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and by our assumptions, there must be an Q, , such
that B„5A,.=A, ,A, . Then ~B,, 5A&P = M&B, .P,~A, be. -
comes, with (6), ~B,~5k, ~' = 5A~[B,A],. „A, Since the

matrices form a Lie algebra, , [3,A] is also in 6,
and the right-hand side vanishes by (4). This estab-
lishes (7) and completes the proof.
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The various coupling-constant-dependent numbers describing anomalous commutators are
constrained by the nonrenormalization of the axial-vector-current anomaly. The axial-vector
current continues to behave anomalously even if the underlying unrenormalized field theory
is finite due to the vanishing of the Gell-Mann —Low eigenvalue function.

I. INTRODUCTION

It has now been established that the canonical
formalism of quantum field theory frequently
yields results that are not verified in perturbation
theory. ' These "anomalies" are of two distinct
kinds. Firstly there are failures of the Bjorken-
Johnson-Low (BJL}'limit: Equal-time commuta-
tors between operators, when evaluated by the BJL
technique in perturbation theory, usually do not
agree with the canonical determination of these
commutatoxs. A well-known consequence is the
failure of the ballan-Gross sum rule for electro-
production. ' Secondly there are violations of Ward
identities associated with exact or partial symme-

tries; the two known examples being the triangle
anomaly of the axial-vector current and. the trace
anomaly of the new improved energy-momentum
tensor. ' (When a Ward identity is anomalous,
there is also a corresponding BJL anomaly. } The
Sutherland-Veltman low-energy theorem for neu-
tral pion decay is falsified as a consequence. '
Both categories of anomalies arise from the diver-
gences of unrenormalized perturbation theory,
which require the introduction of regulators to de-
fine the theory. The BJL anomaly reflects the
noncommutativity of the BJL high-energy limit
with the infinite regulator limit which must be tak-
en to define renormalized, physical amplitudes.
Failures of Ward identities arise when no regulator
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exists which preserves the relevant symmetry.
Although the common cause for both classes of

anomalies is evident, it has not been appreciated
that an intimate relationship exists between the
BSL anomalies and the failures of Ward identities.
In this paper we demonstrate that the very inter-
esting analysis by Crewther' of the triangle anom-
aly in terms of Wilson's short-distance expansion'
can be extended to exhibit this relationship. Fur-
ther we show that in lowest nontrivial order of
perturbation theory the q-number anomaly in the
equal-time commutator of space-components of
currents can be completely determined in terms of
the c-number anomaly in the equal-time commuta-
tor between the time component and space compo-
nent of the current, i.e., the ordinary Schwinger
term. Finally we inquire to what extent the canon-
ical formalism can be reestablished if the unre-
normalized theory becomes finite due to the van-

ishing of the Gell-Mann-Low' eigenvalue function.
Our conclusion, at least for the axial-vector cur-
rent, is that naive manipulations continue to lead
to error.

II. THE CREWTHER ANALYSIS

Assume that one is dealing with a theory which is
conformally invariant at short distances. Consider
the vector-vector-axial-vector current amplitude

T."'. (x, y, z) = (o I T(V."(x)Vb(y)A."(z)) I o&.

Schreier' has shown that a conformally invariant
three-index pseudotensor of dimension 9 must be
proportional to the fermion triangle graph con-
structed from massless fermions in free field the-
ory. Hence (2.1) is given by'

T,"b',"(x,y, z) = Nn, ,"b',"(x,y, z) + ~ ~ ~,

( )
db Trrr"r rrr r(x y)b(y z)(z —x)~
16~' [(x—y)' —ie]' [(y —z)' —ie]'[(z —x) —ie]

(2.2a)

(2.2b)

Here N is a number and the dots in (2.2a) represent less singular, non-scale-invariant contributions to
T„',"(x, y, z), which vanish in the scale-invariant (=conformally invariant) limit. The precise assumption
about these subdominant terms is that they can be identified and separated from 4„', (x, y, z) in sequential
short-distance limits,

lim lim T,",',"(x,y, z)= lim lim Ntb~b", (x, y, z)+less singular terms,
X' ~ ~Xy X ~ ~X~

where f x;, x» xb) are any of (x, y, z]. Thus we know that

(2.3)

