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eighth component of an octet, we have an effective
correction term to the exact SU(3) matrix element which

is of the form (PI V'SBI&) where S& is the symmetry-
breaking operator. Thus we have not only matrix ele-
ments between octet states of an octet operator but also
an operator whose SU(3) structure is 8 & 8 = 1+~8+ ~8

+ 10+ 10*+ 27. Requiring G parity and time-reversal
invariance for the matrix elements eliminates the E3
form factor in the absence of SU(3) breaking and means
that only the 8& and 10 + 10* terms in the above expan-
sion can contribute in first order. The structure of the
matrix element is then as given in Eq. (3) with the b&()

term coming solely from the decuplet operator. For
details see, e.g. , R. Gatto, in Strong and Weak Inter-
actions: Present Problems, 1964 International School
of Physics "Ettore Majorana, "edited by A. Zichichi
(Academic, New York, 1965).

SAnother obvious consequence is that the slopes of the
E&'s for weak processes, normalized by their q = 0
values, equal that of the proton charge form factor.
This is rather large and should be readily seen in an
experiment such as v+p Zo+ p, +, providing a new
test of octet conserved vector current.
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A study of exclusive processes is presented. A simple one-current dual model is used as
a theoretical laboratory for abstracting properties of the exclusive process which are also
confirmed from general considerations. The form of the amplitude in the scaling limit is
v~E(~, t) with 5 being independent of cu and t. The parameter 5 is also related to the rate of
convergence of form factors as well as to fixed singularities in the angular momentum plane.
Comparison with the light-cone-dominance approach is given and 0 is shown to be simply
related to a parameter d, which is given by the dimensions of the operators involved in the
expansion of the product of the weak current with a strong source, and determines the singu-
larity strength near the light cone. Possible determinations of d (or, alternatively 0) are
outlined. An example of "evaluating" d from coupling constants and Regge intercept is
presented, which strongly supports the notion of noncanonical dimensions. It is remarked
that, in the model discussed, the annihilation channel scales in the same way as the electro-
production process.

I. INTRODUCTION

The scaling property, proposed by Bjorken, '
finds a support from the existing available data on
e+ p- e + X, where X is the hadronic missing
mass. Various approaches' have verified the
Bjorken scaling in e + p —e + X. The observation
that the scaling property is closely related to the
singularity structure, near the light cone, of a
product of local operators has' led to many inter-
esting theoretical works. 4

Applying light-cone dominance to exclusive pro-
cesses, it was proposed ' that in the scaling limit
the amplitude would have the factorized form
v ~ 'f(&u, f). In this approach d is a constant, in-
dependent of t and ~, which is related to the di-
mensions of the operators involved in the expan-
sion and measures the singularity strength, near
the light cone, of the product of the weak current
with a strong source.

As discussed by Frishman (Ref. 4) the light-
cone-dominance assumption for exclusive proces-
ses is not unambiguous, in constrast with the in-
clusive case where such a problem does not arise.

The possibility of d being a noncanonical dimen-
sionality has been raised in Ref. 5. The nature of
the parameter d could not be determined in the
context of light-cone expansion unless an explicit
model is assumed from which the currents are
constructed.

A theory with anomalous dimensions is known'
to arise in the two-dimensional Thirring model.
On the other hand it has been argued' that the
anomaly disappears in four -dimensional models.
It will be interesting to learn more, in a specified
model, on the possible nature of the parameter d.

Since d controls the exclusive-process amplitude
in the Bjorken limit it can, in principle, be mea-
sured directly from data in that limit. In coexis-
tence with the light-cone approach, the parameter
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d may appear in other physical quantities (e.g.,
form factor) and show itself in other limits (e.g.,
Regge limit}. As a result d can, in principle, be
determined from other data in addition to the
scaling-limit data. Such considerations will be
discussed later in more detail.

