approach.

D. Generalized GMO Mass Formula

The GMO mass formula-for pseudoscalar mesons
is usually derived under the approximation in which
particle states may be classified according to
SU(3) multiplets (apart from the well-known singlet-
octet mixing). This means that the noninvariance
of the vacuum under SU(3) is not taken into account
and it implies the approximation A;=0. This kind
of approximation has also been used by Gell-Mann,
Oakes, and Renner.® According to our previous
analysis, however, it turns out that X;, though
small, is not negligible with respect to x, (Ag/2,
=~20%), and one might in principle expect reason-
able corrections to the GMO formula. It seems
therefore interesting to investigate how the GMO
formula gets corrected by the nonvanishing of Ag.

A generalized GMO formula taking into account
the nonvanishing of A, may be obtained by using
our Ward identities (52)-(54). Putting

Fg,=(3)"*2=F, - Fy,

we get in fact
F 1=F/K +FKSKS, (56)
Fyn=FKcosf - Fy K scos(6+26), (57)
Fym'=~FyKsing+Fy K ssin(6+20), (58)

which are essentially equivalent to Eqs. (52)-(54)

given before.
By taking suitable combinations of the above
equations, we get

4F (K =3nfy+F m+3(n’ —n) sinb(f, sinb - f} cosb),
(59)

2V2(FyK - F ,m) +3nf}
=3(n’ - 1) cosb(f, sinb - f:cosb),

(60)
where
fa= (%)llz(ﬁxo_ )\a) ’
2
fe= "/—ﬁ)\a

Equation (59) is the generalized GMO formula and
shows very well why the GMO formula works. The
corrections are in fact proportional to sin?6 or

Ag sinf, which are both very small. Moreover, in
the limit A;=~0, F, =Fg=f;, and one obtains

4K - 3n-n=3(n’ -n)sin®6~0,

which is the original GMO formula and works rea-
sonably well. We will discuss later the validity of
the approximation A; ~0.

The approximation of neglecting A, does not work,
however, in Eq. (60), where the terms on the right-
hand side are proportional to sinf and ;. They
are not negligible with respect to the left-hand
side: otherwise one would get

FgK=F 7,

in bad agreement with the present data. One may
show that if the renormalization constants Z,, Z,
are properly taken into account the above equation
is the relation found by Khuri?*:

Zy 'FK=2,"'F 7.

This shows that very mild looking assumptions,

A ~0, 6~0, may lead to very questionable results.
This point does not seem to have been fully realized
in many of the papers about SU(3) XSU(3) symmetry
breaking. In particular the fact that the GMO for-
mula works so well does not imply that the SU(3)
noninvariance of the vacuum may always be ne-
glected.

We are now in the position of checking the validity
of Eq. (59), since we may determine 6 from Eq.
(60). It is worthwhile to stress that the situation
is quite different from the SU(3) case. There, the
mixing angle 6 is a parameter extraneous to the
theory and it is introduced just to make the GMO
formula work exactly. Here, 6 may be determined
by an independent equation [Eq. (60)] and the de-
gree of accuracy of the generalized GMO formula
may be checked consistently. In addition by using
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Egs. (59) and (60) the ambiguity in identifying the
ninth pseudoscalar meson may be resolved. In
SU(3) this is not possible because 6 and 1’ are not
unambiguously determined by the theory. Their
“determination” is done in an indirect way through
the GMO formula and since this is only one equa-
tion one cannot determine both 6 and 7’.

(i) Determination of 6. This is easily done by
writing Eq. (60) in the form

2V2(FyK - F,m) +30'f}

=3(n’ - n) siné(f, cosb +f, sinb) .
Since 6 is small one gets the approximate?®® for-
mula

2V2(F K -F m)+3fln’
: 9= - I 8
sin 3" -mfs

(61)

yielding
sin6=~0.052+0.019,
i.e.,
6~2°58’'1+1°08 .

These values are obtained by using as input param-
eters K(0.2458 GeV2+0.8%), 7(0.0188 GeVZ+3.3%),
1(0.30118 GeV?3), 7’(0.9168 GeV?), and F,/F,
=1.27+0.02.