»m»mT.";,"(x,y, 0)= ',', '. » . , +less singular terms,

lim lim T,"„', (x, 0, z) = ',', '. » . 4 +less singular terms.
4& x —1,e z —zc

(2.4a)

(2.4b)

Next a scale-invariant short-distance expansion for current commutators is postulated,

[V,"(x), V,'(0)] = -iS„y5„(g"'x —2x"x'), +iK„„d„,e"'„8 A, (0)x + ~ ~
e (x')5"'(x') . „, 8 e (x')5'(x')

(2.5a)

[A."(x), A",(0)] = —iS„„5„(g"x' —2x"x"), +iK„„d„,e""„,A, (0)x + ~ ~ ~,
„„c(xo)5"'(x') . „„8e(xo)5'(x')

(2.5b)

[V,"(x), A,'(0)] = iKy„d„,E""„BV,"(0)x + ~ ~

g ~Q jr
(2.6c)

The dots indicate less singular contributions, or operators with quantum numbers and symmetries differ-
ent from the exhibited terms. S and K are constants which appear in the following equal-time commuta-
tors,

[V',(x), Vb(0)] („o-,= i5,b S„„AB'5'(x)—,5,b S„„S'Bbe 5'(x) + (2.6a)

[V.'(x), V', (0)] i„o=o = iK„b d„,e"'A,'(0)5'(x) + ~ ~,

etc.
(2.6b)

A is a quadratically divergent constant, and the omitted terms have different quantum numbers. An expan-
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sion similar to (2.5) is written for T products,

T(2()y(0))Sb(gx2xxKdbESA(oxa b FF 2+4(x2 i~)4 Fv 2+2[x' —iE']
(2.7a)

T(g p( ) 4F(0)) S 6ab(g x } K abc a 8+c ( )
2p4(x2 i&)4 && 2~2lx2 —j6] (2.7b)

T(V"(x)A"(0)) = -K '" "' ". ' + ~ ~ .
2@2(x2 —ic (2.7c)

Crewther's observation is that the constants N, S, and K are not independent. ' From (2.1) and (2.7c) it
follows that

lim T.",","(x, y, 0) =-K„„",', '. , (01T(~ (xa)l'a(0)) I 0) (2.8a)

while (2.6a) implies that

lim lim T,",","(x,y, 0) = S K „ (2.8b)

Hence upon comparing (2.8b} and (2.4a), one finds

SvÃ@ FA (2.9a)

Additionally, from (2.1), (2.4b), (2.7a), and (2.7b)
it follows that

N= S~~&vv. (2.9b)

If a similar analysis is performed on the axial-
vector-axial-vector-axial-vector current ampli-
tude one gets

~AA @RA ~ (2.10)

III. CONSTRAINTS ON ANOMALIES

We shall use (2.9) and (2.10) to probe the struc-
ture of anomalies in various models. Consider
first a free massless field theory with

V~(x) =:y(x)y~-,'~. y(x):,

A,"(x)=:y(x)iy2q, ,'X, y(x): . —

It is trivial to verify that, as already stated by
Crewther, ' (2.9}and (2.10) are satisfied with N=K
=S=1. The nonvanishing of S and N is convention-
ally described as anomalous. A naive evaluation
of the equal-time commutator (2.6a) yields a van-
ishing result; the nonvanishing of S measures the
famous Schwinger-term anomaly. Similarly a na-

where N' is the proportionality constant defined
analogously to (2.2a)." As emphasized by Crew-
ther, the interest in relations (2.9) and (2.10) de-
rives from the fact that S and K are measurable
(in principle) in various deep-inelastic processes—
thus the anomaly in low-energy processes, at an
unphysical point, is directly determined by experi-
mental high-energy behavior.

