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Starting with an analyticity domain in the two Mandelstam variables which is contained in
the domain obtained by Martin, we derive a parametric dispersion representation for scat-
tering amplitudes in the equal-mass case. For pion-pion scattering this representation is a
rigorous consequence of the axioms of local field theory; it displays in a symmetric and

explicit way the contributions of all three channels, and it has only physical" absorptive
parts. This representation is useful for deriving sum rules involving only absorptive parts
and relating all three channels. Some of these sum rules are given in this paper, the most
important of which form a set of independent physical relations that lead to necessary and

sufficient conditions ensuring full crossing symmetry.

I. INTRODUCTION

In a recent paper, ' one of us derived parametric
dispersion relations for the off-shell Compton am-
plitude to obtain new sum rules for the electropro-
duction form factors. The main feature of Ref. 1
was the use of analyticity in the two variables v

and q' to get sum rules by integrating along con-
tours that lie on analytic hypersurfaces in the com-
plex p-q' space. The selection of allowed contours
was carried out by parametrizing v and q' by ana-
lytic functions, v.= v(z) and q'=q'(z), regular for
Irru &0, with the added restriction that the points
(v(z), q'(z)) be inside the analyticity domain of the
Compton amplitude for all Imz &0. The question
immediately arises as to whether similar ideas
can be applied to the usual on-shell strong ampli-
tudes.

The present paper is devoted to deriving rigor-
ous parametric dispersion relations for elastic on-
shell amplitudes. These again are functions of two
variables s and f, the usual Mandelstam variables.
For the case of pion-pion scattering it is also
known that, as a consequence of the axioms of lo-
cal field theory, these amplitudes are analytic func-
tions of s and t in domains first derived by Mandel-
stam' and later, using more powerful techniques,
extended by Martin. ' We consider domains E de-
fined by inequalities of the form ~(s —a)(t —a)(u —a)~

&C, , where a is a real parameter. We shall show
that E ca.n be imbedded in the Martin domains. Any
point (s, t) that satisfies this inequality, and does
not lie on a physical s-, t-, or u-channel cut, is
inside the analyticity domain.

The main aim of this paper is to find a conve-
nient parametrization of (s, t), i.e. , a rational map-
ping z —(s, t) such that the following conditions are
fulfilled: (a) For all complex z the points (s(z), t(z))
are in E, except for those values of z which corre-

spond to the image of the three cuts of the s, t, and
u channels; (b) the mapping exhibits the full 3-fold
symmetry of the s, t, and u channels and the sym-
metry of the domains; and (c) along the image of
the cuts in the z plane, the absorptive parts are
either physical or obtainable from physical par-
tial-wave amplitudes via convergent I egendre
expansions.

The mappings s= s(z, a), t= t(z, a) that we obtain
also depend on the real parameter g which appears
in the definition of the domains. For certain ad-
missible values of a, the amplitude F(s(z, a), t(z, a))
defines a function E(z, a) which is analytic in the z
plane except for the three cuts. By writing "disper-
sion relations" in z for fixed a we get rigorous rep-
resentations of the amplitude that have explicit con-
tributions from all the three channels appearing
simultaneously. For fixed a this representation is
somewhat reminiscent of the old. heuristic Cini-
Fubini representation. ' The kernels we have are
more complicated than a simple Cauchy kernel,
but our result is an exact consequence of local
field theory and not an approximation. These dis-
persion relations are used first in the case of n'm'

—n'm' scattering to give a class of sum rules that
restrict the absorptive part. This class of sum
rules is shown to provide a physical set of jnde-
pendent necessary and sufficient conditions on the
absorptive part of a. single channel that guarantee
crossing symmetry. Using partial-wave projec-
tions, we translate these sum rules into a set of
necessary and sufficient conditions on the imagi-
nary parts of the partial-wave amplitudes, Imf, (s),
that guarantee crossing. Although a similar set of
conditions has been derived before' via different
techniques, our conditions have the advantage of
being independent, while those of Ref. 5 are de-
pendent and overdetermined. Obviously, the same
method can be applied to charged pion-pion scatter-
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ing.
In Sec. II, we review briefly some of the results

of Martin' on the analyticity domains and define the
domains that we shall use. In Sec. III, we use the
cubic equation which defines the domain E to lead
us in a fairly clear way to a rational mapping z
-(s, t) that has the properties (a), (b), and (c) men-
tioned above. The dispersion relations in z are de-
rived in Sec. IV. There we also calculate the do-
main of admissible values for the parameter a.
The case of ~'~' scattering is taken up in Sec. V,
and the main result is an infinite set of physical
sum rules on Imf, (s) which give a set of necessary
and sufficient conditions that guarantee full cross-
ing. A procedure is then defined to go from a set
(Imf, (s)j respecting unitarity to an amplitude Il(s, t)
that is not only crossing-symmetric but also ana-
lytic in the Martin domains, and respects the
Froissart bound. Finally, in Sec. VI, we discuss
briefly the case of charged pion-pion scattering
and give two examples of similar sum rules.

and we will consider the scattering amplitude, for
any charge or isospin combination, as an analytic
function of the usual variables s, t,u =4 —s —t. We
shall also use the alternative notation

S~ = S) S2= t) S3=R. (2.1)

(s -a, )(t —a, )(u —a, ) =Z. (2.2)

I,et D be the axiomatic domain referred to above
(and which we do not characterize explicitly). By
definition the amplitude is a holomorphic function
of s and t in D minus the physical cuts:

Our aim is to write "parametric dispersion rela-
tions" on some analytic hypersurfaces, the real
sections of which are curves approaching the for-
ward and the backward pieces of the physical re-
gion in all three channels. Obviously, these curves
have to be asymptotically parallel to the s, t, and
u axes. Hence a natural choice for these hypersur-
faces is the family of cubics

D' = D A C(s, t ~s ~ 4, t ~4, u & 4j . (2.3)
II. ANALYTICITY DOMAIN IN TWO VARIABLES

Our starting point is the analyticity domain of the
elastic scattering amplitude, as deduced from axio-
matic field theory. More precisely, we want to
use, in all three channels connected by the cross-
ing relations, enlarged domains of the type de-
rived by Martin. ' The main ingredients of Martin' s
derivation are the validity of fixed-transfer disper-
sion relations and the positivity condition. Since
we have to require these properties to be true in
all three channels, we are forced to restrict our-
selves to the scattering of the lightest hadronic
particles, as already pointed out by Mandelstam. '
Therefore, if one insists on working exclusively
with rigorous results from field theory, our ap-
proach can only be applied to pion-pion scattering.
However, the approach can be of some use in other
processes also if one postulates similar analyticity
properties (for example, if one assumes the full
Mandelstam analyticity without assuming the valid-
ity of a Mandelstam representation with a finite
number of subtractions). In this paper, for the
sake of definiteness and simplicity, we shall con-
centrate on the pion-pion scattering amplitudes and
use only analyticity domains that follow from axio-
matic field theory.

