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The one-loop contributions to p, decay are calculated in Weinberg's model of the weak and
electromagnetic interactions of leptons. The higher-order weak contributions are shown to
be finite in this model, despite the high order of divergence of individual Feynman graphs.
Thus this calculation is practical evidence in favor of the renormalizability of spontaneously
broken gauge theories. The electromagnetic corrections to p, decay are finite after renormal-
ization in the Weinberg model. The renormalized higher-order weak corrections do not affect
the shape of the final electron spectrum. The effect on the p, decay rate is of the same order
of magnitude as the electromagnetic correction, - ~%. Since this is effectively just a small
"renormalization" of the weak coupling constant, it appears to be impossible to detect this
effect experimentally unless other weak processes can be calculated and measured with com-
parable precision. The calculation is done by evaluating Feynman graphs dispersively. This
calculationaI technique may be of interest in further work with spontaneously broken gauge
theories.

I. INTRODUCTION

An important recent development in the theory of
weak interactions is the possibility that a certain
class of intermediate-vector-boson models may
provide a renormalizable theory of weak and elec-
tromagnetic processes. " In such models the vec-
tor bosons acquire their masses through a sponta-
neous breakdown of local gauge invarianee. ' This
idea was first proposed by Weinberg4 in 1967 in the
context of an SU(2) &&U(1) model of leptons. Recent
work has demonstrated the cancellation of leading
divergences for several processes in the Weinberg
model. ' The cancellation of all divergences on the
one-loop level has also been shown in a simplified
(Abelian) version of the model for a number of pro-
cesses. '

In this paper we discuss techniques to calculate
one-loop contributions for models with spontane-
ously broken gauge symmetry. Calculating such
contributions dispersively, we obtain a finite re-
sult despite the fact that the individual Feynman
graphs give highly divergent contributions. We

present an explicit calculation of the one-loop con-
tributions to p. decay in the Weinberg model.

We find that in this model the electromagnetic
corrections to p, decay have no ultraviolet diver-
gence after renormalization. We reserve for a
subsequent paper a detailed discussion of the ra-
diative corrections including infrared effects,
questions of p. -e universality, and a comparison
with previous calculations. "Weak corrections to
p. decay, in which the neutral intermediate vector
boson Z plays a role analogous to that of the photon
in the electromagnetic corrections, are also finite
and contribute new terms. These are of the same
order of magnitude as the hard-photon part of the

electromagnetic corrections and have essentially
the same momentum-transfer dependence as the
Born term. Thus their only effect is a correction
of order n to the decay rate of the muon.

To test the universality of the weak coupling one
would like to be able to calculate the neutron P-de-
cay rate also. Since no attractive spontaneously
broken gauge models yet exist which include
strongly interacting particles, we can only com-
ment briefly on some constraints placed on such
models by the requirement that the P decay rate
be finite.

Our explicit results are thus rather insensitive
to experimental test. Nevertheless the fact that p.

decay is finite in second order in this theory is a
significant further indication of the renormaliza-
bility of spontaneously broken gauge theories. The
ealculational techniques used here may also be
useful for further calculations in such models.

The organization of the paper is as follows: Sec.
II discusses some general properties of spontane-
ously broken gauge models in relation to' our ap-
proach in this calculation. Section III contains in-
troductory remarks about our ealculational tech-
niques. Section IV presents the details of the cal-
culation. This section is divided as follows: A.
lowest-order p. decay; B. canceling divergences;
C. vector-vector cut contribution; D. electro-
magnetic corrections; E. other contributions; F.
summary of results for the Weinberg model. Sec-
tion V contains a brief discussion of neutron P de-
cay, and Sec. VI presents some concluding com-
ments.

II. BACKGROUND

The Weinberg model of leptons belongs to a large
class of field-theoretic models' in which the vector
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mesons have obtained their masses through the
Higgs mechanism'; that is, by spontaneous break-
down of a gauge symmetry of the original Lagran-
gian. In such models one begins with a Lagrangian
where all vector mesons are massless and mini-
mally coupled to exactly conserved fermion cur-
rents and to a set of scalar fields P. Some of the
scalar fields develop nonzero vacuum expectation
values and thereby introduce vector-meson and
fermion masses into the Lagrangian; the other
scalar fields are massless but uncoupled gauge
degrees of freedom. 'The spontaneous symmetry
breaking also establishes relationships between
different couplings in-the resulting theory.

The Weinberg model has a spontaneously broken
SU(2) xU(1) symmetry Tha. t is, it begins with a
triplet plus a singlet. of vector mesons minimally
coupled to left-handed doublet (ve) and a right-
handed singlet (e) of leptons, and to a scalar-field
doublet. Spontaneous symmetry breaking gener-
ates masses for three vector-meson states .and for
the electrons, leaving one linear combination of
neutral vector-meson fields, the photon, massless
and coupled to electric charge. The charged vec-
tor mesons couple to the usual V-A weak cur-

rents and the remaining heavy neutral vector com-
bination, the Z, couples both to electrons and neu-
trinos. In the model adopted for calculation here,
muons and their neutrinos are introduced on an
equal footing with electrons and their neutrinos.
The only change is that the coupling of the scalar
field to the muons is larger by a factor of m „/m„
so that the correct mass ratio will obtain from the
spontaneous symmetry breaking.