I

ive evaluation of 8„"T~b', (x, y, z), O', T,",',"(x,y, z), and
s'„T,"b","(x,y, z) yields zero since the currents are
conserved. Nevertheless, as Schreier has shown, '
one cannot consistently set all divergences of
&,"b',"(x, &, z) to zero, because this quantity is sin-
gular when all three points coincide. In momentum
space this corresponds to the well-known violation
of Ward- Takahashi identities of the fermion, axial-
vector triangle graph. Hence N measures the axi-
al-vector-current anomaly. ' Since a naive deter-
mination of K from the equal-time commutator
(2.6b) also gives K = 1, we have a connection be-
tween the anomalies: N=S; the triangle anomaly
is a consequence of the Schwinger-term anomaly.

Next consider a fermion theory with an SU(3)-in-
variant Yukawa interaction of strength g involving
neutral vector gluons. (Spin-zero gluons render
the axial-vector current infinite; hence we do not
consider them. ) In order to apply Crewther's
analysis, ' it is necessary to satisfy his hypotheses:
(1) the existence of finite currents; (2) the exis-
tence of a scale-invariant expansion for products
of currents, (2.5) and (2.7); and (3}the existence
of a conformally invariant short-distance limit for
T,",',"(x,y, z), (2.2). No complete calculation of
T t'ba, (x, y, z) in higher order has been performed
which can be used to check the third hypothesis.
We shall nonetheless assume that this result is
valid, provided the other two are satisfied. This
assumption is motivated by the fact that the trian-
gle anomaly has no higher-order corrections, "
and is almost certainly true for the class of
graphs, discussed in detail below, which contain
only a single fermion loop. (See the Appendix. )
Therefore we set N=N'=1, even in the Presence
of interactions. In order to satisfy the first hy-
pothesis, we must not consider SU(3) singlet vec-
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tor currents, since these are not well defined in
perturbation theory. The interaction with the vec-
tor gluon gives rise to infinite vacuum polarization,
which modifies the singlet current.

In lowest-order perturbation theory in this mod-
el, a scale-invariant expansion for current prod-
ucts exists. This can be seen as follows. A BJL-
limit determination of the equal-time commutator
(2.6b) yields a finite expression. ' Hence the q-
number portion of the expansion (2.5) and (2.7) ex-
ists. That the c-number part also exists follows
from the Jost-Luttinger calculation of the proper
vacuum polarization tensor. " Their result is that
in second order of perturbation theory this object
is no more singular than in the free-field model.
[In momentum space both the free-field graph and
the lowest order graphs of Fig. 1 go as a single
power of ln(-k') for large k.] However, S and K
depart from their free-field values. The Jost-
Luttinger formula" for S is 1+3g'/16&'. Because
N=1, we must have K=(1+3g'/16m') '=1 —3g'/
16&'; and the BJL calculation of K gives indeed
this answer. ' Hence we see that the BJL anomaly
in the commutator of two spatial components of
currents is determined by the higher-order terms
in the c-number Schwinger term.

Beyond lowest order, perturbation theory no
longer satisfies the hypotheses (1) and (2). The
axial-vector current ceases to be well defined,
since the graph of Fig. 2 is not rendered finite by
external wave-function renormalization factors. '

Also the c-number portion of the expansion (2.5)
and (2.7) is not of the assumed scale-invariant
form, since the proper vacuum polarization tensor
acquires quadratic and higher powers of ln(-k').
(No calculations have been performed on the q-
number part of the expansion; but we expect that
it too is no longer scale-invariant. ) However, sub-
sets of graphs can be chosen which probably con-
tinue to satisfy the hypotheses. For example if
fermion creation and annihilation is ignored, then
the vacuum expectation value of the currents is
given by the one-fermion-loop graphs. In this ap-
proximation we have"

de "'"(0 IT(I "(.)I"(o))I»'"""' ""'"'
(2w)4 a & a

=(g""q'-q"q')
24 .5.~F(g')»(-q'/m')

+less singular terms. (3.1a)

Here F(g') is the Baker-Johnson function, "whose
first three terms in a power series expansion are
known:

(3.1b)

Also the axial-vector current is no longer infinite,
since the graph of Fig. 2 is absent. Evidently the
c-number term in the expansion (2.5) and (2.7) is
scale invariant with S =F(g'), and it is likely that
so also is the q-number term. Hence we conjec-
ture that if the current commutator were computed
in the BJL limit, without including fermion cre-
ation or annihilation processes, one would find

1 3g' 21 g'
)=F(g') = 16~2'512 ~'"'''' (3.2)

IV. ANOMALIES IN THE GELL-MANN-LOW LIMIT

We consider quantum electrodynamics, and as-
sume that the Gell-Mann-Low eigenvalue function
possesses a zero, so that Z, is finite. ' Now one
can discuss currents, since the vacuum polariza-
tion no longer diverges. In this limit it should be
possible to set the electron mass m to zero and
scale invariance becomes exact. " (Z„ the elec-
tron wave-function renormalization constant, can
be made finite by appropriate choice of gauge. ) We
examine this (hypothetical) theory in the context of
the ideas developed in Sees. II and III. It will be
seen that singular behavior survives even in this
finite theory and that naive canonical reasoning
continues to be inapplicable. " [All our previous
formulas hold with SU(3) indices suppressed, and
the following replacements: V,"-J",A,"-J,", d„,- 2, 5„-2.] Observe first that, since the triangle
anomaly has no radiative corrections, N continues
to be equal to unity. However, because Z, is finite,
the quadratieally divergent Sehwinger term is ab-

(b) v vv v v v

FIG. 1. Contributions to Jd xe' " (OIT(V&(x)~~(0))IO)
which go as ln(-k2) for large k. (a) Free-field theory
graph. (b) Lowest-order perturbation theory graphs.

FIG. 2. Graph which render". the axial-vector current
infinite.
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sent; i.e. , S=O. Since K=1/S, we see that the co-
efficient of the axial-vector current in the short-
distance expansion of the product of two currents
is infinite. In other words the c-number singular-
ity (2.5) is weaker than x ', but the q-number sin-
gularity is stronger than x, so that their product
remains singular as x '. Consequently the BJL
limit, which naively gives (2.5), is anomalous, and
this is true regardless whether or not the electron
mass is set to zero.

Further difficulties emerge if we set the electron
mass to zero. In that limit all vacuum matrix ele-
ments of current products vanish by the Feder-
bush- Johnson theorem, "

(OIJ~ (x,) J""(x„)IQ) =0. (4.1)

Nevertheless we now show that one cannot conclude
the strong statement that J"(x) IO) =0. For if this
were true then

T"."(x,y, ~) =(oI T(~"(x)J'(y)J2 (~)) Io& (4 2}

must be purely a seagull, since no matter what the
values of x', y', and z' are, there is always an
electromagnetic current adjacent to the vacuum.

However, a seagull cannot give rise to the anoma-
lous divergence, ' which survives even in the Gell-
Mann-Low scale-invariant limit, since it is mass
independent and is not renormalized. Consequently
the equation J"(x)I0) =0 is false. Evidently only a
weaker statement can be true

(0 Ioz2(x) IQ) =0, (4.3)

A further problem appears if we combine the
Federbush- Johnson theorem with the results which
we obtained above from Crewther's analysis when
fermion creation and annihilation were neglected.
As Baker and Johnson' have shown, when the cou-
pling g' is equal to the value go' which makes Z3
finite, and the electron mass is zero, (4.1) holds
even in the one-fermion-loop approximation. In
particular, go' is a zero of the function F(g') de-
'fined in (3.1a) and the four-point function satisfies

where 0 stands for some, but not al), operators.
In particular, products of electromagnetic currents
can comprise 0, but 0 cannot be

~,"(z)Z'(y) or ~'(y)J,"(~) .