The mass of the pion will be set equal to unity,

E = ps, t ( [(s —a,)(t —a, )(u -a, ) f «A} (2.4)

is contained in D. If we have such a domain then it
suffices to choose K& A to guarantee that 8 ( D.
Now from the work of Martin' we know that there
exist domains I' C: D of the form

In order to be able to write simple parametric
dispersion relations on the path (2.2) in the (s, t)
space, we have to choose the real parameters g,.
and K in such a way that the cubic 6 satisfies the
following two conditions:

(i) eCD.
(ii) There must exist a (complex) coordinate z on

8 such that the mapping z - (s, t) is a rational one.
In other words we seek parametrizations of (2.2),

s= s(z) and t = t(z), which are rational functions of
z. From condition (i) it is clear that the pion-pion
amplitudes will be analytic functions of z except
for those values of z that correspond to the physi-
cal cuts.

The restrictions on the parameters g,. and K
which are necessary and sufficient to ensure condi-
tion (ii) will be worked out in the next section. In
order to satisfy condition (i) we can use the meth-
ods and results of Ref. 3.

What we need is that, for some values of the a, 's,
there exist an A &0 such that the domain

F =(s, t~ ((s —a, )(t —a, )l«AQU/s, t) ((t —a, )(u —a, ) ~&A,jU(s, t) ((u —a,)(s —a, ) (&A,] . (2.5)

Comparing Eqs. (2.4) and (2.5), we see that F C: D if one takes A"' ~ minA, . for i = I, 2, 3.
A method to compute the allowed range of the parameters a,. and A,. [and hence the admissible cubics of

the form (2.2)] has also been indicated in Ref. 3. However, an explicit computation is not really required
for the limited application we have in mind. As a matter of fact, we will concentrate mainly on the sym-
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metric case a, = a, = a, =—a. We will start by choosing a and K in small neighborhoods of —,
' and 0, respective-

ly. For such values the argument above easily applies, since using a result of Martin it can be shown that
the domains EC: D of the form (2.5) include the family

+, = fs, t
f fs —a

f f
t —a

f

& [8+((4 —a)(16 —a))'"]'jL]/s- t, t-uj L](s-u, t- s), (2.6)

where 0 ~ a &4.
Eventually, the extension to larger values of faf will be carried out on our final expressions by a simple

argument.

III. CUBIC SECTIONS AND CHOICE OF VARIABLES

As we stated in the previous section, we want to
parametrize the cubic 6 by means of a rational
mapping z —(s, t). We insist on rational mappings
in order to avoid spurious branch points and to be
able to use contour integrals in z without worrying
about Riemann sheets. Of course, this require-
ment is not of a fundamental nature, but merely a
matter of practical convenience.

According to Luroth's theorem, ' an algebraic
curve has a parametric representation by rational
functions only if its genus is zero. The genus of a
cubic is 1 —(number of nodes) —(number of cusps).
A simple inspection of Eq. (2.2) shows that 8 has
no cusps. We then conclude that one node (double
point) is needed. The ensuing constraint on the pa-
rameters of (' is easily derived. Solving Eq. (2.2)
for s, we get

s= --,'(t+a, —a, —4)

which fixes the scale of the curve. Furthermore,
the double point is an isolated point of the real sec-
tion of the curve.

One should remark that these features are not
neces=ary restrictions. A class of cubics larger
than (2.2) could also be considered containing
curves with only axial symmetry and with a double
point connecting a real infinite branch to a real
loop. In that case, however, the condition (i) of
Sec. II would be harder to check, and such a possi-
bility will not be discussed here.

The form (3.4) immediately suggests various ra-
tional parametrizations of our cubics. Note that
Eq. (3.4) has the form

a=a, (t)a *

) .[Q(t)]"',
3

where the I., 's are linear and Q(t) is quadratic in t.
It is a trivial matter to find a rational parametriza-
tion t = t(A. ) such that [Q(t(A.))]'~' is also rational in t(.

A particularly convenient choice, which respects
the symmetry of order 3, is given by the following:

1 [(t+a, +a, —4) (t —a, ) -4'(t])"''2 t —02
(3.1) 3

z

A double point clearly occurs if and only if the
cubic polynomial inside the bracket has a double
zero. Other than the trivial degenerate case K=O,
simple algebra shows that a double root of the poly-
nomial in Eq. (3.1) occurs when

K= —'(4 —a —a —a )27 1 2 3 (3 2)

Thus our curves belong to the three-parameter
family

(s —a, )(t —a, )(u —a, ) = [—,'(4 —a, —a, —a,)]', (3.3)

or equivalently

s= -2(t+a, —a, —4)+ —,'[t ——', (4 —a, +2a, —a3)]

(3.5)

where the z„'s are the cube roots of unity; z„
=e[' ']""'. It is easily checked that (3.5) satisfies
(3.2) with s = s„ t = s„u = s, . The mapping z
—(s„s,) is one-to-one, except for the double point
which is the image of z = 0 and z = ~. The three
asymptotic points s„=a~ correspond to z =z» k
=12 3.