One might be surprised of such a small value of
6 to be compared with the SU(3) “determination”:
6=~11°, The reason is that in SU(3), 0 is deter-
mined through the formula

4K -3n-1
3m'=-n) ’

obtained under the assumption of SU(3) invariance
of the vacuum.?® The corrections due to the non-
vanishing of A, are however not negligible if one
wants to determine 6. This is easily seen by
writing Eq. (59) in the form

sin®6=

. 2 s 4F K -3f;n-F 7
sin?@ L sinfcosf= —£& 8 I
fs 3(11,_17)].8

(i1) Accuracy of the genevalized GMO formula.
We may now check the validity of Eq. (59). By
using sin§=0.032, 7=0.01885 GeV?, F,/F, =1.29,
we get K=0.2500 GeV2. The agreement is as good
as it could be. Deviations of the order 1-2% are
in fact of the same order as the electromagnetic
corrections which are not taken into account in this
formulation. In this respect it seems reasonable
to conclude that the generalized GMO formula is
a much more precise relation than the original
GMO formula. Of course, the smallness of 6 en-
ables us to write formula (59) in the simplified
form

|o»

4F ([K=3fn+F u.

(ii1) Identification of n’. One actually may ask
whether the particle n’ in the above formulas is
the X°(958) or the E(1422) meson. To resolve this
ambiguity, one could try to fit with the E(1422)
the Egs. (59) and (60) or, more directly, the fol-
lowing equation:

F 7,..1()( Fy n’-K) 1
_oixk M-8\ _ofxh =2\___2 2
(1 2F,, n-m ! 2Fﬂ n-n 2’ (62)

obtained by eliminating 6 from (59) and (60). It is
easily seen that, with this choice, these equations
would exhibit an imprecision of about 5-6%. This
is very much outside the precision 1-2% according
to which Egs. (59) and (60) seem to work. There-
fore if one takes this precision seriously, n’ can-
not be identified with the E(1422).>” As a matter
of fact, the whole scheme seems to exhibit such a
high precision (1-2%) that one is tempted to con-
clude that in fact SU(3) XSU(3) symmetry breaking
is more precise than SU(3) symmetry breaking.

In order to accommodate the E(1422) one should
give up this very striking consistence of the set
of sum rules derived and admit deviations of the
order of 5-6 %.

In conclusion, in spite of the uncertainty due to
the K¢ mass, the whole picture emerging from
the analysis of this section strongly supports the
SU(3) xSU(3) symmetry breaking according to the
(3, 3) + (3, 3) representation. The whole theoretical
scheme seems in fact to exhibit a very good in-
ternal consistency and the agreement with the ex-
perimental data is always good.

E. Branching Ratios

A full analysis of the coupling constants derived
by the Ward identities and in particular their ex-
trapolation to the physical mass is outside the
scope of the present paper. In general we cannot
expect to obtain the actual decay rates using na-
ively these coupling constants. For instance, we
would have I'(p~ 7m)=0, in contrast with experi-
ments. A better agreement can possibly appear
if one takes the ratio of “similar” decay rates,
e.g., R=T(13~KK)/T(ng~nu) or I'(n g~ wn)/
I'(ns~KK). In the first case we obtain R ~ 0.18
whereas experiments suggest R <0.2. In the sec-
ond case, the mixing angle 6 is involved: We ob-
tain for the ratio a value near to the experimental
data if we take 6 g~ —20°, a value which is not in
contrast with the Gell-Mann-Okubo mass formula
for the 0" nonet (with m,_=1070 MeV and m,, = 750
MeV). y s



VII. BREAKING OF SU(3) XSU(3) SYMMETRY
DOWN TO U(1)

In this section we want to consider the case in
which the strong-interaction Lagrangian and the
vacuum state are not isospin invariant.