By choosing different sets of field variables one
can cast the resulting Lagrangian in one of two
forms. One choice, discussed in detail by Lee'
for an Abelian model, and Lee and Zinn-Justin'
for an SU(2) model, yields a Lagrangian which is
renormalizable by the usual power-counting crite-
rion, but in which unitarity is by no means obvious,
since the Lagrangian contains wrang-metric fieMs.
Another choice of field variables yields a ".mani-
festly" unitary S matrix. However, with -this

choice one has a theory which is highly divergent
and apparently unrenormalizable. . This lack -of

convergence results from the form of the vector
propagator, which behaves as a canstant for large
momentum. .Feynman rules" .in this formalism
are given in Fig. .1 for %e.inberg':s model.
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Following Lee and Zinn-Justin' we call the form-
er choice of field variables the "R" (renormaliz-
able) formalism, and the latter the "U" (unitary)
formabsm. Formal arguments have been given'
to show that the two are equivalent and that, there-
fore, aO S-matrix elements are both finite and
unitary.

In the 8 formalism, the Green's functions are
not unitary at off-mass-shell points. It is a non-
trivial matter to demonstrate the cancellation of
the wrong-metric contributions for any S-matrix

. element. In the U formalism this difficulty is re-
placed by the divergence of off-shell Green's func-
tions (even after all renormalization subtractions
are performed), and therefore of the amplitude
corresponding to individual Feynman graphs. Fi-
niteness of S-matrix elements cannot be shown by
naive power counting, since it requires cancella-
tion of divergences from different graphs. If such
a theory yields finite results for all S-matrix ele-
ments it may be called cryptorenormalizable, "
since its renormalizability is certainly not evident
without considerable calculation.

In this payer, we have chosen to calculate in the
U formalism. The normal procedure would be to
regularize each of the Feynman diagrams in order
to avoid ambiguities while performing the renor-
malization subtractions and demonstrating the can-
cellation between various graphs of the remaining
divergences. While a regularization procedure has
been developed by Lee and Zinn-Justin' for the 8
formalism, regulating the U formalism is more
difficult. "

We have avoided the difficulties of regularization
by calculating dispersively. Absorptive parts from
one-loop graphs are of course finite and unambig-
uous. We show that when absorptive parts from
sets of graphs are added together, the most rapid-
ly growing contributions cancel. After the renor-
malization subtractions, the dispersive integrals
converge.

As in a conventional renormalization program, "
the subtractions are limited to those corresponding
to Lagrangian counterterms generated by rescaling
the fields and parameters of the original Lagran-
gian. ' The way in which the necessary subtrac-
tions are incorporated in our calculation is dis-
cussed in further detail in Sec. IIIA for the vector
propagator and Sec. IV E for the vector-lepton ver-
tices. There is a slight complication in the renor-
malization because of the instability of the W bo-
son; this is discussed in Sec. IVE.

The coupling constants which appear in our dis-
persive calculation are the physical (renormalized)
coupling constants. Actually, since we are calcu-
lating only to order g4, the only coupling constants
which need to be discussed in connection with p. de-

cay are those at the ev, W and p. v„W vertices.
unrenormalized coupling constants at these verti-
ces are identical. However, since the spontaneous
symmetry breaking is arranged to give rn„W m„
the corresponding renormalized coupling constants
g =g,„~ and g„=g„„+will differ in perturbation the-
ory. (We define these coupling constants to be the
values of their respective vertices with all three
particles on-mass-shell —a situation which would
occur, for example, in W decay. )

It is obviously important to determine how much
g„/g differs from unity. Individual Feynman
graphs give quadratically divergent terms indepen-
dent of masses, and logarithmically divergent
terms some of which are proportional to m, '/M~'.
We have verified, however, that when all wave-
function and vertex renormalizations are included,
including those involving the scalar meson Q, the
dive~gent terms in the ev, W and p, v„W renormal-
izations are equal, so that the ratio g„/g is finite.
We have furthermore found that the finite contribu-
tions to g„/g from weak effects (graphs containing
the massive vector mesons W, Z, or the massive
scalar meson Q) are very small (of order m&'/M~'
or smaller). However, the graphs containing pho-
tons introduce finite deviations from p. -e univer-
sality, contributing to g„/g terms of order
o. In(m„/m, ). These graphs also contain infrared
divergences, which as usual must be treated to-

Ve

FIG. 2. (a) Vector self-energy contribution, showing
notation for momenta and indices. {b) Weak-interaction
vertex.
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gether with the infrared divergences from the
graphs for soft-photon emission. This subject is
discussed briefly in Sec. IV D. The infrared prob-
lem and the renormalization program will be dis-
cussed in more detail in a future publication.

There is an inherent ambiguity which is always
present in a dispersive calculation: The result of
evaluating the dispersive integral could differ from
the equivalent Feynman-integral calculation by a
real polynomial. The only way to be certain that
this does not occur in our calculation is to com-
pare it with a conventional regularized-Feynman-
integral calculation, which we have not done. We
note, however, that after the addition of the ab-
sorptive parts from sets of graphs, the dispersive
integrals in the Weinberg theory behave no differ-

ently from those in quantum electrodynamics. If
all of the usual renormalization subtractions are
performed, it is well known that dispersive calcu-
lations in quantum electrodynamics give the same
results as Feynman integral calculations. "

III. PRELIMINARIES

A. Self-Energy Graph

In order to explain our calculational procedure,
we mill consider in some detail the Feynman graph
drawn in Fig. 2(a}, the second-order contribution
to p. v,- v„e (or p decay) from the exchange of a
charged (W') boson with a neutral (Z) boson self-
energy bubble. The absorptive part of the W' vac-
uum-polarization tensor is