From this point on we restrict ourselves to the
case a, = a, = a, =—a. The double point then coincides
with the center of the Mandelstam triangle, s, = —,',
k =1,2, 3. The three branches of our cubic will be
symmetric over the three channels. We have from
Eq. (3.5)

t —,'(16 —4a, —a, —4a, ) )"'
t —a,

(3.4)
s, =a+(-', -a), ', k=1, 2, 3.(z -z,)' (3.6)

Equation (3.3) represents a rather restricted
class of cubics. The double point is also the cen-
ter of rotational symmetry of order 3. Its coordi-
nates are free, and there is one parameter left

It is trivial to check that for real a in the inter-
val 0 ~ a & 4, and for all complex z,

f(s, (z) —a)(s, (z) —a)(s, (z) —a) f

= f(-,
' —a)'

f
&6'.

(3.7)
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A simple comparison with Eq. (2.6) shows that, at
least for 0 & a &4, we have (s, (z), s,(z))C D for all
complex z. Thus the amplitude E(s,(z), s, (z)) can
be considered as an analytic function of z and the
parameter a:

shown above that the values 0 ~g &4 are admissible.
Actually we shall show in the next section that the
set of admissible values is much larger.

Using Eg. (3.6) one can carry out a simple calcu-
lation to obtain V(a), the image of the three physi-
cal cuts in the z plane. The result is

T(z, a) -=E(s,(z), s, (z)). (3.8)

For admissible values of g, the only singularities
of T(z, a) in the z plane are given by the image
V(a) of the physical cuts s~ o 4, k = 1„2,3. We have

V(a)= V, (a)U V, (a) U V,(a), (3.9)

V, (a) =

f~llzl=l, —,'~- l»gzl-. y. (a)& if —', &a&-,' (I),

(z(g(=1, @,(a) )argz( -', m) if —,
' & a&4 (II),

-', ~ & fargz/ &~)U (zJp (a) & [z/ &p,(a), argz =w) if a &-,' (III),

(3.10)

S =g,
s=O

Os' Qs»

FIG. 1. Integration paths for the dispersion relations Rqs. (4.12) and (4.13) are represented both in the Mandelstam
plane and in the z plane (thick line). The three cases correspond to three qualitatively different situations encountered
vrhen the parameter a is varied:

&
&a&3 (I); 3 &a&4 (II); a ~& (III). In case {III), the thickdotted line in the {s,t) plane

is the real projection of the complex piece of the path. The image of that piece in the z plane is formed by the three
straight segments.
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The functions p, (a) and p, (a) are given by

d, (a)=tao ' „' I, 0&d„r[(4 —a)(a ——,')]"'
9

(3.11)
p, (a) = +f (~'- —a) + [(4 —a)(~ —a)]"') .

The three different cases encountered in Eq. (3.10)
are clearly displayed in Fig. 1, where the real sec-
tion of the (s, t) space and the z plane are both
shown. Note that in cases I and II the image of the
cuts lies on the unit circle in the z plane but it
does not fully cover the unit circle. In these cases
there are gaps on the unit circle free of singulari-
ties and one can find analytic continuations from
~z~&1 to g~&1. The case a=rd corresponds to the
degeneracy of the cubic into three straight lines
and has to be excluded.

Finally, we should stress the fact that along the
cuts V(a) we have by construction guaranteed the
fact that the amplitude will either be physical or
obtainable from physical partial-wave expansions
which are convergent. For example along the s
cut, V, (a), i.e. , so 4, the corresponding values of
t= t(s, a) will always be inside the s-channel Martin-
Lehmann ellipse. Each of the three domains whose
union forms F, in (2.6) contains all three channel
Martin-Lehmann ellipses [see discussion below
Eq. (2.5) in Ref. 3].

1
A, (s, t) =—lim [F(s+i—e., t) -F(s —ie, t)], s ~ 4

qho
(4.1)

with similar definitions for A, (s, t) and A, (s, t) in
the t and u channels, respectively. We note that
A.„ is not necessarily real, because t is not re-
quired to be real in Eq. (4.1). In any case A„has
to be understood as the analytic continuation, via
the appropriate partial-wave expansion, of the
physical absorptive part in the k channel.

Using Eq. (3.6), the reality condition F(s, t)
=F*(s*,t*) becomes

Ft , )= T"a—„a,a) . '1
(4.2)

We define the "discontinuity" of F(z, a) across V(a)
by

IV. PARAMETRIC DISPERSION RELATIONS

AND ANALYTIC CONTINUATION IN a

In this section we derive dispersion relations in
the variable z that have explicit contributions from
all three channels. The absorptive parts that ap-
pear in these representations will be physical or
else determined by physical partial waves. We
shall also use these representations to calculate
the domain of admissible values of the parameter g.

In order tp write dispersion relations in the z

plane, we have first to identify the discontinuity of
F(z, a) on V(a) with the absorptive parts of the am-
plitude in the three channels. The latter will be
denoted by

lim
dkO

A(z, a) =- &

dho
—.[F(ze '', a) —F(ze",a)]
1 for argz = n' (mod-', v) .

—.[F((l + e)z, a) —F((1 —e)z, a)]
1

(4.3)

The second part of the definition is only needed in case III, where the gap disappears. From Eq. (4.2) we
have

A (z, a) =A *(z, a)

but

7l(r, a)= -rt "(—,a) for argo =r (mod-', r). (4.4)

Finally we need to know the sign of Ims, on each side of V(a). A simple calculation using Eq. (3.6) gives us

z =-pe ".
2 sin

(1+2cosp)' ' z= 1+E' e

Ima = da(r- a)

( a+1)2 (P

(4.5)

In order to relate A(z, a) to A, (s, t), it is convenient to define V„'(a) by (see Fig. 1)
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~ 0 in V»(a)
V, (a) = V»(a) U V» (a), with Im(z/z, ) or (P~ —1)

c0 in V, (a) .

It then follows from Eq. (4.5) that

(4.6)

a,(s, t), zE V,'(a)
X(z, a) =

-A»(s, t), ze V, (a),

-W, (s, t), zE V,'(a)
A(z, a) =

W, (s, t), zw V, (a),

a& —,
' (cases I and III),

a & ~4 (case II) .