In order to shed light on the structure of exclu-
sive processes in the various limits and on the na-
ture of the parameter d, we employ a dual model
with one current only. The merits of one-current
dual amplitudes, as compared with amplitudes in-
volving more than one current, were discussed by
Freedman' and would not be repeated here. %e
shall only stress that the model is used as a the-
oretical laboratory for abstracting, hopefully,
some physical results. Indeed such an approach
has had a considerable number of successes; the
latest striking one is perhaps the prediction of the

transverse-momentum cutoff in multiparticle pro-
duction processes.

It will be shown that the simple one-current dual
model leads, in the Bjorken limit, to the same
form as obtained from the light-cone approach.
Moreover the parameter appearing in that limit
(analogous to d in the light-cone expansion} affects
the rate of convergence of form factors as well as
the J-plane structure, thus providing other ways
for studying that parameter. A closed expression
for that parameter will be given in terms of cou-
pling constants and Regge trajectory intercept.
Comparing with the light-cone result we then
learn that it is more likely for d to be noncanoni-
cal dimensionality.

The above results are derived from fairly gen-
eral arguments, thus lending a support to the con-
clusions drawn from the model.

The kinematics of the exclusive process and the
presentation of the model amplitude, with some of
its properties, are given in Sec. II. The Regge
limit and the structure of the amplitude in the J
plane are discussed in Sec. III. In Sec. IV the
Bjorken limit is investigated and its relation with
the Regge limit is studied. Fairly general argu-
ments are provided in Sec. V which support the re-

suits derived in Secs. GI and IV. These arguments
show, in a natural way, why and how the param-
eter appearing in the Bjorken limit is related to
the asymptotic behavior of form factors as well as
to possible fixed singularities in the angular mo-
mentum plane. In Sec. VI we summarize and dis-
cuss the main results, emphasizing the likeliness
for anomalous dimensions in exclusive processes
and pointing out possible determinations of the pa-
rameter d. A brief discussion of the annihilation
process, including its relation to the electropro-
duction one, is also given.

II. THE MODEL AMPLITUDE

Since the exclusive "electroproduction process"
will be studied, the following reaction is consid-
ered:

y(q)+ o(k,)- o(k, )+ v(k4).

The virtual "photon" y with momentum q will be
represented by a scalar current. The other iden-
tical particles are scalar ones with the corre-
sponding momenta in the parentheses. The kine-
matics is given in Fig. 1.

The invariant variables to be used are

k, q
V =

m

s = (q+k, )2= q2+2mv+ m',

t = (k, +k,)'.
(2)

Here m is the scalar particle mass and all par-
ticles are incoming, as shown by Fig. 1.

The one-current dual amplitude to be studied
here is directly constructed from the well-known
five-point function with the first and fifth parti-
cles forming the current as described in Fig. 2.
The trajectories in a channel containing one of the
lines 1 or 5 are taken as fixed and because of sym-
metry they are determined by the same parameter
5. Then the amplitude" " corresponding to the
ordering of Fig. 2 is

cr (k~)

(y- (k~) a(k )

FIG. &. The kinematics of the exclusive process.
FIG. 2. A five-point amplitude from which the one-

current dual model [Eq. (3)] is constructed.
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A (s, t, q') = C
"0 +0

d«dy «- n(s)-1(1 «)- n(t)-1

- (xy(a2) 1 (1 y)-6 1 (I «y)R(t)

(3)

where C is an over-all normalization factor and
we take C =1. The trajectories nz (in the current
channel) and a have not necessarily the same in-
tercept (however, a universal slope will be as-
sumed).

The full amplitude is a combination of 6 terms
corresponding to the possible ordering of the s, t,
and u variables [u = (k, +k,)']. However, perform-
ing the projective change of variables

of the amplitude in (3) which are presumably fea-
tures of the parent level and avoid ourselves from
going into details characterizing daughter states.