-Dfscii (q) =g~R Jfd7' V„(q, -k„-k )V „.(q, -k„-k )i(kaka /M '-gaa )i(k&k& /M —g&& ),

x (2xi)5, (k,' —M~')(2zi) 5, (k,' —Mz')i'

1k' dn,
4q, (2&)'

' (2)

The second expression follows in the center-of-
mass frame, where

q=(q., o),

q'+ Mw'- Mz

where V az is the Yang-Mills 3-vertex (see Fig. 1}
and dv is the usual 2-particle phase space

d'k, d'k,
dv =

(
)'4 (2

)'4(2&)'5'(k, +k, —q)

gian (mass renormalization) and the second sub-
traction corresponds to rescaling the W„kinetic-
energy term (wave-function renormalization). '4

The real coefficients c, and c, are chosen so that
in the expression

II„a(q) =g aB(q')+q' qaC(q')

ReB(M~') =ReB'(Mz, ') =0." (M~ is of course the
physical W mass. )

Correspondingly, we subtract the dispersion re-
lation for B(q') twice, that for C(q') thereby re-
ceives a subtraction, and the polarization tensor is

1 dt' b(t')
t-t(t-M )z

Mw'+ Mz' (3)
1 & dt', 1 t dt'b(t')"-'a 2. J t -t'"" 2. J(t -M )

-z q' Mw'+ Mz' (M w' —Mz')'
k +

For our present purposes we do not need to give
the explicit expression for DiscII 6, but merely
note that it has the form

(-i) DiscII„a(q) =g„ab(q') + q„qac(q') . (4)

II„a will be transverse [i.e., b(q') = —q'c(q')j in the
special case where both particles in the self-ener-
gy loop have the same mass.

In calculating II„B in the usual Feynman way-
i.e., nondispersively —one would subtract it twice:

Il„a(q}=II a(q) —cog a
—c,(q' g„a —q„qa}. (5)

The first subtraction corresponds to rescaling the
spontaneously induced %'„8'" term in the Lagran-

with t=—q'. Let us now use this expression to cal-
culate the amplitude corresponding to the p, v,- v„e
graph of Fig. 3(a). Suppressing inessential factors,
the result is

(.) &zn a 1
2&g t'-t (t' —M„, )

+J(e)g(p)f
M~

1 " dt', , t' —2M '
x —J, c(t') +b(t'), ,'}, , (8)

where J~„' —= Iy P &„8' —= II' &„P~—= z(1+y5)&
L=e or p, .

This same result is obtained if, instead of calcu-
lating the subtracted 8" polarization tensor in Fig.
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FIG. 3. Feynman graphs which have a W-Z cut.

mm r+J, J "~ ' " c(t)+b(t) '. (9)

2(a) dispersively and inserting it into the graph
[Fig. 3(a)], we instead disperse the entire graph
without subtraction. " The absorptive part of this
graph, again suppressing inessential factors, is

DiscA = J~' J,"' D""(q)[g~()b(&)+q~q8c(&)]D "(q)

J(e)J(P)t g (&)

(f-M ')'

To obtain the second expression we have used mo-
mentum conservation (q=P, —P, =P„-P„)and the
Dirac equation. It is evident that we will recover
Eq. (8) if we insert Eq. (9) into an unsubtracted
dispersion relation. "

This fact will considerably simplify our calcula-
tions below, by enabling us to combine the contri-
bution to the absorptive part from Fig. 2(a) with
that from other graphs (see, e.g. , Fig. 3). We will
thus be able to exhibit cancellations of terms in the
absorptive part which, if they did not cancel,
would lead to divergences in the scattering ampli-
tude. We have, in fact, been dealing with diver-
gent dispersion relations for the graph in Fig. 2,
since explicit calculation shows that b(t)-t' and
c(t) - f' Thu. s II 8 actually requires four subtrac-
tions to render it finite, although there is physical
justification only for two; similarly, the amplitude
A appearing in Eq. (8) requires two subtractions.
Thus in this theory, as in a nonrenormalizable
theory, the Green's functions are not made finite
by the subtractions which correspond to multipli-
cative renormalization. However, as we have al-
ready mentioned and will demonstrate below, when
we add together sets of graphs corresponding to a
given S-matrix element, the'nonrenormalizable di-
vergences cancel. This is the characteristic be-
havior of a cryptorenormalizable theory. Until we

actually demonstrate this cancellation, we can
provisionally regard the dispersive integrals as
being defined by means of an upper cutoff.

B. Vertex Graphs

In the previous section we showed that the subtractions corresponding to the 8'mass and kinetic-energy
Lagrangian counterterms are correctly performed, if we calculate a self-energy graph of the form of Fig.
3(a) by dispersing the entire graph. There is no counterterm corresponding to lepton-lepton scattering,
so the box graphs, Figs. 3(f)-3(i) receive no subtraction. In this section we will discuss the treatment of
vertex-type graphs.