T&" (xoyz) = (0
I
T(Z&(x)J'(0)J'(y)Z'(z))

I
0);""",""'-' = 0. (4 4)

But now let us take the limit x- 0 in (4.4) and substitute the short-distance expansion of (2.7a). In the one-
loop approximation S~l, =F(go ) =0, so the leading contribution comes from the second term in (2.7a) and
is given by

e"' x~
T 2

& ko(xQy+) oo If(+ 2) n 8 ( 0
I
T(ga(0)g x(y )g o (+ ) ) I

gone fermion loop

(x' —ic)2 g2=gp2, 775= 0
(4.5)

F '(a')
I+f(x)F 2(g2) ' (4.6)

where f eeO for xe0 but f(0)=0. For all nonzero x,
(4.6) vanishes as F(g2) in the limit g2-go2, but
for x =0, (4.6) diverges as F '(g2) in the same
limit. Whether such behavior can actually emerge
from field theory, when all the constraints im-
posed by current conservation and conformal in-
variance are taken into account, remains an open

This is infinite, since according to (3.2) the coeffi-
cient K(go2) is equal to E '(go2) = ~, while we have
seen that the three-point function appearing in (4.5)
cannot vanish. So we have reached the impossible
conclusion that 0=~! Evidently, if the theory has
an eigenvalue g, which makes Z, finite, the naive
short-distance expansion is invalid at the eigenval-
ue, even though it may be true order-by-order in
perturbation theory. In particular, the limiting
operations g- g, and x- 0 do not commute. One
can easily write down simple examples which have
this property, e.g. ,

question, as indeed does the question of whether
an eigenvalue g,' exists in the first place.

V. CONCLUSION

We have shown that the coupling-constant-depen-
dent numbers, describing various BJL anomalies,
are constrained by the nonrenormalization of the
triangle anomaly. Furthermore the axial-vector
current continues to behave in a singular fashion
even in the finite theory of Gell-Mann and Low. In
particular the following three phenomena are in-
compatible:

(1) The triangle anomaly is unrenormalized.
(2) There is an eigenvalue g2 =g,' which makes

Z, finite,
(3) Naive scale-invariant short-distance expan-

sions involving the axial-vector current are valid
at the eigenvalue.

Crewther' also applies Wilson's method to anom-
alies of scale invariance. ' Unfortunately there
does not seem to be a "no renormalization theo-
rem" for these anomalies since all regulators vio-
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late scale invariance. (Chiral invariance is not
violated by boson regulators; these render finite
all graphs but the basic fermion triangle. ) There-
fore results analogous to the above cannot be de-
duced for scale invariance anomalies. "

We have benefited from conversations with
R. Crewther, K. Johnson and K. Wilson, which we
are happy to acknowledge. SLA and CGC, Jr. wish
to acknowledge the hospitality of the National Ac-

celerator Laboratory, where part of this work was
done.

APPENDIX

In this Appendix we shall give arguments for our
assertion that the vacuum-polarization-free trian-
gle is asymptotically conformal invariant. Our
starting point is the Ward identities for scale and
conformal invariance. At the naive canonical lev-
el, these have the form

n

dx(0/2(e(x&0'"(x). 0'"'(x&)$0&=(p x,. +d ) &o~o(orr(„), , orr(, ))~0&
5=1 5

(A1)

„&oIT(o-( )0"(,) 0'"'( .)) Io)

n

2x'„x'; —x ~ 2x,". (d; d„,+Zrx'r)) (0
~ T(oxr (x, ) Orr(x„)) ~

0), (A2)
5

where 0 is the trace of the "improved" energy-
momentum tensor (hence containing only mass
terms and other soft operators), (f; is the canoni-
cal dimension of the field P~'~ and Z~'~ is the corre-
sponding intrinsic spin matrix.

The basis for the naive argument for asymptotic
eonformal invariance is the observation that since
8 must contain explicit factors of mass the left-
hand sides of (Al) and (A2) must, on dimensional
grounds alone, be less singular at short distances
than the corresponding right-hand side.

