
PHYSICAL REVIEW D VOLUME 6, NUMBER 10 15 NOVEMBER 1972

Note on the Self-Consistent Calculation of m-7f Resonance Parameters

M. L. Sharma and D. Bondyopadhyay
Department of Physics and Astrophysics, University of Delhi, Delhi- p, india

(Received 26 October 1971; revised manuscript received 3 May 1972)

A self-consistent calculation of 7(-x resonance parameters is attempted in a model suggested

by Balazs. Two variations of the model are considered. The input in this calculation is the

experimental masses and widths of the p, f0, and g resonances and the inelasticities, known

as well as arbitrary, in the corresponding partial waves. Bootstrap possibilities in different
isospin and partial-wave states are discussed.

I. INTRODUCTION

Over a considerable period of time the equiva-
lent-potential method has been in use for the self-
consistent &-& scattering problems. Calculations
have been performed using Schrodinger, Lipp-
mann-Schwinger, and Bethe-Salpeter equations";
recently Balazs' has suggested that the method can
be used in connection with an on-shell integral
form of the Schrodinger equation in momentum
space. The suggested nonlinear equation has the
following form:

f (q', t) = V(t, s)+ -„ t
0

x dQ

(1)
It may also be given a relativistic form by rewrit-
ing the kernel in a slightly different manner. ' Here
V(t, s) is the Fourier transform of the potential; q
is the momentum in the c.m. system; and -t, -t„
and -t, are the squares of the momentum transfer
between the initial and the final, the initial and the
intermediate, and the intermediate and the final
states, respectively. The solution of this equation
gives exactly the same physical amplitude as the
Schrodinger equation.

The equation should however be written in a
slightly different manner to bring out the fact that
it has to be used in conjunction with the equivalent
potential. Peculiarities of that potential will be
mentioned shortly afterwards; the relevant point
here is that the equation should involve an extra
parameter, the c.m. energy squared s, which will
have to be treated as fixed in the process of solu-
tion. In other words Eq. (1) should be rewritten in
the following form:

1 dq'2 q'f (q', t, s) = V, (t, s)+—
0

x )t dn f *(q", t„s)f(q", t„s).

In solving this we can treat s as fixed, and the so-
lutions are then obtained for various values of q'.
Each value of s will therefore generate a series of
solutions, and many different such series are ob-
tained for various values of s. The correct physi-
cal amplitude is given when q'= —,'s —1. From the
construction of the potential in (8) it will be clear
that this prescription will make the integral ap-
pearing in Eq. (1) convergent.

Another obvious approach could be to allow the
on-shell relationship between s and q' in the po-
tential to remain effective at all stages during the
process of solution. With the potential conceived
in this way the integral term in (1), however, will
need a cutoff.

We shall apply Eq. (1) in a, self-consistent &-&

scattering calculation; Balazs has suggested sev-
eral techniques, among which is the powerful
Pade-approximant method, for solving this nonlin-
ear equation. We, however, follow the more con-
ventional N/D approach; the solutions are then
somewhat approximate but much easier to handle.
The method can be easily generalized to take into
account inelastic effects in the partial waves.
Briefly, we proceed in the following manner: We

project out the partial-wave amplitude from Eq.
(1); then, taking the imaginary part, we find

Imf &(q') = q I fi(q') I'. (2)

We now generalize this result by writing, instead
of (2), the relation

I - ni' q')
Imfi(q') = qI fi(q') I'+

where q, (q ) is the inelasticity function, defined

in the mell-known manner through an inelastic uni-

tarity relation. This makes (3) identical with the

standard inelastic unitarity relation for the partial
waves.

Working with relation (3), and assuming that the

only left-cut contribution to the amplitude comes
from the potential term, while unitarity introduces
the right cut, we can write down a dispersion re-
lation for the amplitude on these cuts:

2919



2920 M. I . SHAHMA AND D. BONDYOPADHYAY

f, (q', s) = B, (q', s)+ —
~

dq"
P

q'(q" —q')

= B~U(q', s)+ B', (q')

N/D form, then the following two equations are
easily obtained:

1 „lm f, (q", s)D(q", s)

1 „1—q, (q") ReD(q")
2~+ (5)

d
„q'i, q", s ~'

r2 2
cc Plt q —q

(4)

where B, denotes the contribution from the left cut
and B, is the contribution of the inelastic right cut
starting from q' = Srn„'. "P" denotes the elastic
right cut. There is an approximation, however, in
Eq. (4), as we have assumed that the entire left-cut
contribution comes from the inhomogeneous term
in (1); this is not really the case, as may be seen
by iterating Eq. (1); the contribution coming from
the integral term has in fact been neglected. We
now adopt the N/D method in the form of Frye and
Warnock' equations for solving (4). lf the unitary
amplitude that leads to (3) is divided by q" to re-
move the threshold zeros and then written in the

and

q
2

q
2

D(q') =1+

2qnl+ i —
ReN(q12)

x dq 1+n(q") (q" —q')(q" —q. ')
'

(6)

D(q, s) = Di + Dii, (7)

To simplify the calculations, we make the determi-
nantal approximation by putting D(q') = 1 in (5) and
then substitute the value of N(q') so obtained back
in (6). Then using the Poincard-Bertrand formula
to reduce the double principal-value integral into a
single one, we can finally write

where

q' —q,
'

t

„2q"'" B', (q", s)
1+@(q") (q" -q')(q"- q.') '

and

1 - n(q') , q' - q.' - n(q"') fi(q"') - fi(q')
d „,

II 1 + q( 2q) +2 ql/2l+ 1 qll2 q2

q
g2l + 1 dqf2

J, 1+q(q") (q" —q, ')(q" —X)
'

It is to be noted that the divergence difficulties that plague the Frye and Warnock equations as q tends to
zero disappear in this approximation. Equation (7), together with an expression for B,(q, s) to be devel-
oped in the next section and a set of values of q as a function of q' in various channels, are all that are
needed for our calculations.