Consider a graph of the form of Fig. 2(b). This vertex part has the general form
n

DiscA, (q) = ~"Jf,(q')+J~")f,(q')+ g J~"f;(q'),
1=3

(1O)

where J~') =—(ey~P v, ), J~') = J(')q'q~ = -m, J(')q~, and J~(') are other possible vector expressions. There is
a counterterm in the Lagrangian corresponding to Jz'), so f, is to be subtracted once, but the other terms
in A~ are not to be subtracted. Thus

n dt'

E=2

where, as usual, we define t—= q2 for convenience. The amplitude corresponding to a graph of the form of
Fig. 3(b) is thus

A„=A, (q)D,.(q) J.(~"

«' fi(f') J(.) ~ f;(f') J(~) q'q ),. J(„)t
2gj i=2

If we-were to disperse the whole graph, we would instead obtain

(12)
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3b 2gj ]& g g& M 2 P ~ gt M 2 P M 2 g 0
i=2

Note that here Jp' q = t' J~ q" = -m e t J Since
I

t'

(13)

the f, and f, terms in A» and A,', are equal. This equality does not necessarily hold for other vertex func-
tions f;; for example, it would be invalid for J~' =Z('(P, + P,)~. Although such additional vertex functions
are actually present, it is not difficult to show that in our calculation the terms containing them are not
divergent, and are furthermore suppressed by factors of lepton masses divided by intermediate vector-
boson masses. We neglect such small terms (m„'/M~'& 10 '). Thus by "dispersing" each full graph we
will have correctly treated both the self-energy insertion and all significant contributions from the vertex
insertions.

IV. CALCULATIONS

A. Lowest-Order p Decay

The Born amplitude for p, decay in the Weinberg model is
g(p)t g(e)g n'n 8

(q)
2

= 8M"2(vl, r (1 —r, )P)(er"(I —r, )v. ) 1+, . —
8M

"2(vv(I —rn)P)(e(1 —r, )v. ) (15)

In the V- A. current-current theory of weak inter-
actions,

(v„(1—r, )t )(e(I r.)v. )—Born 2 9 n (16)

The relation between the coupling constant g in
Weinberg's model and the weak coupling constant
Q is

CM Alp
2

v 2 1 —R 1.02 x10 ' ' (18)

For 8=0, M~=37.3 GeV, Lee's value"; for any
other value of 8, M~ is larger than this, andMz
«M~. (Actually, as we shall see below, both R =0
and R =1 are singular limits of the Weinberg theo-
ry. )" Since m„' «q' «m, ' in p, decay, q'/Mn, '
&10 '. Thus the difference between the p, -decay
Born amplitude in the current-current theory and
the Born amplitude in an intermediate-vector-me-
son theory such as Weinberg's is microscopic.

The higher-order weak contributions to the p, -de-
cay amplitude (or any other amplitude) in the cur-

8M' 8M' (17)

to lowest order in g' (cf. Sec. II). Also to this or-
der~

a' = e'/(1-R),
where

R =May /Mi

Thus

rent-current theory of weak interactions are diver-
gent. The amplitude can be schematically repre-
sented as

A „d,„=—A...„(1+ GA'+ O'A'+ ~ ~ ~ ),
where A2 is an ultraviolet cutoff. Simple argu-
ments lead one to expect that the intermediate vec-
tor-boson masses in the Weinberg model will ef-
fectively take the place of the cutoff A2, and render
the amplitude finite as long as M~', Mz'&~. We
shall see below that this is exactly what happens.
Thus the expansion parameter is of the same order
as n, the fine-structure constant, for reasonable
values of M~', Mz', and the higher-order weak con-
tributions are of the same order of magnitude as
the electromagnetic corrections.

B. Sets of One-Loop Graphs with Canceling Divergences

All the graphs which contribute to the 8-matrix
element for pv, - v„e (or p, decay) in second order
in g2 in the Weinberg model are displayed in Fig.
4. Here row (a) represents the graphs drawn ex-
plicitly in Fig. 3, (b) represents the electromag-
netic corrections, and (c) and (d) are additional
weak corrections. We calculate these graphs by
dispersing in the t channel (gv„- v, e), as we have
already illustrated for the self-energy graph Fig.
3(a). We begin by discussing the canceling of non-
renormalizable diver gences. "

Let us, for a moment, imagine that the muon and
electron have the same mass (but nevertheless re-
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FIG. 4. Cut contributions to p decay: (a) W-Z cut, (b) 8'-photon cut, (c) 9'-scalar cut, (d) lepton cuts.

main distinguishable particles). Let us further-
Illol'e collsidel' fol'wal'd scattering (p~ =p~~ p~
=P, ). Then the contributions to the total absorp-
tive part from rows (a), (b), and (c) in Fig. 4 are
each of the form

DiscA. =i dT„A.~ n p„p, A n p„p,

that is, each is a perfect square. This is not the
ease for the first two graphs of row (d). However,
each of the graphs of row (d) is finite after renor-
malization. " Consequently, the divergences in the
remaining graphs must cancel among themselves.
Furthermore, because rows (a), (b), and (e) are
each positive definite, the divergences must cancel
in each row separately.

Returning to the actual kinematics, with unequal
masses and nonforward scattering, the leading
(quadratic) divergences are independent of masses
and external momenta, and cancel as before. The
nonleading (logarithmic) divergences depend in a
simple way on the lepton masses and are indepen-
dent of external momenta, as will be apparent
when we calculate them explicitly below. The pat-

tern of cancellation of logarithmic divergences is
therefore the same as in our idealized example.
Thus we can consider each row of Fig. 4 separate-
ly.