(4.7)

To settle the question of subtractions we have to know the behavior of F(z, a) in the neighborhood of z =z, .
These points are the images of the asymptotic points, for Eq. (3.5) gives us as z -z„

S~ Q,
4a —~s. = constj 8 —z (q ~a). (4.8)

From the work of Sin and Martin, ' we know that

F(s, t) = o(s') for ~s~ -~, t fixed, (s, t) H D,

and similar properties at fixed s and u. Hence we see that

F(z, a) =o(1/(z -z,)'), as z -z», a fixed.

(4.9)

(4.10)

Now if we write contour integrals involving the function (z' —1)F(z, a) instead of F(z, a), it follows from
Eq. (4.10) that the part coming from the integration over small circles around z =z„k = 1, 2, 3, vanishes
when the radii of these circles tend to zero. This procedure is equivalent to the introduction of two sub-
tractions in the usual fixed-t dispersion relations. In our case, the subtraction constants will be related
to the coefficients of the Taylor expansion

F(z, a) = Q f„(a)z",
n=o

(4.11)

which is convergent for )~ &p (a) (or ~z~ &1 for cases I and II). Note that f, is real and independent of a
since

f, = F(0, a) = F( ,', —,') . -
Moreover, Eq. (3.6) shows that

F(~, a) = F*(0,a) =f, .

Thus, using the Cauchy formula for two simple circuits C,. and C„ interior and exterior to V(a), respec-
tively, we get for z g V(a), g~ &1,

dz' „, F(z', a)=F(~, a)= f, .
27Tz Ja z z —z

By subtracting, letting C, and C,. go onto V(a), and using Eq. (4.3), we obtain our dispersion relations on
the cubic 6:

8 Z2 1 "
~

'"-1
F(z, a) = f, + f,(a), + f, (a)1,+(1,) — dz' „(, )

X(z', a).
+V a

(4.12)

At this stage, it would be instructive to rewrite Eq. (4.12) in terms of the familiar s, t, and u variables.
To avoid-unessential discussions, we do this only for the case I, i.e. , —,

' &a&-,'. For any fixed p in this in-
terval we use the mapping z-(s(z, a), t(z, a)) given in Eq. (3.6) to obtain from Eq. (4.12) the following repre-
sentation:
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F(ss ttu)= f()+ d (z)s+z2t+z3u)—f (a) f(a) s t u
Q 0 Z~ Z2 Z3

. 3 3

(a ——,
' )(s/z, + t/z, +u/z, )

(z s+z t+z u)~ ds'[K, (s', s, t, u)A, (s', t,(s', a)) E (s'; s, t, u)A, (s', t ( ', a))]

where

+ f dt [s'-'t ;(stu')- (tus)) + du'[s'-u', (stu) (ust)-]I,
J4 4 4

(4.13)

t,(s', a) = ——(s' —4) + (s' ——,
'

) (4.14)

The kernels K, are given by

2s' —3a+ —,', 3v3 (a ——,') s' —a
2(s' —r) 2s' —3a+ r s'+3a —~

s t ux(z s+z t+z u) z s+z t+z u+ —+—+—1 2 3 1 2 3 z z z zt( t
)

with

(4.15)

z~(s', a) = —,d ((s'+ ~ —3a) +i[3(s' —a)(s'+3a —~3)]'~2).2(s' —r) (4.16)

In both Eqs. (4.13) and (4.15), it )2as to be under
stood that the variables s, t, and u =4 —s —t axe re-
lated t)22ougk the equation of the cubic, (s —a)(t-a)
x (u —a) =(T —a) . The complex numbers z3, k

4

= 1,2, 3, are just the cube roots of unity defined be-
low Eq. (3.5). The algebra involved in the deriva-
tion of Eq. (4.13) is quite simplified by noting the
relations

9(a —')z(1 —z') '= P z, s,

and

3

9( 4 )z2(1 z3) 1 g z -ls
k =1

which follow from Eq. (3.6).
A few remarks about the new representation

(4.13) are in order. First, it is a completely rigor-
ous consequence of local field theory, at least for
pion-pion scattering. Second, it displays the con-
tributions of all three channels in an explicit and
symmetric manner. Third, it is physical in the
sense that the A, , „ in Eq. (4.13) are either physi-
cal absorptive parts or determined by convergent
Legendre expansions from the physical partial-
wave absorptive parts. Finally, (4.13) undergoes
a tremendous simplification in the symmetric case,
m'v'- w'7]' (see Note added in p2'oof).

One should also note the strong similarity be-
tween our approach and the method used by Wand-
ers' to tackle the same kind of problems by means
of homogeneous variables. This latter method as-
sumes the validity of the Mandelstam representa-

tion, but this is probably not an essential ingredi-
ent. 9 Actually, for the totally symmetric case
m'n'- m'm', our dispersion relations on the cubics
(3.6) are completely equivalent to dispersion rela-
tions written in a particular bundle of straight
lines in the homogeneous-variables plane. Two im-
portant differences between the. two methods have
to be stressed, however: (i) The homogeneous-
variables method can only be used in the totally
symmetric case, i.e. , n'n'-m'v', while without
particular choice of cubics we do not have to re-
quire any symmetry properties of the amplitude,
as it is clear in the preceding discussion of this
section. " (ii) For an arbitrary straight line in the
homogeneous-variable plane, the dispersion rela-
tion in those variables has no analog of the form
(4.12).

As is most clearly displayed in Fig. 1, our rep-
resentation is particularly suitable for deriving
various sum rules connecting the three channels.
If needed, the asymptotic part of the amplitude can
be damped at will by introducing enough factors
(z -z, ) raised to appropriate powers. We shall
postpone a detailed investigation of such practical
sum rules to a later paper. In the next two sec-
tions we shall limit ourselves to deriving a set of
sum rules involving only the absorptive parts and
their derivatives.

Before proceeding with this task we have to set-
tle the problem of what the admissible values of
the parameter a are. In this section we have so
far taken g to be in some neighborhood of a = -', . In
Sec. III we noted an admissible set of values for a,
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i.e. , 0 &a &4. Equation (4.12) is valid for these
values. But we can also use Eq. (4.12) to perform
an analytic continuation in a by taking into account
the analyticity properties of A(z, a). This will give
us a larger domain of admissible values which we
shall calculate below.