This amounts to saying that, in addition to the
parameters €, €5, A, A previously considered,
the other nonzero quantities €; and 2, should be
introduced. The simultaneous nonvanishing of
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Ward identity (32), an extended mixing between
7°, 0, and n’ (and between 7%, ng 71%) is to be ex-
pected. For describing these mixings, let us put

N o X, N A, oA 5, ~0
Ug = Qg + Aol + Ag3Trg, g = bggll s+ byoll's+ bgaT's
- N o o N A ~, ~0

Vo= AogN + Aol + 3Ty, Ug=ogl s+ booll's +Do3T's»

A -, . A s, ~0
Vs = Aagl] + Agol)’ + A33To, Uy = bagl) s+ bagll s+ by, Ty,

) . . . . 63
these six parameters is consistent with the first- (63)
order Ward identity (31). According to the second where
J
cosacosfcosy -cosasinBcosy cosasiny
gg Ago Qg3 . . .
- sina sing - sinacosf
Ay Qyy oz | = sinacosBcosy -sinasinfcosy sinasiny . (64)
+cosa sinp +cosacosf
a;; Ay, Q . . .
38 30 T3 —cosfBsiny sinBsiny cosy

Similarly, one introduces a mixing matrix b;; be-
tween the scalar mesons.
The second-order Ward identity gives now

2V2¢€,+V3e— €

K= o Vaa e an, o, K

_2V2e-V3e ¢

0 —J0
K—272Ao—73)\3—>\B_K’ (65)

o (V2 €9+ €)aq, + €5(ag, + V2 ay,)
(V2o +Xg)ags + Ag(ags + V2 ay,)

(V2 €,+ €;)aq, + €,(a, + V2 a,,)

="z Xo+Xg)ags + Xq(age + V2 ag)

. (V2 g+ €)ag+ €,(ag, + V2 ay,)

= (VENg+ Ag)agy + Ao(@go + V2 G4p) ’

e V2 ggag, + (V2 €, — €)ag, + €,a,,
V2 2a55 + (V2 g = Ag) gy + Nyt ’

0= V2 €gag + (V2 €9 = €;)ag, + €305,
V2 Rga0g + (V2 g = Ag) gy + Ay ’

‘o V2 €800+ (V2 €9 = €5)ag, + €5a49
V22000 + (V2 Ao = Ag) g0+ Nyyg *

As discussed in Sec. VI, the third-order Ward
identities provide a simpler way of getting rela-

r

tions involving only physically measurable quan-
tities.

In this way one gets the following relations (see
the Appendix for details):

K°-K35 K°—a" (66)
F, ~F,-Fg+(1/V2)x,°
-_ ) -_ +
K -Ks _ K -7 ’ 67)
F, F,-Fyx-(1/V2),
0_ o+ o_p-
K°~ 1 K°-K (68)

Fe+(1/V2)N,  V2n,

By eliminating the parameters F,, F, and A,
from (66)-(68) one may get the following mass re-
lation:

K- -1)EK-K)KS~7})
=K - 1)K -KQ)(K3-173).
(69)

Similarly, one obtains relations involving 7° 7,
n’. They involve the mixing angles and are listed
in the Appendix [Eqs. (A6)-(A10)].

We may now discuss in detail the implications of
the isospin-breaking parameter A,. From Egs.

(66)—(68) we obtain

V2N, o (K%-1")
F, 8 ) koK (70)

which expresses 1, in terms of the sfvong mass
difference K~ - K° Even if this difference at this
level is not known (and, in addition, some uncer-
tainty exists about the masses of K g and ), one
can roughly expect a value of the order 107F for
A;. A more refined evaluation of A\, may be given
in the following way. Using Eqgs. (A7) and (A8),
we obtain
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TABLE IL g;5=mu =m;))C 5 .
G® i ik Cim

(Fy+iFy2™V2 K K~ n% 27V 7t (I1.1)
L S Ay tag, I1.2)
U S 4 Ay lag, (I1.3)
' T Ay lay, (I1.4)
K} K3 % 2712 71 L5
L S PR 43 A3 1y, (I1.6)
ng T T Ay lby (I1.7)
n§ 7wy T —Ay 1y, (I1.8)