C. Graphs with V-Z Intermediate States

In this section we will discuss in some detail
the graphs of Fig. 3, which correspond to Fig. 4(a).
As before, we denote the W(Z) momentum by b,
(b, ) and Lorentz index by P (y). Defining Q =b, —&„
we note the following kinematic identities:

2a, q =q'+M~'-Mz', 2u, .q =q —,M~'+ Mz',

2k' k2=q —Mw —Mz2,

The phase-space integral is simplest in the c.m.
system where q=(q~ 0); see Eq. (2). The ampli-
tudes f, a, and b defined in Fig. 4(a) are

3

.2}uz
" pa(e) "(a —I, -&z),

gg +g (20)

-zg(g +g )' ' ey„[(1—2R)P +2(1-R)P,](P,, —g, +m )ysP v

2v2 (P, -kz)2 —m, z
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-fa'«'+&")"' e ~yl(1-2Rd])(&. + I~'.) +2(1 -R)(m.b 8&-P.
2W2 (p, +k2)2 —m 2 (21)

-ig(g'+g")"' ey8(P, + g&)yYP V,

2)) 2 (p, +)k2))2
(22)

and. similarly for the p. graphs. The discontinuity eosrresyonding to the entire amplitude represented by
Fig. 4(a) is thus

. u'u', . I&I&'
d& (&(P)+, f)(P) +f(P:));(s((2(e) + f)(e) + f(d)) f

'
'&. ) g 88'

&
2 2 g

YY'
(c} )8.::Ig.l .

W" Z
(23)

where the phase-space int'egral dY. fs defined in E(i, (2)sa This is the discontinuity across the t cut at fixed
s for graphs 3(f) and 3(g), . and at fi'xed u for graphs 3'(h) and 3(i). This sum is paar(ticulariy convenient
since in each case the dispersive; integral is over the same interval, i.e., t from ()M)P+Mz) to

Let us begin by considering

( k f)( k k 8:('8: 8 ):J(
Q

q R /
8Y',"1 2; 2~2

P::';. q2: M2 (p yk)2 m2

The first twe terms. ' in. the first parenthesis, multiplied by the similar terms in (a + b +f)(8)Y, k, k2Y, would
each produce quark(5M, :caLXy divergent. terms, s i'n the dispersive integral. The- cancellaticm: of the leading q~

dependen(a. bst]()]](s8n]8 fuse terms -whiieh. fis. a cancellation between the: Ya)ng-Mi Jl(s-couplin(] gfgra, ph and the
(2 and 5 g~;-nem(]2(2e(s this divergence. The only divergent term rem22iid]mg after this, cs)nceliation comes
from the pne@(m4;of the first term: fn fihes second parenthesis with the: similarn term from (a, +5+f)(8P) ~ k8 k2 .
This term, 1'8P p2(epee'(]ional to the: s2naJL quantity mPm, /Mv2 ~ 10 ', bnt:: we: keep) g because it is. divergent.
Thus:,.

(g+b(+,f')(88Ykfk"~('a+tt)+f)8P.
Y k, k~~

' -J'(".)'J(")t R2+ J(')J(P)t ' " (R —1)~+finite and small terms(of orde,r m m /M 4)
@d(( ( qP q ()

m m
, (q'-~, )P g4 p W

I

Com~tkmg Similarly, we find the following additional contributions:

(a+$+f)(d I8Y((2+Q+f)P .kY g88 = P' J "Y) - R2+ J(' J "t '. "(R2-2R)+finite and smail8Y( O'Y 2 3 R s) (q2 I 2)2

(e+f)+f)",,k,'(a+f) +f)((JYk8 g YY'

Zsa]state s
— [QSQ'()-22)-4Ms (R -)) dS']-d 'VSS

.
' S () —M)+Sin)tn and Small) .

In the remaining term the only divergent (i.e., constant as q'- ~) contribution comes from the self-ener-
gy diagram Fig. 3(a):

(++ Q+f)(2) (++I)+f)(P) +88 g Yy'~ +& J(d) J(P)t d
8y divergent (28)

When-this is added to the similar terms obtained above, they all cancel exactly. This proves our assertion
.that there is no divergence when all the graphs of Fig. 3, or e(luivalentiy of Fig. 4(a), are added together.
The finite contributions from the final term (the g g "Y term) of E(I. (23) are as follows. The graph of
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Fig. 3(a) gives

J(e&J(&&1' [4+Vv(qz M 2) +gllv(M 2+ M 2) + 5 QP@v].g R
P v (@2 M z)2 Iv O' Z 2 y

the vertex graphs, Figs. 3(b)-3(c), give

g""(M '+I *) +-'0"Q" —+—-(1-M) —+ — —4Rg""I1 1 1 1 1
2 " ' ' M ' ' d' d" d' d"

W 1 1 2 2

and the box graphs, Figs. 3(f)-3(i), give"

g' g 1 A'~&~i" @&z, „1I. 1
+(1 -2R) —z g""(1—2R) —+ —+ —+—

2 " R d' d" d' d" ' d; d", d; d,"

where we define

Having verified that the divergences cancel we drop all terms proportional to lepton masses, Performing
the phase-space integration yields

-i DiscA&, &= J ' J ~—
y&,&(t),g (g& (p)ta I k I

'4 Q'2 477

I I

y( &(t) =
2 z Mvz 4R+3 ~gk (BR+I) +,, z "Mva(l+R)L — R(2l —Mv MzzL) +q(g(t) {I')

W

q(,&(t ) = —(2R —1)I + —(2R' —2R +1)(2 —I L)
4 1
R t

where

1 l+n
n i,l —.n

I=-', (M, '+M, '- f),

n= vf ~kI=-;[i'-2f(M '+M ')+(M ' M')']"'. -

The amplitude corresponding to the grayhs of
Fig. 3 [or Fig. 4(a~)] is then given by an u&a@ubtract-
ed dispersion relation:

aO dt'
a,.&(t }= DiscA&,

&
(f ').