We have to investigate the analyticity in a of the
right-hand side of Eq. (4.12) for fixed z such that
z XV(a).

The first point to note is that the subtraction
terms do not produce any singularities, since f,(a)
and f,(a) are polynomials of the first and second
order, respectively. This is easily seen by substi-
tuting Eq. (3.6) in the Taylor expansion of Ii(s, t) at
s = t = -,'and identifying with the expansion (4.11).

It is clear that the three pieces of the dispersion
I

integral in Eq. (4.12) corresponding to the three
channels have the same analytic properties in a.
Thus we can consider only the piece corresponding,
say, to V, (a). Splitting this range further as indi-
cated by Eq. (4.6), and making the substitution z'
—1/z ' in the part V, (a), we find that the singula. ri-
ties of T(z, a) in a are the same as those of

I( )
",z" —1 A(z', a),A(1/z', a)

"v+~4} z' z' —z 1/z
(4.17)

At this point, in order to remove the dependence
on g in the integration range, we return to the inte-
gration variable s . For definiteness we first as-
sume a to be real and a& —,'. Then, using Eqs. (3.6)
and (4.7), one finds that Eq. (4.17) takes the form

I(z, a) =4
4

where

(z
l3 1)3ds'--

z "(z' —1)'(z'+1)
A„(s', t,(s', a)},A, (s', t (s', a)) (4.18 )

1z' = z'(s', g) = —,, ((s'+ -', —Sa) —[3(s' —a)]"' &
2(s' ——', )

3(s'+Sa 3 } ) for s' ~ —', - Sa (case I),
(4.16')

( 3' —3a —s') ) for 4 & s' —"—3a (case III),

and

4s
t,(s', a) = --,' [(s' —4}+

(sl 4„3g 16 )1/2] (case I),

i( —", —Sa —s')'~'] (case III) .
(4.14')

Now in order to isolate the potential singularity at s' = —", —Sa, which seems to appear according to Eqs.
(4.16') and (4.14'), it is convenient to rewrite Eq. (4.18) as

I(z, a) =
3

—, , g,(z', z)A, (s', a)+g (z', z)(s'+Sa —'3')"',
+3 'is u2-3 (4.19)

with

A,(s', a) =A, (s', t,(s', g))+A, (s', t (s', a)),
1 (z" —l)[(1+z")-z'(1az')z]
2 z'4(z' l)3(z'+1)

It is shown in the Appendix that for all s' ~ 4, A,(s', a) and A (s', a)/(s'+ Sa —+3')"' are holomorphic functions
of gin a domain containing the open interval ]-28.19,4[. That this is also true for the whole of the integrand
in Eq. (4.19) ean be checked as follows: (z'+1/z') and g,(z', z) are invariant under the substitution z' 1/z'.
From Eq. (4.16') this means that they are regular at s'=+36 -Sa. On the other hand, since g (z', z) changes
sign when z'-1/z', g (z', z)(s'+Sg —"3')"' is regular at this point too. Furthermore, a repeat of the argu-
ment used in fixed-transfer dispersion relations shows that the integral in Eq. (4.19) is absolutely conver-
gent in the analyticity domain of the integrand. Thus we conclude that, at fixed a, f(z, a) is holomorphie in
a neighborhood of ]-28.19, z[. The analytic continuation to [-,', 4[ presents no difficulty. Then it follows
from Hartog's theorem that T(z, a) is holomorphie in (z, a~a E K, z P V(a}), where gl is some complex neighbor-
hood of ]-28.19,4[. In turn, E(s, t} is holomorphie in a domain G of the form

G = [s, t
~
(s —a) (t —a) (u —a) = (-', —a)', s, t, u = 4 —s —t 66 p; g ~ SI, p ~ 4) . (4.20)

It is interesting to note the existence of points
(s, t) in the domain (4.20) which are not contained
in the extremal domains of the form (2.5) obtained

by the Mandelstam-Martin method. Indeed the pa-
rameters a, in Eq. (2.5) are strictly restricted to
be larger than -28, bug our lower limit is a
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V SUM RULES FOR 7rozo ~ +on.o SCATTERING

We shall first specialize the representation (4.12)
to the case of neutral pion scattering and use the
resulting representation to derive a set of physical
necessary and sufficient conditions on the absorp-
tive part that guarantee full crossing symmetry.
These conditions also lead to potentially useful
sum rules.

The amplitude for m'z' scattering, E,(s, t, u), is
completely symmetric in s, t, and u. In terms of
our variable z, it is clear from Eq. (3.6) that

F,(z, a) is a function of z', and instead of Eq. (4.11)
we have a Taylor expansion of the form

F,(z, a) = Q n„(a)z'" .
n=O

Thus the representation (4.12) becomes

(5.1}

F,(z, a) = u, +(, dz ' „, X(z ', a) .
8 tr ~@{) 8 8 8

(5.2)

= -28.19. This improvement is not very signifi-
cant, because it can also be obtained (and even bet-
ter) by applying our method to hyperbolas of the
form (s —a)(t —a) =A instead of cubics. For this
reason, the full extent of the domain (4.20) for com-
plex a will not be worked out here. For the pur-
pose of analytic continuation, it is not clear that
one gains very much by using simple analytic hyper-
surfaces which have the full symmetry of the (un-
known) domain of holomorphy. On the other hand,

the method of analytic completion based on the theo-
rem of "removal of cuts" and the tube theorem, so
powerful in the derivation of domains of the form
(2.5),' does not apply directly to domains of the
form (2.4), at lea, st not in an obvious way. For
this paper we shall be content with the simple re-
sult of more practical interest, namely the validity
of Eq. (4.12) for -28.19&a&4.