Let us study the role played by the parameter 5.
This parameter appears in the scattering ampli-
tude of real "photon" where for this case q' =0 in

Eq. (3). Denoting the leading scalar pole, in the
current channel, by a& one derives the strong am-
plitude for a&+o-o+o as a residue of that pole.
This residue is simply obtained from (3) by sub-
stituting y =0 in the nondivergent terms and inte-
grating on the divergent one with the proper trivial
analytic continuation in mind. The parameter 5

then does not appear in this residue and the origi-
nal Veneziano representation is recovered. Simi-
larly the o particle form factor is determined from
the x= 0 region of integration and is given by

one immediately finds that A (s, t, q') =A (t, s, q'), etc.
The total amplitude is therefore

I'(- n, (0) —5) r(- n, (q'))
r(-a (0)) r(-a&(q2) —6)

(5)

T()), t, q') =2[A(s, t, q')+A(u, t, q')+A(s, u, q')].

(4)
We shall discuss only some general properties

with the normalization F~„(0)= 1.
Additional circumstances, in which the param-

eter 5 shows itself, will be discussed in the follow-
ing sections.

III. THE J-PLANE STRUCTURE AND HIGH-ENERGY BEHAVIOR

As expected from the presence of the parameter 5 in (3) there will be, in addition to moving Regge poles,
also another kind of singularity. In the discussion below also the type of the singularity will be deter-
mined.

The leading singularities in the angular momentum plane are easily obtained from the following useful
integral~2 representation of the amplitude in (3):

r(-n, (q'))r(-6) 1
t

"'" r(-)3)r(p —5)r(p -n(t)) r(p+ a(s) —a (q') —5)
I'(a(s) —n~(q') —6) 2vt ~ „,„ I'(p —6 —n~(q')) r(p- n(t) —6)

where the integration contour runs parallel to the imaginary axis, lies to the left of the poles in I (-P)
(@&0)and to the right of the other singularities stemming from the I' functions in the numerator.

Now the high-~s~ limit is taken in (6), with q fixed, and one obtains

A(s, t, q') r(-nz(q'))r(-5) . , (-a's)adP .r(-p)r(p —5)r(p -n(t))
„,.„rp-5-n, (q')r p-at 6)-

In fact the coefficient of (-n's)s is the Mellin transform of the amplitude, from which the singularity
structure can be read. As was anticipated, an additional type of singularity emerged, namely a fixed sin-
gularity of the multiplicative kind located at 6 (the lower lying singularities will not be considered).

Picking the rightmost singularities (the contour, of course, being closed to the left), the high-energy be-
havior is then

A(s, t, q') ', r(- (t))(- '
) "'+r'(-~) (- ' )'„r(n(t) —n (q') —5) I'(-n(t)) (8)

Note that the residue of the fixed pole is q'-inde-
pendent. Moreover at the leading pole in the cur-
rent channel [n~(q') =0] the second term in (8)
does not contribute and the residue of the first
term has a pure Regge behavior with no depen-

dence on 6. This result is in accord with the fact
that the parameter 5 is a feature of weak proces-
ses and not of strong ones as o'&+a-o+0.

In a later section we shall provide intuitive ar-
guments for the high-q' dependence in (8).
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The signature in the present model is obtained
from A(u, t, q') [see Eq. (4)] simply by replacing
-n's, in Eq. (8), by a's.

The term A(s, u, q') has an amusing high-energy
behavior. It does not vanish exponentially as in
the strong amplitude case. This term exhibits a
fixed pole of the additive type located at 25 with a
residue being independent of q'. However, since
5(0 [see, e.g., Eq. (5)] this pole is nonleading,
as compared with the multiplicative singularity at
5, and therefore the A{s,u, q') term will not be
considered. It is obvious that A(s, u, q') will not
contribute at all to the residue of the leading pole
in the current channel.

It should be remarked that although each term
in (8) separately diverges for a(t) =Pi their sum
does not and the net energy dependence is (o's)6
x Ini o.'s~. The additional logarithmic term is a
manifestation of the multiplicative nature of the
fixed pole.