PZ g(N~+ Afg)Q

Because of the large value of the t threshold coru-
pared to lepton masses, the t dependence of A~,~

&s negligibl. Since A~,&
is proportional to the Born

amplitude, Eg. (15), these weak corrections ef-
fectively just change the relationship between g'
and the weak-interaction coupling constant G mea-
sured in p decay from Eq. (17) to

(31)

The contribution of A@& 'to $(R) which we denote
by:$&,&'(~R), can be evalua4edI by straightforward
quadrature after the suhglitution n =WRMzz sinh9.
'The -r'exulting expressions ~xg rather cc mp1icated. ,
except;:for the contribution ilrom Figs. 3(f)-3(i),
the 'box, and. crossed-box gr@pbg, obtained by keep-
ing only the.g„, parts of the:W,:@md Z propagaiors.
(The e&nk&y, contributions frem .tahe:::k„'k, terms in
the vector yropagators in these „gg'@yhs, after the
cancellation::described above, ,sa&e-terms -m„z/M», ',
which we drep. ) We denote this contribution by

q&,&(t ) in Eq. '.,(80),. Quadrature gives

g (,~) (P)gf&, 2R +'6'-.;3
(g 64 2~ 2 a 1-g

(evaluating at f =:0, :consistent with neglect of lep-
ton masses). The same answer is alM&:obtained

by evaluating these graphs by momentum integra-
tion in the usual way, -thus checking this part of
our dispersive calculation.

We have evaluated the,entire contribution (~,&(R)
for several values of R; See Table I. As we 'have

advertised, g'$&, &n for most values of R = Mzz/
M~'. Note that the limits 8- 0 and R- ~ are singu-
lar .

D. Electromagnetic Corrections

The second row of Fig. 4 represents electro-
magnetic corrections to p, decay. By calculations
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TABLE I. Contributions of the W-Z cut and lepton-
cut graphs [Fig. 4(a) and 4(d)] for various::values of R.
The W+ cut contribution [Fig. 4(c)] is given-explicitly
in Eq. (38). The W-y cut contributions [Fig, 4(b)] are
discussed briefly in Sec. IV D and will be.given explicitly
in paper II.

10-4 37.3
0.1 39.3
0.3 44.6
0.5 52.7
0.7 68.1
0.9 118
0.95 167

3.73x 103
124
81.5
74.7
81.5

124
171

0'.091
0.102
0.131
0.'183';:

0.306.'

0.917;
1.'.83-

1.,9:.

. .5,0:.

-- 0:-.48'

1..5;

3.6
-13'.
-80

analogous to those. already. :discussed we have veri-
fied that there are no. nonzenormalizable diver-
gences in the sum; of these graphs. This result de-
pends only on the. electromagnetic properties of
the charged vector boson. In a Yang-Mills model
of the sort consider. ed bere, these properties are
gyromagnetic ratio g =:2 and quadrupole moment
Q= -e/Mp .

The graphs of Fig, 4(b) give an infrared diver-
gence for the differential decay rate as a function
of electron energy. As in the classic V —A cur-
rent-current theory calculations, ' the cross terms
between these graphs and the Born amplitude must
be combined with the contribution to the differen-
tial decay rate from soft-photon emission and
folded with experimental apertures to give a finite
prediction for any measurement.

I et us review briefly the results of the V —A
calculations. ' The soft-photon effects cause a
large change of about I% in the final electron spec-
trum, as measured by the Michel effective-shape
parameter p. The electromagnetic correction to
the decay rate is not enhanced by soft-photon ef-
fects, however, and is about —,'%. In determining
the weak-coupling constant from p, decay this cor-
rection is traditionally included:

The weak corrections calculated in the preceding
sections are of the same order as this electro-
magnetic correction.

It has been found in previous calculations in in-
termediate vector -boson theories that the electro-
magnetic corrections to p. decay are the same as
in the V —A current-current theory, up to negligi-
ble terms (of order m„'/M~'). ' In the dispersive
formalism employed in this paper, the evaluation
of the electromagnetic corrections contains a num-

M M '; '((g'),g'1'-0~'

R (GeV) (GeV) g2 =47te/(1 —R)'- W-g.-,cut; Lepton. cuts

ber of novel features. Since this problem is not
strongly connected with other considerations of
this paper, we reserve a complete treatment for a
following paper and here comment only on some
of the main points. As we have noted in Sec. II,
the on -mass -shell subtraction procedure implicit
in the dispersive calculation introduces both in-
frared divergences and dependence on the lepton
masses into the renormalized ev, R' and p.v„W cou-
plings. (The presence of such infrared divergences
is not entirely unreasonable since the W- ev, de-
cay rate, for example, will not be infrared con-
vergent without inclusion of soft-photon emission. )
Physical quantities are free of infrared diver-
gences only when all of these terms are included.
%e have also noted above the presence of a term
of order n 1n(m„/m, ) in the ratio of the renormal-
ized ev, W and p, v&W couplings. Terms of, the. same
order are also found in the subtracted. second-or--
der amplitude corresponding to the graphs of
Fig. 4(b). A complete examination. of all. such
terms will be given in paper II.