4O{a)

u„(a) = —— dQ sin(3np)7L(e'~, a), n o 1.
~ 27'/3

(5.4)

In the present case it turns out to be convenient
to use the variables s„and a defined by

4a=a-—
3 ~

(5.5)

We also introduce homogeneous variables similar
to those given by Wanders, '

x= ~(s t +u t +su),

y= ~~(st u).
(5.6)

Simple algebra relates z and y to our variables a
and z,

Z3—2

(z3 1 )2

Z3—3

(
3 1)2

(5.7)

A necessary and sufficient condition for F,(s, t, u)
to have full crossing symmetry is for I'o to be a
function of x and y only. Thus in some neighbor-
hood of the symmetry point, z = y = 0, one can
write

E,(s, t, u) = Q C~x2y'.
P, a=O

(5.8)

y (z ) g C u(22+32) P+2

&2& =O
(5.9)

The coefficients C are independent, and Eq. (5.8)
contains all the crossing information for any set
(c ).

In order to obtain the crossing restrictions on
the absorptive part, we shall first use Eq. (5.8) to
relate the C 's to the coefficients n„(a) of Eq. (5.1).
Then using the representation (5.4) for u„(a) we

get sum rules involving A(s, t).
Using Eq. (5.7) we have

As we already noted in the previous section, the
coefficients n„(a) are polynomials in a. By expand-
ing the right-hand side of Eq. (5.2) we get sum
rules for u„(a) for n o 1,

where

8'
(z' —1)' ' (5.10)

1 ~ 1 ~'3
u„(a) =-

~

dz'A(z', a), , n o 1. (5.3)
~ ~V{a)

Using the full symmetry of F, and Eqs. (4.7), we
can reduce the integration path to V,'(a) only. Fur-
thermore, at this stage we shall for simplicity lim-
it ourselves to case I, —,

' &g&-,'. The final results
of this section can later be suitably extended to all
admissible values of t2. With z' = exp(ip), we get
from Eq. (5.3)

T,(z, a) =g (a)'"d'„(a)v",
n=O

(5.11)

where d'„(a) are polynomials of degree n deter-
mined by C~, according to

6'„(u) =-Q C„,, a'.
e=O

(5.12)

To obtain relations between the n„'s and the

For a fixed a, —,
'

& a & -', , F,(z, a) has a simple ex-
pansion in powers of v,
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C~, 's we have to compare the coefficients of each
power of z in Eqs. (5.1) and (5.11). It turns out to
be more convenient to expand z' in terms of p in
Eq. (5.1) and compare coefficients of powers of v.
Inverting Eq. (5.10) we obtain

( 1 (1+4v)"' '
8 = p

2v
(5.13)

Using Eqs. (5.14) and (5.13) in (5.1) and exchanging
orders of summation, we obtain

8 m 2n
T",(z, a) = n, + Q Q n (a) — (-1) (-1)"v" .

n=I —m=1
(5.15)

Comparing this with Eq. (5.11) we get our relations
between the e„'s and the C~, 's,

(a)'"12„(a)=(-()"g a.(a)—(
"

)(-1)n n

m=l
(5.16)

We now substitute Eq. (5.4) for n„(a) and use the
fact that mn (a) is even in m, as is („'" ). After
some algebra this leads to

(a)2n(P (a) ( 2)n -1

@O(a)

x d(t)A(e'~, a)(1 —cos3$)" ' sin3$,
"27I/3

n~1.
(5.17)

Finally, we rewrite this set of sum rules in terms
of the more familiar s and t variables. From Eq.
(3.6), for z = e'~we have

cos(I) =-
2s

(5.18)

By substituting Eq. (5.18) into Eq. (5.17) we have

(-27)" " A(s, t (s, a)) a " ' 3a

where

= -(P„(a), n ~ 1, (5.19)

o- I/2 ~S+30
t (s, a) =-,'s -1+

s —a
(5.20)

According to our discussion at the end of Sec. IV,
these equations are valid for -29.52 & a & 3.

To get sum rules from Eq. (5.19) one can evalu-

We need the expansion of the 2nth power of the
term in the bracket above. This turns out to be a
standard expansion related to the so-called Catalan
numbers, "

1 —(( +4a)'~' '"
2 n 2m +2n)

2v ~ (m+n) m

(5.14)

ate the left-hand side for different values of a and
eliminate the polynomials on the right. These sum
rules will only involve A(s, t (s, a)) for different
values of a. Another way to proceed would be to
differentiate Eq. (5.19) with respect to a (n+I)
times and obtain relations involving A(s, t(s, a)) and
its derivatives with respect to t.

We give an example of the first kind of sum rule
obtained by setting a =b, b, a-nd 0 in Eq. (5.19)
with n=1:

3b

J
A(s, t (s, b)} 2 —=

8/3 S s

3b "ds
+A(s, t(r, -b)) 2+ — =4 —,A(s, t =0).

S 8/3
S'

(5.21)

This equation, which follows from two-variable
analyticity and crossing, is the type of sum rule
that was sought in Ref. 1 for W, (v, q'), the absorp-
tive part of the Compton amplitude. Here in Eq.
(5.21), for admissible values of b, the absorptive
part A(s, t) is either physical or determined from
physical partial waves through the Legendre expan-
sion.

But perhaps the main value of Eq. (5.19) lies not
in sum rules like (5.21) but elsewhere. Namely,
we shall see below that in a sense Eq. (5.19) pro-
vides us with a set of necessary and sufficient con-
ditions that guarantee full crossing symmetry.

The problem is the following: Supposing we are
given an s-channel absorptive part A, (s, t) with the
necessary analyticity properties in t, how can we

make sure it is the absorptive part of a symmetric
amplitude?. Of course we can easily choose the u-
channel absorptive part A, (u, t) such that A, =A, .
This takes care of s —u crossing. However, it al-
so effectively determines I', (s, t) modulo subtrac-
tions, via fixed-t dispersion relations. The diffi-
cult part to guarantee now is that the I'o determined
by Al = A3= A. should also have a t-channel absorp-
tive part A, (t, s) which is identical with A, and A, .
The converse of the steps used in this section
gives us a way to achieve this aim. Namely, sup-
pose one starts with an A(s, t ) that satisfies Eq.
(5.19) and defines a set of polynomials (P„(a). We

can use the coefficients of these polynomials to
uniquely define a function G,(s, t) through a series
of the form

G,(s, t)=g Q P',"'x"-'y', (5.22)
n=O a=O

where (P„(a)= Q,",P,")a'. The function G,(s, t) thus
defined will obviously be crossing-symmetric. By
reversing the argument of this section, substitut-
ing Eq. (5.17) for (P„(a), and carrying out the sum-
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mation over n we get back a representation identi-
cal to (5.2) for G, (z, a). This will define a cross-
ing-symmetric function whose three-channel ab-
sorptive pa. rts are identical and given by the A(s, f )
we started with.