(F +iFg)2”V2 1= K" K% —(F p =F g+271V5 )1 (I1.9)
™™ K~ K% —27TVYF  _Fg+2 V0% )" (@, + 32 ,,) (I1.10)
n K~ K% —27"VF  —Fp+ 27V ) Y(a g +3Y%ag,) (I.11)
n’ K~ K% 2TVHE | —Fp+ 27V ) " (ay, + 3124 (I1.12)
s K% K% —(F g =Fg+27 12 )71 (I1.13)
¢ K % —27TVF | —F+ 2712 ) 7 (byy + 31/2bg,) (I1.14)
ns K5 K% —27VYUF | —F o+ 2712 )™ (byg + 312 1) (I1.15)
ns Ks K% —27TVF | —F e+ 27120 ) 71 (byy +31/2bg) (11.16)

(Fg+iFp27™V2 ¢ K- K —(Fp=Fg=2"19 )7t (I1.17)
™ K" K| 2TVUF | —F o= 27120 ) a4y — 31/%ag,) (IL.18)
n K" K 2TVF  —Fy =27V ) Ya s — 31 %y,) (I1.19)
n’  K° K} 27VUF | —F =27V )" a0 - 312, (I1.20)
s K3 K% —(Fp=Fg—=2"19 )71 (I1.21)
¢ K%} K 27VUF | —F =27V )71 (byy — 31/2by) (11.22)
ns K% K 27TVUF | —F =27V )7 (bgy — 31/20yg) (I1.23)
n5 K} K 2TV(F | —F = 2712 )71 (byy — 31/28g,) (I1.24)

lagg) <|L=Ts _@ 2.60|@1 , (71) .
n-n- F, F, Finally, from Egs. (70), (73), and (A6), we get
lag, | < nﬁ*% =0. 13[ (72) o szm‘K'K—‘_"" ; (74)

where we have put m, =1016 MeV [the right-hand
side of both inequalities slightly decreases if we
use instead 74=5(962 MeV)]. The smallness of
both matrix elements a,, and a,, implies immedi-
ately that the angle y between 7° and the direction
4 is very small (and therefore there is a very
little mixing of 7°). Moreover, by using Egs. (71)
and (72), one gets

where we have put m, =1100 MeV. For any rea-
sonable value of the strong mass difference K° - K,
this relation indicates that the strong mass differ-
ence ™ -7~ is extremely smaller than its physical-
ly observed value (it is of the second order with re-
spect to the difference K°-K~, or, equivalently,
with respect to A\,/F,). Then by appealing to
Dashen’s theorem

tany <2. 6“/-_)\ , V{O_K—|e.m.=|'”0_‘”_|e.m.y
/3 " o (73) one may put
g3 +V2a
J;T_m < AR - - -
3a33 <2.6 ’ F" II(O-K Islrong = |K0'K Iphys+ I‘” -7° phys?
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TABLE II. (continued)
G~ i j k Cie
(Fi+iF)27V2 KO K3 F,! (I1.25)
K~ K} = F,! (11.26)
70 PO G2 Hagy+2V %) (I1.27)
n s o GPV2F N agy +21 % 4p) (I1.28)
' wy T G)V2F Hagy+ 2%y (I1.29)
™~ o} G)V2F " (bgg +2Y2by5) (I1.30)
™ ng ot G)V2F 7 (bgg +212bgp) (I1.31)
™ 95 G)V2F "1 (bgy+ 21 2byg) (11.32)
(F}+iF)27V K, 75 K* (Fg+2 V)71 (I1.33)
™~ K% K* (Fg+r2 V)t (I1.34)
™ K3 K* 67V (F e+ 27V )71(2% 20 )3 + 3120 35— agy) (I1.35)
n K; K* 6 V2(F o+ 27120 )1 (2% 20 g + 31720 45 —agy) (I1.36)
n’ K3 KV 6 V2(F + 2710 ) 71220 1 + 3V %2 ) — ag) (I1.37)
K- % K* 67V2(F +27V 20 )T (2% 2, + 31/2 by, — byy) (I1.38)
K~ ng K* 6 V2(F o+ 27V 20 5) "1 (2% 2bgg + 312ba5 — b o) (I1.39)
K~ 795 K* 87V2(F e+ 2712 )71 (2% 2y + 312, — by) (11.40)
(F+iFd)2™2 K- 1y K (Fg=2"1H 1 (I1.41)
™ K3 KO (Fy—=2"10 )7t (11.42)
™ K% K° 67V2F =27V )71 (232 y — 3V 40 —ayy) (I1.43)
n K} K° 6 V2(F =27V 20 ) "1 (232 g — 312 35 —ayy) (11.44)
7’ Ky KO 6712 (F = 2712\ )71 (232 — 312 4 —ayy) (I1.45)
K° 1% KO 6'“2(FK—2““2>\3)"(23/2b03—31/2b33-b83) (I1.46)
K ng K° 87V (F = 2712 )71 (232 o — 312 by — bgg) (I1.47)
K g5 KO 87V2(F = 271205) 1 (2%2byy — 31/2b4) — byy) (I1.48)