This section furnishes another example in which
the parameter 6 shows itself in a definite way,
namely in the J-plane spectrum of the amplitude.

IV. THE BJORKEN SCALING LIMIT

From reasons stated in the Introduction, it will
be of importance to see whether the light-cone
derivation in the scaling limit of exclusive proces-
ses, ' namely v 4 'f (u, t), could be obtained in a
different approach. Having this in mind our model
amplitude [see Eqs. (3) and (4)] will be analyzed
in the Bjorken limit.

The scaling variable is defined as

leading to

s = m'+2mv(1 —I/u))

from which the range of cu, in the electroproduc-
tion process, is obtained, namely, 1 (~.

The integral representation, given in (6), which
was used for the high-energy behavior, is also
suitable for studying the scaling limit. For large
s and iq'~ with ~ fixed (&u) 1) one obtains from Eq.
(6)

,r(-6) 1 ""r( P)r ({I--~)r(p- ~(t))

where B stands for the Bjorken limit. Similarly for the A(u, t, q') term the limit is

{10)

(10')

T(v, t, q')- v~I'(w, t).
B

This is exactly the same form as derived from light-cone expansion. ' By comparing the two approaches
one is led to the identification

),r(-5) 1 t~"" r(-p)r{p -5)r(l{—&(t))(

As in the high-isi limit (discussed in Sec. III) also here the term A(s, u, q ) is nonleading and will not be
considered.

Then, from (10) and (10'), the total amplitude in (4), of the process @+o-&r+o, has the following form
in the scaling limit:

6 =-d —2. (12)

A(s, t q')- (2o'mv)~(r(o'(t) —5)r( n(t))e '~""'~-""' ~+r(5 —o(t))r(-5)e "~j
and a similar expression for {10'). Equation {13)should be compared with the large-iq'~ limit of (8),
which is the "scaling limit in the high-energy region, " and the same expression is obtained. Thus the two
limits are interchangeable. "

(13)

Then the parameter d, which is related to dimensions of operators, shows itself in many circumstances;
in the behavior of form factors, in a multiplicative fixed singularity in the J plane and in the scaling limit
of the exclusive process @+0-0+a. Therefore, in principle, one can measure d from several aspects of
the data. This observation is supported by intuitive and fairly model-independent arguments as discussed
in Sec. V.

We conclude this section with a remark on Eqs. (10) and (10'). As opposed to the case in (7), here ~ is
not necessarily asymptotic and therefore one cannot assume the dominance of the leading singularities.
Many nonleading singularities could contribute significantly for nonasymptotic u and the exact expressions
for (10) and (10') involve hypergeometric functions. We shall not write down these expressions because of
their sensitivity to the daughter levels. However, for &u» 1 (large iq'i and s/iq'i), which is the "high-en-
ergy limit in the scaling region, " Eq. (To) reduces to
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V. HEURISTIC APPROACH &+2+a(g)

f (~,t), f,(t)
4J)) $

(15)

In the preceding sections we have abstracted,
using a dual model as a guide, several results for
the exclusive process y+0- o+ o. The role played
by the para. meter 5 (or, equivalently, d) has been
emphasized.

In the following discussion we shall show that
fairly general considerations confirm, in a simple
and natural manner, the aforementioned dual mod-
el results. The analysis is based on the form of
the amplitude in the scaling limit and" on the
high-energy structure of the exclusive process.
One therefore starts with"

T(v, t, q')-v ' 'f((u, t}, (14)