We can convert Eq. (5.19) into a set of sum rules
for the absorptive parts of the partial-wave ampli-
tudes. As we shall see below this could be of some
use for the problem of deriving bounds. Along the
s-channel cut A(s, t (s, a)) has a convergent partial-
wave expansion

A(s, /(ski)) =(, ,' )3

From Eq. (5.20} we have

(5.24)

We also define ],= ((s, a=0) = Is/(s —
—,')]'. We want

to substitute Eq. (5.23) into Eq. (5.19) and expand
in powers of a. Setting the coefficients of a equal
to zero for m ~ n+1 gives us the desired sum rules.
We first expand P, (g"') about the point $, and get

P, ($'")=P '.
,

' ($ —$,)', l even, (5.25)j —p o

where

xg (2l + 1)a, (s)P, ( $"'(s, a)) .
l=p

$ even

(5.23)

The variable ( is given by

dj
P (/)( ] ) P (~l/2)

»om Eq. (5.24) we have

(5.26)

$ =cos'9,

Using Eqs. (5.27), (5.25), and (5.23) in (5.19) we

obtain

l even (5.28)

We now expand (I--a/s)" ' ' and rearrange summations. The coefficients of /7 for e& n+I on the left
should vanish, giving us, after some algebra,

ds 4(s+ ~4),„+ +, ,' ~ ~ (2l+l)a, (s)P,'((,)(4P„)/, , ),
=0, for m~ n I+; n 1~(,), (3j —rn —2n)

I3 — 3 — l =2n j =n )0 m ) 0 ) 5 t

(5.29)

with &,(s}= [s/(s ——,')]'. This gives us a sum rule
for each pair of positive integers (I, n) with m
- n+1. The absorptive parts a, (s) are physical and
satisfy 0 &a, (s) & 1. Roskies derived a similar
(and equivalent) set of sum rules for the a, (s) using
different techniques. Although his results and ours
agree for a few low values of (m, n), his condi-
tions, as noted in Ref. 5, are not all independent.
On the contrary, the relations given by Eq. (5.29)
are independent, as is clear from the fact that the
coefficients of (i'„(a) uniquely determine the C~,'s in
Eq. (5.8).

The set of conditions (5.29) is also simpler than
those of Ref. 5. This raises for us the following
important question: Can Eq. (5.29) be used as an
additional input in seeking to improve bounds like
the Froissart bound? The input used in many of

the proofs is (i) positivity, 0 & a, (s) & 1; (ii) con-
vergence in the Martin-I ehmann ellipses; (iii)
polynomial boundedness. Clearly, crossing sym-
metry and analyticity demand that (a, (s)]. also sat-
isfy Eq. (5.29). Kinoshita, I oeffel, and Martin"
constructed a set of a, (s) satisfying (i;, (ii), and
(iii), which saturated the Froissart bound. It would
be quite valuable to construct a set (a, (s)] which
satisfied not only (i), (ii), and (iii) but also (5.29)
such that Froissart bound would again be saturated.
If such a set can be found then the problem of "im-
proving" the Froissart bound would become consid-
erably more difficult, since we would have included
the main remaining general condition, i.e., cross-
ing, that is available to us, without improving the
bound. Of course, a completely satisfactory ex-
ample should also include the strict unitarity in the
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elastic region. But it is very doubtful that this last
requirement could change the status of the Frois-
sart bound. The problem of improvement, if in-
deed any is possible, will have to depend on de-

tailed dynamical input which will take it outside the
field of derivation of bounds from a few general
principles.

VI. SUM RULES FOR CHARGED-PION SCATTERING

We do not intend to discuss here the scattering of charged pions in full details. The method of Sec. V
can be applied to this case in a straightforward way, and we shall content ourselves with a few examples.
In the neutral case, sum rules were derived by identifying the coefficients of z'", n. = 1, 2, . . . , in Eqs.
(5.1) and (5.2). In the general case, we have to identify the coefficients of z, p=3, 4, . . . , in Eqs. (4.11)
and (4.12). It turns out that no further condition is obtained when P = 3n Th.ese sum rules are identical to
those given in the neutral case, whatever isospin combination is considered. On the other hand, two new
(and independent) sets of conditions are obtained when P = 3n+ 1 and P = 3n+2, which again do not depend on
the choice of a particular isospin amplitude. For instance, the simplest one, corresponding to p =4, is
found to be

3tvSa' " ds a a' 1/2 —2

f"(a) —f"(a) = — =, 1 —9 =+9:, (2&' —5A')+9 1+3 ——9 —,A'
8/3

s' s s+ a s s

where

(6.1)

(6 2)

is the amplitude with isospin I=1 in the s channel, and

4'—:2,"(s, t(s, a)), I=O, 1, 2. (6.3)

is the s-channel absorptive part of the amplitude with isospin I in the same channel. Moreover, we have

f", (a) —f", (a) =a'(P, (a),

where (P,(a) is an arbitrary quadratic polynomial in a. Further differentiations (or differences) with re-
spect to a have to be carried out in Eg. (6.1) in order to get useful sum rules, or partial-wave constraints.
The latter, of course, will be ecluivalent to (although different from) the set given by Roskies. '

Extra conditions supplement the rigorous ones derived until now if one adds phenomenological inputs re-
stricting the high-energy behavior of the amplitudes, For instance, it is commonly assumed that the
fixed-s dispersion relations for the amplitude with isospin 1 in the s channel require only one subtraction.
In our z plane, this means that we can write contour integrals for (z'+a+ I)F"(z, a) instead of (z' —1)
x F"(z,a). Then, taking into account the antisymmetry of F" in the interchange t —u Iwhich implies
F"(z, a) = F"*(z*,a)]—, Eq. (4.12) is replaced by