E. Other Contributions,

The divergent contributions. from the graphs of
Fig. 4(c) cancel. The only' significant finite contri-
bution from these graphs, is from the W' self-energy
insertion. It is weakly- dependent on the mass M&,
of the scalar meson, . The contribution is given by

where

lk ~

= ~f- l t ' —2t (Mw'+ M~') +(Mw' —M~')']"'

and g is defined as in Eq. (2S). Performing the
dispex si'.on integral yields

g'$(, ) =, ln —I+O(Mg/Mq, ) (33)

for the effect of these graphs on the decay rate as
expressed in Eq. (31). [We have assumed M& ~M~;
the case M@&M~ can also be evaluated using Eq.
(32) and is not essentially different. ]

The graphs of Fig. 4(d) are each finite after re-
normalization, and they can be calculated by the
methods used above. As usual, the amplitude is
obtained from an unsubtracted dispersion relation.
However, there is a new complication in consider-
ing these graphs that we have not encountered
before: The instability of the K The dispersive
integral starts at t=m„~,&' which of course lies
far below M~2. The usual procedure for renormal-
izing vertex parts, discussed in Sec. III B, leads
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us to make a subtraction at q2 =M+' so that, for
example, the ver' vertex

I'„"(q, p, f ') = gr„& +g'~(;)(q, P, P'){e)

goes to its lowest-order value on the mass shell:

~, (P ')I I'(„'],, „u,„,(P) = ~g Z"
1

where g is the physical (renormal'ized) coupling
constant. Here we cannot, sub, sly this cpndition,
because the contribution to A~„' from %e first two
graphs of Fig. 4(d) has a nonvanishtng. imaginary
part at q2 =Mw2. SubtraCtiOns Cerregyend tO

Hermitian counterterms in the X agT@mgian and
hence must be real. Actually, all we should de-
mand physically is that the real part of A'„': should
vanish on mass shell. For the vertex-type graphs
which we consider here, the subtraction wig. be
done correctly if we take the principal part of the
dispersive integral.

Defining )( as in E(I. (29), we find that graph (d~)
gives

2 Ms'+Mw'
~ {if') q2 ~ 2 2 I 2

term, ao we ignore it 'here. The .ibsen'tive part
of the first text 18 then calculated to the

g2 lk) 1i-Disc B(q') = —
4 ~ (q—' - )n,' -~.'k!) ..

2 4V 7f

One can verify that se8ing m, =-0 results m en;-er--
ror of only -m, '/Mvm in calculating A(, ) . Issuing
this llsual approximatj. one we hRv8

i-Disc B(t) = t
24m

and we immediately recognize that the corresp~
ing (unrenormalized) B(t) is

48)) A

The renormalized B(t) is then given by

B(t) =B(t) -HeB(Mv') -(t - M~') HeB(—t)
g= kfgr 2

2 t
f ln —,-(t —M)), ')

Substituting this into Eq. (35) gives

g(e) g(g)1'+n8
{c3) 96 ~2 a-

where we have defined

s 2q2 8

(34) tx
( g)

t ln —
2 -(t —M„)

~(e) +{p)t+( 8 jl

96m (36)

2

2=M +-q
2

(qm ~ 2)2 qm

2q 2

1 l'+ n'L' = —lnn' l'-n'

Note that here k'=(q' - m, ')'/4q'. The second
graph (d, ) gives rise to identical expressions, but
with m, -m„.

We now turn our attention to the second pair of
graphs in Fig. 4 row (d). The amplitude corre-
sponding to (d,) is

& +2g(e) g(P)(D&'eP(q) D))'BP(q)fi(8)(q) (35)

Let us write the (ev)-loop contribution to the W

vacuum-polarization tensor in the form II~(,', (q)
= B(q') q„„+C(qm)q&q, . It is evident that the second
(longitudinal) term makes a contribution to A«, )
smaller by a, factor m, m„/M)),

' than that of the first

(For )!, decay, m, '~ M„'.) Graph (d,) gives the
same result.

Neglecting terms -m, '/Mv', the graphs of Fig.
4(d) give the same dependence on the energy of
the final electron in p. decay as the Fermi-theory
Born term, Thus these graphs, like the graphs in
Fig. 4(a) affect only the normalization of the weak
coupling constant. The contributions of all of
these graphs are summarized in Table I.

F. Results for Weinberg Model

The most significant feature of this calculation
is that the result is finite. Electromagnetic cor-
rections are finite and will be discussed in paper
II. There are g.dditional corrections to the decay
rate of the same order as the hard-photon electro-
magnetic contribution. Table I summarizes the
calculation by presenting the results of a computer
evaluation of the dispersion integral. One readily
sees that these contributions are insignificant; that
is, they represent only a fraction of a percent
change in the decay rate except for 8 =0 and
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ft!& 0.9. (The contributions diverge logarithmically
for R -0, and quadraticaQy as R - 1 for fixed 6
and a.) In the numerical calculation we set

that is, we use the lowest-order contribution to
define the relationship between %'einberg's param-
eters g and M~. Since g' = e'/(I 8),-this leaves
only one free parameter, which we choose to be
R. Table I displays the values of the various
quantities for a range of values of A. Since g'$(R)
is at most a few percent the above approximation
is valid for any reasonable value of R. Values of
R& 0.65 have been shown by Chen and Lee'4 to be
xnconsistent with present experimental data for
v, +e- v, +e. Values of R very close to one are
obviously excluded in the sense of this calculation,
since for such values the coupling g becomes
large and perturbation expansion is no longer pos-
sible.

~. P DECAY

It would be interesting to perform a similar cal-
culation for neutron P decay in order to discuss
the universality of the weak coupling. Unfortunate-
ly, no satisfactory spontaneously broken gauge
model exists for strongly interacting particles.
Furthermore, the effects of the strong interactions
would make it very difficult to calculate P decay
with sufficient precision. In this section we never-
theless make some general observations about this
process.