where the subscript “strong” denotes the contri-
bution due to €;u,. With this assumption, we get
from Eq. (70)

A/F,=—(5.3-1.1)x10"2,

respectively, when K 3=1200 MeV, 75=1016 MeV
and K ;=938 MeV, 73=962 MeV. The correspond-
ing values of €,, from Eq. (65), are

€;= —(0.28-0.33)m,°.

It is immediately seen that, due to the smallness
of the parameter 1,, the quantities F, and Fy (or
Xo and }g) and €, and €, as evaluated in Sec. VI,
are practically unaffected by the presence of the
new term 2A;. We can obtain also a more accurate
estimation for the mixing angle y between #° and
the direction 7,:

[yl <1°30".

Now at the limit y=0, one has from Eq. (64) a+8
=6, where 0 is the angle defined in Eq. (42) for
the n-n’ mixing. Thus one may easily show that

also this angle is not appreciably changed by the
term 2,.

APPENDIX

We give here some details concerning the case
€;#0, A;#0, considered in Sec. VII.

If G is one of the generators (F, +iF,)/V2,
(Fy+iF3)/V2, (Fg+iF,)/V2Z, (F3+iF)/V2, (FS
+iF)/V2, (F:+iF3)/V2, the third-order Ward
identities [Eq. (33)] acquire the simple form of
Eq. (45), and the corresponding values of C;j, can
be found in Table II. In this table we have used
the definition of F, and F already given (43) in
Sec. VIA. Actually, one could put, for instance,
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1
Fx+=Fx+7§=>\a,
(A1)

1
FK0=F1{‘ﬁ)\3;

however, the discussion of the limit where 1; is
very small is simplified if the parameters F, and
Fy are used. The Ward identities generated by
F3 and F; are of the following type:

. , (3,8)
GiinoF 5D +giinF D 4 g1 T = (m )2 =m ) Cyy 5

(A2)
where
59 =2 F Ny gy + VT tgy)
=Ty wa33+\/§ 3\dgz +V adgs),
g - 1 L vz 3
n ﬁFwaae*' 73 Aa(ass*' am): (A3)

1 1
F 5'?) = 72=F,,a30+ W As(aao + ‘/ano)

1o

and
2
5("80) =73 Aglgs + (3)1 2 (V2 Ny — Aa)ags + (5)/*hgttss ,
2
g(r?) = Wxaam + (%)1/2(\/5)\0 - )‘s)asa + (%)1/2}‘3‘138 ’ (A4)

2
3’(7?) =73 Aglgo + ()2 (V2 ho = Ag)ago + (5)V*N5a50,

corresponding to the generators F; and F3, re-
spectively. The values of C;; are tabulated in
Table III for both cases.

By direct comparison of the third-order coupling
constants, one easily obtains, using Egs. (I1.25)
and (I1.9), (II.26) and (I1.17), (I1.33) and (II.1) of
Table II, the relations (66)—(68). Similarly, from
Egs. (II1.13) and (II.5) one has

K% — 1% _K%-K3
Fo—Fp+(1/V2), V2

This relation, and also those obtained from Egs.

(A5)

TABLE III. Values of C;;. [See Egs. (A2).]