The work of Zimmermann, "Lowenstein, "and
Schroer" indicates that when the unavoidable di-
vergences of perturbation theory are properly tak-
en into account, the above Ward identities are
modified by the addition to 0 of operator contribu-
tions of dimension four (nonsoft). These new terms
have no explicit dimensional factors and need not
vanish relative to the right-hand side in the short-
distance limit. As a result, asymptotic scale and
conformal invariance are not realized in renor-
malized perturbation theory, except in special
cases.

The nonsoft contributions to 0 are associated
with the various wave-function and coupling-con-
stant renormalization subtractions needed to make
the theory finite. The pieces associated with
wave-function renormalization can in fact be ab-
sorbed in (A1) and (A2) by replacing the canonical
dimensions d; by coupling-constant-dependent
"anomalous dimensions" d;. The pieces associated
with coupling-constant renormalization are pro-
portional to the various interaction terms in the
Lagrangian and simplify only in (A1): The inser-
tion at zero four-momentum of an interaction term
is equivalent to differentiation with respect to the

corresponding coupling constant.
In the body of the paper we considered a theory

of an SU3 singlet vector-meson coupling via a con-
served current to a fermion. The octet vector and
axial-vector currents in such a theory require no
renormalization subtractions, since they cannot be
coupled to the singlet vector meson by vacuum po-
larization bubbles of the type illustrated in Fig. 1.
Thus, the SU, &&SU3 currents will, according to the
preceding paragraph, act like fields with canonical
dimensions. The same statement applies to both
the electromagnetic and axial-vector currents in
quantum electrodynamics with vacuum-polariza-
tion insertions omitted. Since the vector meson
couples via a conserved current, the usual Ward-
identity argument guarantees that coupling-con-
stant infinities arise only from vacuum polariza-
tion graphs. If such graphs are excluded —either
by fiat, or by looking at a sufficiently low order in
perturbation theory —no coupling-constant renor-
malization is needed, and 0 in (A1) and (A2) may
be treated as a soft operator. Further, if we con-
sider a Green's function involving only nonrenor-
malized currents, so that the relevant dimensions
are all canonical, the scale and conformal Ward
identities assume their naive form and the argu-
ment for asymptotic scale and conformal invari-
ance becomes correct.

Let us apply these remarks to the VVA triangle.
To O(g') (g being the coupling constant of the glu-
on), we obtain the bare triangle, which is trivially
conformally invariant in the short-distance limit.
To O(g') we obtain the triangle decorated in all
possible ways with one gluon. At this level, no
vacuum polarization is possible and the above ar-
gument indicates that asymptotic conformal invari-
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ance still holds. But there is only one possible
form for a conformal-invariant VVA amplitude.
Therefore, in the short-distance limit, F«A- (I+cg')I'»„„, where I'„'„„stands for the asymp-
totic limit of the bare triangle. On the other hand,
the PCAC (partially conserved axial-vector cur-
rent) anomaly is determined precisely by the
short-distance limit of F«„and is also known to
be coupling-constant independent. This is possible
only if C =0, which is to say that the O(g') graphs
succeed in being conformal invariant by vanishing.
Now consider the O(g') contributions to I'«„. At
this level there a~8 vacuum-polarization graphs
and the argument for conformal invariance breaks
down. Nonetheless scale invariance survives. We
argued that when coupling-constant renormaliza-

tion is needed, (Al) is modified by adding a term

to the left-hand side. It turns out that p is O(g'),
so that if we need p(p/&g)I'«„ to O(g') it suffices
to know I"«„to O(g'). We have just argued that
the O(g') contribution to I'«„vanishes more rap-
idly in the asymptotic limit than naive power
counting would suggest. Therefore, the left-hand
side of (Al), computed to O(g'), still vanishes
relative to the right-hand side in the short-dis-
tance limit, leading to asymptotic scale invari-
ance. ln higher orders, scale invariance presum-
ably breaks down as well.
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assume SU(3) symmetry realized by triplet quarks, hence
the occurrence of d,~, =a' Tr {X,, X~)A .

"Henceforth we take N =N'; Syy=SAA =S' EYY =KFA

For details see S. L. Adler, Ref. 1.
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