2(l+z+8 ) & y(g) 8 8 —z

from which it follows that

(6 4)

(6.5)

with the definitions (6.2) and (6.3).
As f, (a) is proportional to a, the simplest sum rule resulting from Eg. (6.5) is obtained by differenti-

ating once with respect to a and using Eq. (4.14') (case I):

ds ds BA. Bg s —3a ~A'
a s+3a 3/2 s+3a 1/2 s a 3/2 gt gt s a s+3a 1/2

The "fixed transfer" version of sum rules like (6.1) and (6.6) has been discussed extensively else-
where. "As in our case the argument goes through in essentially the same way; it will not be pursued
here.
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Note added in Proof One should note that Eq. (4.13) is tremendously simplified in the fully symmetric
case, m'n - m'm'. In that case one obtains

Fo(s, t, u) = cxo+—
1 oo f

A(s'; I,(s', s, t, u)) H(s', s, t, u),
S

where H(s'; s, t, u) =[s(s' —s) '+t(s' —t) '+u(s' —u)-'], and t„(s', s, t, u) =t (s', a) with a= st u(st + tu+ su) '

and t,(s', a) given in Eq. (5.20). This representation holds for any point (s, t) for which ~ =- t,(s', s, t, u) + —',
lies in the Martin-Lehmann ellipses E(s ) for A(s, w) given in Eq. (A2). The similarity of this representa-
tion to the Cini-Fubini approximation is striking. This representation follows most directly from Eq.
(5.2) by transforming from the (z, a) variables to the s, t, u variables. ,
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APPENDIX

We want to find the range I of real values of g
such that the two functions A,(s', a) and A. (s', a)/
(s'+Sa —+~6)"' are analytic for a ~I, vs' o 4. Here

A, (s', a) =A, (s', t,(s', a))+A, (s', t (s', a)), (Al)

where A. ,(s', t) is the absorptive part of the ampli-
tude in the s channel and t,(s', a) are defined by
Eq. (4.14). Equation (Al) shows that the singulari-
ties at g= '9 3s due to the square-root branch
point in t„(s', a) cancel each other in the expres-
sions for A„and A /(s'+Sa ——", )"'. This means
that I is simply given by

I = Ia ~t,(s', a) W E(s'), s' & 4t,
where E(s') is the analyticity domain in t of
A. ,(s', t), which contain the Martin-Lehmann el-
lipse. ' More precisely, one can take

F. 0, 4 —s' 16+, —,4 «s'&1664
s' -4

E(s')= (E 0, 4 —s', , 16& s' &32,, 256

F 0 4-s' 4+, , s'~ 32
64

s' —16

where E(f„f,~d) stands for the (open) elliptic dis~

with foci t= f„ t= f, and right extremity t= d. If
a& —', , t,(s', a) are real for all s'~4. Thus the con-
dition for a ~ I is in this case

16+, , 4 «s' &1664
s' —4 '

t,(s', g) & (, , 16 ~s' ~32 .256

4+, s'~ 32
64

s' —16 '

It is easily checked that Eq. (AS) is satisfied when

—,
'

& a &4, the two curves t= t,(s', 4) and t= 4+64/
(s' —16) touching only at s'=~. If a& —,', t,(s', a)
are still real for s'o —", —Sa, with t,(s', a) E= E(s')
in this range. For s'&+ —3a, however, t,(s', a)
become complex, and the condition t,(s', a) E E(s')
now means that Imt, (s', a) has to be less than the
half-length of the small axis of the ellipse E(s').
From Eqs. (4.14) and (A2), this is equivalent to

(A2)

4v s' (s'+4)
s' —4

4 «s'&16 (A4')

t

( —"—Sa —s')"' & ( —(s" —4s'+256)"',
2 (s' —a)"' ' s'

2vs' (s' -8)
s' —16

16 «s' «32 (A4")

(A4 I I I )

Numerical evaluation shows that (A4') is satisfied for all g &-,' . On the other hand, (A4") is true for g

& —37.09, and (A4"') for a&-28.19 (in the last case, the inequality is saturated for a= -28.19 s'=46.48).
Collecting the results, we find that I = ]-28.19,4[.
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The Mandelstam construction of crossing-symmetric, unitarity amplitudes for pion-pion
scattering is reformulated in terms of partial waves. The amplitude is obtained by solving
a set of nonlinear equations for the physical partial-wave amplitudes. A conformal mapping
of the cos8 plane, introduced by Ciulli, Cutkosky, and Deo, is used to implement crossing
symmetry. It is shown that the equations have a solution, which may be constructed by means
of a convergent iteration.

I. INTRODUCTION

During the past few years, substantial experi-
mental information on low-energy n-m scattering
has accumulated. ' At the same time, new theo-
retical techniques are leading toward a phenome. -
nology in which the constraints of crossing sym-
metry, unitarity, and analyticity are exploited
more completely than heretofore. For instance,
Martin2 has obtained some interesting inequalities
for partial-wave amplitudes in the region 0 &s &4
as consequences of analyticity, crossing symme-
try, and positivity of absorptive parts. Balachan-
dran and Nuyts, ~ Roskies, 4 Basdevant el al. ,

' and
others have derived necessary and sufficient con-
ditions for crossing symmetry in the form of lin-
ear moment relations between partial waves in
the same region. Roy, ' Steiner, ' Basdevant et al., '

and Yen and Roskies ' have introduced crossing
constraints which refer to the physical region
alone. Ciulli, "Cutkosky and Deo, "Presnajder
and Pisut, "Ross, "and others are following a
somewhat different program in which analytic ap-
proximation theory and statistical analysis are
used to design "optimal" methods of data fitting
which respect the presumed analyticity properties
of the amplitude. The crossing constraints have
narrowed the choice of acceptable models of low-
energy m-n scattering, while optimal data fitting
appears to be helpful in reducing the ambiguities
of phase-shift analysis, coupling-constant deter-
minations, and the like.

Several workers '~ have constructed generalized
effective-range models of low-energy m-m scatter-
ing, in which the parameters were fixed, or at
least restricted, by crossing constraints. In