G ¢ J Cy

F} K~ K% 271 (Im.1)
RO K —ot (III.2)
0 g 3712 by (@ gy + 212 5) + 35 (bgs + 21/2Dy )] (I.3)
n 3 3712 by (agy + 212 4g) + @ gq(bys + 212D y)] (Im.4)
' g 3721y @gy +2"%agg) + ag9(byg + 2" 2yy)] (IL.5)
0 s 37V byg(agy +21%a ) + @ 45 (byg +21/2bgg)] (IIL.6)
n s 37V bog(agg +21%a4g) + @ gy (bgg +21/2byg)] (Im.7)
n’ s 37V bg(agy +2Y%a gg) + agy(bgg + 21 2bgg)] (111.8)
w0 n§ 37V by (@gq +2Y%a ) + @ 4q(bgy +21/20y)] (I11.9)
7 n§ 37V2[ by (agg + 212 4g) + agg(bgy +21/20y)] (I11.10)
n’ n§ 37V2[ by (@gy + 21 2a ) + @5 (By +21/28)] (I.11)

F} L L G2 (II1.12)
K~ % —67172 (I.13)
K° K} —671/2 (II.14)
L $ B)12[a33bgy +21/% 13 bgs + @21/ 2byg — bys)] (IT1.15)
n m} ()12 lagybyg +21%a g bys + agy(21/2bys — bys)] (II1.16)
n’ m$ ()" 2lagybys +21% gy bgs + agy(21/ 2By~ by)] (IL.17)
0 s (3)!2ag3bgg + 212 gbyq + agy(21/2b4 — byg)) (II1.18)
7 s ()2l g5bgg +21/%a gbgg + agy (21 2byg — bge)] (I.19)
' ns () 2agybgg +2Y%a ygbgg + agy(2/2bgg — by)] (I11.20)
0 né (3)%aggbgy +21%a g3bgg + agy(21/2bgg — byg)] (Im.21)
n ns (8)!2laggbyy +2'/%a ggbgy + agg(21/2byg — byy)] (I1.22)
n’ s (3)?lagybgy +21%a g9 byg + agy(21/2bgy — byy)) (T1.23)
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(11.42), (I1.34), (I1.41), (I1.21), are actually not in- n'-n" agg+\/—am \/_?\3 (A8)
dependent of Eqs. (66)—(68). n-71s  Viag, F,

Finally, comparing Eqs. (II.2) and (I1.27), (II.3)
and (I1.28), (II.4) and (11.29), (II.11) and (I1.36),
(I1.12) and (I1.37) of Table II we obtain the follow-
ing relations:

-1 agtV2ag V2X (A6)
°—-73 3a,, F,
n-71" _ _ag+V2a \/—)\a (A7)
77-".-5 3a38 Fﬂ

K =1 _ 2V2ay+V3ag—ag Fp-Fg+)/V2
T T T V3 (ag + V3 agg) Fr+a/V2 7

Ks-n
(A9)
K‘-n _2/2ay,+V3a Fn—FK+>\;£\/7
73(a3°+73a30) Fp+X/V2 7
(A10)

which, together with the Eqs. (66)—(68), provide
the whole set of independent relations we can de-
rive in this way.

*Present address: Department of Physics, Princeton
University, Princeton, N. J.

IThis is a slightly expanded version of a paper with the
same title submitted to the Kiev Conference on Elemen-
tary Particles, 1970. Since then, other papers have
appeared dealing with the same subject (Ref. 2). In our
opinion, however, model-independent features of
SU(3) xSU(3) summetry have not been discussed in detail
and a critical over-all analysis of the sum rules arising
from SU(3) xSU(3) symmetry breaking has not been
given. In particular, a careful model-independent dis-
cussion about the role played by the x meson, the deter-
mination of the -1’ mixing angle, as well as the correc-
tions to the Gell-Mann—Okubo formula seems to be lack-
ing. For these and other reasons explained in the Intro-
duction, we believe that the present paper may still be
of some interest.

2The number of papers about SU(3) xSU(3) symmetry
is very large and it is impossible to list all of them in
any reasonable fair way. In the following we will quote
only those papers which have a direct connection with
our results.