Y(q)

where the exact definition of d is given in Ref. 5

[for its relation to 5 see Eq. (12)] .
We shall now pass to the "high-energy limit in

the scaling region, "namely, to co» 1. In this limit
the large virtual-photon mass is small compared
with the incident energy. Therefore the process
can be described in terms of t-channel singulari-
ties as shown by Fig. 3. From this t-channel pic-
ture it is obvious that the transition form factor
of the upper vertex in Fig. 3 will appear in the
limit ~» 1. For simplicity suppose that the mov-
ing exchanged object (leaving aside, for the mo-
ment, other types of singularities) lies on the tra-
jectory of the external scalar particles. In such
a case the asymptotic elastic form factor will be
present in the t-channel description. An interde-
pendence between q' and t can show up which, how-
ever, should disappear near the t-channel 0' pole
[a(t) = 0]. Combining the above arguments with
the form in (14), for u»& 1, it is obvious that the
parameter d will also determine the asymptotic
behavior of the elastic form factor. The exact der-
ivation of this fact will be given now. For ~»1,
the expression in (14) should give the familiar v

behavior. This requirement restricts f(~, t) to be-
have, for v»1, as

so that

As discussed above, the interdependence between
q' and t is indeed eliminated at n(t}=0. The high-
~q'~ behavior of the elastic form factor is then

Fz„(q'} ~ const,
]+2] ~ oo (

(17)

(18)

The virtue of the second term is in its persis-
tence in the limit &u- ~ even for n(t) & M —2 where
the first term vanishes. With Eq. (18}one obtains,
instead of (16), the expression

2~(v, t, q ) ~ v
2)g 2 2) (t)fo(t)

+v ' 'f, (t). (19)

The second term is due to a fixed singularity lo-
cated at 5 = —d —2, and Eq. (19) is in accordance
with Eq. (13) [suppressing signature factors com-
ing from A(M, t, q')]. However, here one cannot
determine whether the fixed singularity is of the
multiplicative or the additive type.

It is gratifying that completely different deriva-
tions have led to similar results. This fact then
strongly supports the general validity of these re-
sults. We shall further discuss their significance
in Sec. VI.

Recalling the identification 6 = -d -2, one ob-
serves that Eq. (17) is in agreement with the dual-
model result given in (5). Moreover the same as-
ymptotic result [Eq. (17)] wa.s predicted" by
Brandt and Preparata in the context of the light-
cone approach. It should be emphasized that also
in the light-cone expansion the same parameter d
appears in both the asymptotic behavior of the form
factor" and in the Bjorken limit of the exclusive
process. '

Another type of singularity, in addition to a mov-
ing Regge pole, can be introduced simply by re-
placing Eq. (15), with, e.g., the following expres-
sion:

VI. SUMMARY AND DISCUSSION

FIG. 3. The t-channel description applicable to the
limit co && 1.

A study of some aspects of the exclusive process
y+0- a+o has been presented. A simple one-cur-
rent dual model has been used as a theoretical
laboratory from which several results have been
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abstracted. Such a model, having only one current,
has the advantage' of producing the same spectrum
as in the pure hadronic case in the parent level and

does not suffer from the severe inconsistencies
present in models involving more than one current.
%e have avoided ourselves from relying upon der-
ivations which are sensitive to the structure of
daughter levels and emphasized only those results
which depend on the leading singularities. It is
encouraging that the form of the amplitude in the
scaling limit as well as the asymptotic behavior of
form factors are obtained also in the theory of
light-cone dominance. '" Moreover, in both ap-
proaches, the same parameter d [or equivalently

5, as shown by Eq. (12)] determines the large-
~

q'~ behavior of form factors and the scaling limit
of the exclusive process. The parameter d is also
related to a fixed singularity in the J plane, as
discussed in Sec. III. All these results were
shown to emerge from simple and quite general
considerations.

The question whether d is a canonical or anom-
alous dimension is very interesting. If it is ca-
nonical then a scale-invariant free field theory de-
termines it and therefore no coupling constants
are involved in its definition.