It is clear that the most naive possible extension
of Weinberg's lepton model, in which one neglects
all strong-interaction effects and the existence of
strange particles, would yield the same results
for neutron P decay as for p decay. Only the kine-
matics would change, and the neglected terms
would be of order m„'/M~2 where m„=nucleon
mass. (This is still a small quantity. ) We re-
mark that the equality between electromagneti. c
corrections to p. decay, and those in a bare-nu-
cleon calculation, is a property of any intermediate-
vector-boson theory, but not of the V —A. current-
current theory. In that theory the (p,v„) (ev, ) vertex
may be written in charge-retention form by a
Fierz transformation, and thus the electromagnetic
corrections to it are finite; but the electromagnet-
ic corrections to P decay are infinite.

One ean abstract the essential features of the
bare-nucleon calculation in the form of current-
algebraic requirements which must be satisfied by
any strongly interacting model in order to obtain a
finite result for P decay. Similar arguments for
other processes would give further requirements.

Let us imagine a model in which the Lagrangian
contains the usual vector and scalar particles of
the gauge model which will always be treated per-
turbatively, and also some further strongly inter-
acting particles such as a vector gluon" the effects
of which we wish to include to all orders in the ex-
pressions for the currents. We recognize that the
freedom to introduce such particles is consider-
ably restricted by the requirement that the origin-
al Lagrangian must respect certain local gauge
symmetries.

Writing J„ for the hadronic current which cou-
ples to the charged vector meson and J„ for that
which couples to the neutral vector meson, we
can express the sum of diagrams (a+5) of I"ig. 4(a)
(reading n-P for V,-v) asn

(a + b) g&
=i, d 'x e -"2 "(n I

1'&J,(0)Z '„(x))I p& .

(nl[ J( )0, Q (0)lip&=&nl[Q (0), a„(0)] Ip&

where

=2I~&nlz„-(0) lp&, (38)

Q (t) = cPxJ 0(t, x),

Q (t) = d'x J0(t, x) .

[Note that these charges are not constants, since
the currents are not conserved. ] Equation (38) is
a necessary but not sufficient condition for the
finiteness of P decay, and is a feature that one
would wish to require of any weak-interaction mod-
el including hadrons. One can formulate further
constraints in the form of limits on the allowable

growth as Q' « of,

ft'=
~

d'« '""(~I7'*(s"&,(x)J',(0)) Ip&

Z,'= d'xs-'"2 *&nl T*(eve'„(x)~„-(0))IP&.

These conditions can be derived by making the
substitution (37) in the expressions of Eq. (23)
and following the algebraic steps laid out in Sec.
IVC. They are sufficiently complicated that we
do not feel it is worthwhile to give them here.

(37)

The f term will have the same form as previously,
with the leptonie current J~"~ replaced by the
hadronic (n I Z~ (0) I p&. The cancellation of leading
divergences then occurs if
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VI. COMMENTS

The intimate relationship of weak and electro-
magnetic interactions is a fundamental property of
spontaneously broken gauge models. It has been
demonstrated explicitly that the good high-energy
behavior and renormalizability of such models
generally obtains as a result of an interplay and
cancellation between these interactions. ' However,
in the process pv, - v„e (or p, decay), the diver-
gences in one-loop graphs with t-channel W-Z,
W-Q, and W-y cuts cancel among themselves, as
we have explained in Sec. III. Thus the first-order
electromagnetic corrections to p, decay are ultra-
violet finite all by themselves, after renormaliza-
tion. We note that this finiteness of the electro-
magnetic corrections depends only upon the electro-
magnetic properties of the S; and not upon the de-
tails of our gauge model of weak interactions.

The importance of the gauge model for this cal-
culation becomes evident when one examines the
universality questions discussed in Sec. II. It is
only after all vertex and wave-function renormali-
zations, including graphs involving the photon,
the vector bosons, and the scalar Q, that g„jg
does not contain logarithmically divergent terms
proportional to m, '/Ms, ' or m„'/M~'. The finite

contributions to g„/g from graphs containing the
W, Z, and Q are very small (of order m~'/M~s or
smaller). The graphs containing photons contrib-
ute terms of order min m„/m, tog„jg, as we
stated in Sec. IVD. A detailed discussion of these
terms is reserved for paper II.

The main result of our explicit calculation of p,

decay in the Weinberg model of leptons is the
demonstration that it is finite and that the weak
corrections to the rate in this model are the same
size as the electromagnetic corrections. It is
perhaps unfortunate that the weak corrections
have the same dependence on the final electron's
energy as the Born term, except for negligible
corrections of order m„'/MII, '. As a result, the
effect of these weak corrections is just effectively
to "renormalize" the weak interaction coupling
constant by -s/o. It thus appears impossible to
detect this effect experimentally until other weak
processes can be calculated and measured with
comparable precision.
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We introduce dynamical considerations onto the light cone in the form of the static bootstrap.
We obtain (1) the prediction that the asymmetry in the deep-inelastic electron scattering on
polarized deuteron targets is small, and (2) a relation between F2 + F2", F2, and F&&". The
"physical origin" of these results is discussed. The result (2) also follows as a "chiral-limit
theorem. "

I. INTRODUCTION

Just as our understanding of electromagnetic and
weak interaction allows the measurement of the
matrix elements of the local currents, ' the as-
sumption of light-cone dominance' enables the ma-
trix elements of an infinite collection of local op-

erators to be measured in deep-inelastic scatter-
ing experiments. These are the local operators
contained in the so-called bilocal operators defined
on the light cone. Unhappily, what one can say
about these operators has so far been limited.
Their Lorentz tensor property is presumed known. '
They are also believed to transform like SU(3) sin-