5M. Gell-Mann, R. J. Oakes, and B. Renner, Phys,
Rev. 175, 2195 (1968); S. L. Glashow and S. Weinberg,
Phys. Rev. Letters 20, 224 (1968).

4Y. Nambu, Phys. Rev. 117, 648 (1960); J. Goldstone,
Nuovo Cimento 19, 154 (1961); J. Goldstone, A. Salam,
and S. Weinberg, Phys. Rev. 127, 965 (1962).

5Y. Nambu, Phys. Rev. Letters 4, 380 (1960); S. L.
Glashow and S. Weinberg, ibid. 20, 224 (1968); Gell-
Mann, Oakes, and Renner, Ref. 3; M. Lévy, Nuovo Ci-
mento 52A, 23 (1967); G. Cicogna, F. Strocchi, and
R. Vergara Caffarelli, Phys. Rev. Letters 22, 497
(1969); Phys. Rev. D 1, 1197 (1970).

For the sake of simplicity, we do not enter here into
the problem of giving a precise meaning to Eq. (2). See,
for example, D. W. Robinson, in Symmetry Principles
and Fundamental Pavticles, edited by B. Kursunoglu and
A. Perlmutter (Freeman, San Francisco, 1967), p. 457.

"One cannot expect exact invariance of the vacuum under
G ; by Coleman’s theorem (Ref. 8), this would imply
strict invariance of the theory and no breaking at all.
However, one may consider the situation in which the
symmetry breaking is “small” (g <<1), and the vacuum
noninvariance disappears in the limit g— 0, yielding a
fully invariant theory. In this case one may neglect the
noninvariance of the vacuum as a first approximation.

8S. Coleman, J. Math. Phys. 7, 787 (1966).

°It is, however, worthwhile to remark that the case
£ # 0 has not been as fully discussed and understood in
the literature as the case g=0. For example, it is not
obvious how to give a precise meaning to Eq. (2), pro-
vided that something similar holds, as a first approxima-
tion.

10This assumption plays the same role as assumption

(b) of case (i). For a more precise definition of the
local transformation properties of the fields in the case
of spontaneous symmetry breakdown, see, e.g., Robin-
son, Ref. 6.

UFor the general ideas about the semiclassical ap-
proximation, see S. L. Glashow, in Particles Curvents
Symmetries, Proceedings of VII Internationale Universi-
tidtswochen fiir Kernphysik, Schladming, 1968, edited by
P. Urban (Springer, New York, 1968), p. 245; P. de Mot-
toni and E. Fabri, Nuovo Cimento 54A, 42 (1968). Some
recent papers [J. Schechter and Y. Ueda, Phys. Rev. D 3,
168 (1971); 3, 176 (1971); 3, 2874 (1971); 4, 733 (1971)]
have appeared dealing with the semiclassical approxi-
mation of the ¢ model and having some overlap with our
paper. Their point of view is, however, different. The
group-theoretical content has not been emphasized; in
addition, their analysis does not include the careful dis-
cussion of the 7-n’ mixing and K¢ mass sum rules, the
generalized GMO formula, and the other sum rules ob-
tained in Secs. VI and VII.

2B, Zumino, in Brandeis University Summer Institute
in Theovetical Physics, edited by S. Deser, M. Grisaru,
and H. Pendleton (MIT Press, Cambridge, Mass, 1971).
The main ideas go back to J. Schwinger, Proc. Natl.
Acad. Sci. (U.S.) 37, 452 (1951); 37, 455 (1951); G. Jona-
Lasinio, Nuovo Cimento 34, 1790 (1964); see also
G. Parisi and M. Testa, Nuovo Cimento 67A, 13 (1970).
In the last reference one may also find a discussion of
SU(3) xSU(3) symmetry breaking.

13The above remarks apply, for example, to the papers
of Ref. 11.

14This case will cover all the physical examples we
will discuss in Secs. V, VI, and VII in connection with
chiral symmetry breaking. A linear breaking in the
Lagrangian or Hamiltonian density is in fact the basic
assumption of the Gell-Mann—Oakes—Renner and of the
Glashow-Weinberg model of SU(3) xSU(3) breaking (Ref.
3). The modifications required when the breaking is not
linear in the basic fields, as it oecurs in the case of
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U(@3) x U(3) breaking (Ref. 15), will be discussed else-
where.