A possibility for "evaluating" d, not from high-
~q'~ and/or high-v data, will be now considered.
For this purpose the elastic form factor, E&„(q'),
will be studied. The asymptotic behavior of
E&„(q'), as given in (17), was derived from gen-
eral arguments (and also from light-cone ap-
proach "}.However, for the behavior in the non-
asymptotic q' region one needs an explicit model.
Suppose we assume a Veneziano-like form factor,
namely,

r(-a, (0)+ d+2) r(-a, (q ))
I'(-a z(0}) I'(- a&(q') + d + 2)

(20)

which fulfills Eq. (17) and is normalized so that
E~„(0)=1. Then by going to the first scalar pole
of the current, at which the dominating diagram is
depicted in Fig. 4, one obtains"

FIG. 4. The dominant contribution to the elastic
form factor [given in Eq. (20)] near the first scalar
pole of the current.

tioned in Ref. 5 that, in exclusive processes, an

operator-product expansion involving anomalous
dimensions is not excluded.

One can have information on d from direct mea-
surements of exclusive" processes. For exam-
ple, the form of the amplitude in the scaling limit
[see Eqs. (11) and (14}]offers such a way. Also
if d is indeed related to a fixed singularity then it
can be determined, in principle, from nonasymp-
totic data by using, e.g., finite-energy sum rules.

Since the asymptotic behavior of the form factor
[Eq. (17)] was derived from general arguments

(in contrast with the low-q' structure) it is per-
haps the best property suitable for studying the
parameter d. Consider for example, the pion
electromagnetic form factor which appears in

many reactions. As inclusive processes are rela-
tively easier to measure, we shall consider y(q)
+ p —rr +X (the photon being virtual) in which the
pion form factor can show itself. More explicitly,
in the photon fragmentation region and near the
kinematical boundary the dominating mechanism
can be described as in Fig. 5, where the pion tra-
jectory is assumed to contribute mostly. It is in-
teresting to note that measurements of the same
process with, however, real photons have indi-
cated" the dominance of a zero intercept exchange.
The contribution of the amplitude described in Fig.
5 to the cross section of y(q)+ p- w +X is de-
picted in Fig. 6. Although the diagram in Fig. 6
vanishes with increasing ~q'~, nevertheless from
the rate of the decrease one can extract inforrna-
tion on the corresponding parameter d.

(21 }B(-a~(0},d +2) = 1

gyoqgoy ao

where" gz, is the direct weak coupling of the
PP"photon" y to the parent scalar pole, oz, in the

current channel, and g, is self-explanatory.
The importance of a reIIation such as (21) is two-
fold; first it shows the possibility of determining
d from nonasymptotic data, namely from Regge
intercept and coupling constants. Secondly, as a
consequence, it highly supports the presence of
noncanonical dimensions. It was already men-

~ +

4

FIG. 5. Approximate mechanism in the photon frag-
mentation region near the kinematical boundary for the
inclusive process y(q) +p 7l + X.
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7T 7p
~

I
1

I

FIG. 6. The contribution of the diagram in Fig. 5 to
the inclusive differential cross section of y (q) +p
+X.

We shall conclude with remarks on the exclusive
annihilation process y(q)- o+ o+ o. The amplitude
of this process can be derived from the amplitude
of y (q)+o-a+o by analytic continuation from the
region q'&0, t&0, and v& 0 (1 & ~ &~) to q'&0
(timelike), t&0, and v&0 (0 & ~ &1). An interest-
ing question is whether the annihilation channel
scales in the same way as the electroproduction
process. The light-cone approach cannot 4 answer
this question in a simple way since a finite number

of terms in the operator-product expansion ob-
viously will not generate the normal thresholds in

the q' variable. This difficulty is not present in

the discussed dual model. In fact, as one can see
from the derivation in Sec. IV, the form of the
amplitude in the scaling limit, given in Eq. (11),
is valid irrespective of q' being spacelike or time-
like. Thus, in this model, the annihilation process
scales in the same way as the electroproduction
reaction, with the variable v having the same ex-
ponent in both cases.

Note added in Proof After. completing this work
the author learned that a similar approach has
been adopted by J. H. Weis, Nucl. Phys. B40, 562
(1972).
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