I5F, Strocchi and R. Vergara Caffarelli, Phys. Letters
35B, 595 (1971).

The advantage of using A(A) instead of W(Q) is that
A(\) will likely have a well-defined limit as €; (x)—¢;
=constant, whereas W(A) does not (Ref. 12). Moreover,
the connections with the semiclassical approximation
will be more apparent in terms of A(A) rather than WQ),
as we will see below.

1"n particular, the group-theoretical properties of
H (x) govern the divergences of the local currents and
are connected with the PCAC equations.

18G, Cicogna, F. Strocchi, and R. Vergara Caffarelli,
Phys. Rev. Letters 22, 497 (1969); Phys. Rev. D1,
1197 (1970).

197he functional method proves to be very useful also
in discussing the analyticity properties of the vacuum
expectation values with respect to the breaking param-
eters €;. This will be discussed in a subsequent paper.

2R. Dashen, Phys. Rev. 183, 1245 (1969); L.-F. Li and
H. Pagels, Phys. Rev. Letters 26, 1204 (1971); 27, 1089
(1971).

sSimilar values have been obtained by Parisi and
Testa, Ref. 12,

Z2These relations could be obtained also from the sec-
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ond-order equations (37)—(41). From a practical point
of view, however, the present method automatically gives
these formulas, whereas extracting them by direct elim-
ination of € and A from Egs. (37)—(41) can be a somewhat
tedious task. This remark will appear even more rele-
vant in the case €;# 0 where the second-order Ward
identities are complicated by the occurrence of three
mixing angles.

23, L. Glashow, in Hadrons and Their Interactions,
edited by A. Zichichi (Academic, New York, 1968), p. 83.

N. N. Khuri, Phys. Rev. Letters 16, 75 (1966); 16,
601(E) (1966).

25Alternatively, one may use the following formula:

_ Fx n'-K Fx n'-K
t:m)——'znli(1-F1r n'—vr)/(l_4F el P

m

which can be derived without making any approximation
from Eqgs. (59) and (60).

26This equation follows easily from Eq. (59) by putting
Ag=0, and is the standard GMO formula including mixing.

“"Putting m s =1422 MeV would lead to an angle of the
order —5°. A further possibility, actually, cannot be
excluded, viz., the occurrence of a mixing between X °
and E. Such a mixing would in fact be consistent with
our Egs. (59) and (60).

1 JULY 1972

Quarks, Sum Rules, and Low-Energy Parameters in 7V Scattering
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Finite-energy sum rules and current-algebra sum rules are shown to work at the quark
level. Making use of these rules, and of a factorization assumption for the basic meson-
quark amplitudes above threshold, some well-known SU(6) results are derived. Low-energy
parameters in 7@ and 7N scattering are also evaluated. Using our model for the 7N a({;)
p-wave scattering lengths, an inconsistency is found between the usual PCAC (partially con-
served axial-vector current) or p-exchange-model treatments and dispersion relations. It
can be removed if double counting of resonances and p-exchange terms is avoided. This pro-

vides good agreement with experiment.

I. INTRODUCTION

The quark model is usually seen as an easy way
of applying unitary symmetries to hadronic in-
teractions. The determination of coupling con-
stants and widths of resonances at low energies
and relations between cross sections at high
energies are classic examples in which the quark
model and the SU(6) symmetry scheme give the
same results. However the quark model is not
identical to SU(6), and the physics of hadrons is,
on the other hand, much more complex than SU(6)

or any other simple symmetry scheme. In this
paper we exploit possible non-SU(6) [or SU(6),]
aspects of the quark model.

Inverting the normal procedure, we start by
going from hadrons to quarks rather than the
other way round. The reason is that if we want
more than SU(6), we have to use experimental
information where it exists and where it has
motivated and justified a large variety of theoreti-
cal approaches. That means that we have to in-
corporate the knowledge gained in hadron physics.
We thus apply to quarks the well-established