II. THE POTENTIAL

The potential to be used in conjunction with our equations is an analog of the equivalent potential defined
by Charap and Fubini. 4 It may be introduced in the following manner: Let the t-channel amplitude be
written as

&(t, s) = Q(2l+1)a, (t)P, (cos8,);

in this expression we shall retain partial waves only up to l =3. For a, (t) a pole form is taken and the res-
idues may be directly linked with the widths of the corresponding resonances. The exchanges are p, f„
and g. The g meson is a &-v resonance at 1663 + 20 MeV having a width of 111+ 30 MeV (Ref. 5); its ex-
change was incorporated in a bootstrap calculation earlier. ' Following the usual prescription for equiva-
lent potentials we replace the t variable by the square of the mass of the corresponding exchanges when-
ever it appears in the numerator of the expression. The potential is now constructed by projecting out the
s-channel partial amplitude and taking into account the appropriate isospin recoupling coefficients for &-&

scattering; the result is
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B, (q') = »„~ [3C,q, 'G~'P, (cos8, )Q, (a,)+5C, q, 'Gz 'P, (cose, )Q, (a, )

+ 7C, q, ,
' G, ' P, (cos 0, )Q, (a, )] . (8)

Here C„C„and C, are the isospin recoupling co-
efficients that are obtained from the following iso-
spin crossing matrix for the simultaneous contri-
bution from t- and u-channel exchanges:

2 1 5

2 -13 3

ln (8),

Pl 5 2s
a =1+ 2 cos6& =1+ 2 42q m —4'

and

q, = —'m; —1,2 & 2

where m;, i =1, 2, 3, stand for the masses of the p,
f„and g, respectively. The relationship between
F and G' is given by the expression

2l+1 G2RI'=
R

with R denoting the resonance position. The entire
expression so obtained has been divided by —,

' Ms to
construct the nonrelativistic potential.

First we discuss the results for which the on-
shell relationship between s and q' is allowed to
remain effective in the process of solution. Con-
sidering the fact that the potential is constructed
from exchanges in the two crossed channels, this
method is seen to be a simplified nonrelativistic
version of the similar N/D calculation of the w-&

III. RESULTS

First we discuss and display the results obtained
in method I. The zeros of ReD are located and the
output width is worked out using formula (7). The
inputs in this calculation are the widths of the res-
onances and also the inelasticity parameters in the
corresponding partial waves. Some inelasticity
data are now. available for &-& scattering in the
l=1, I=1, and l=2, I=O channels from experi-
ment' up to an energy of 1.4 BeV. For the rest of
the energies the inelasticities must be suitably ex-
trapolated, as in Fig. 2. The plots of these exper-
imental data with several arbitrary extrapolations
are shown in Figs. 2 and 3 for the p and f, chan-
nels, respectively. As input we take the masses
and widths of the resonances (in units of m, =1) ly-
ing within their experimental limit, viz. ,

mp' = 29, m '=81 m '=140
fp & C'

Fp =1.O, I"f =1 42, F~=O 71

problem made earlier by Zachariasen and Zemach. '
We designate this method as method I.

The other possibility is to use expression (8) in
the form of an equivalent potential. As has been
stated earlier, s in (8) is now to be treated as a
constant inside the integrals. This makes the D
integral in (7) convergent. This approach has also
been applied; we call this method II.

Finally, the output width is to be calculated from
the formula

-2q ""B,'(q ')
Z„[1 q+(q„')]dD/ds~, =,

l.0
1.0

20

0.5-
0.5

2b

0
q

2 4S 24
2

FIG. 1. Arbitrary inelasticity curves for 7t-x scatter-
ing. For f0 the cutoff is 70 but the same forms of the
inelasticity curves are used.

FIG. 2. The inelasticity curves for the p channel with
extrapolations.
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Inelasticity
curve

Resonance position
I =1 I. =2 l =3

Width
l=1 l=2 l=3

1Q

1Q

1b

Q 1

1c
1c'

29 68 191
25 57 200
27 81 180
23 71 186
19 110 168
18 104 172

1.57
1.29
1.43
1.00
0.64
0.54

2.14 0.54
1.36 0.71
2.64 0.36
2.50 0.50
3.92 0.31
3.50 0.54

TABLE I. Squares of the output masses and the out-
put widths for fixed values of the input, all calculated in
energy units m =1. In the mass-squared values, the
decimal figures have been neglected. Numbers of in-
elasticity curves correspond to Fig. 1.

FIG. 3. The inelasticity curves for the fo channel with
extrapolations.

To get an idea of the effectiveness of the role
played by inelasticity, several arbitrary curves
for inelasticities were first drawn, each with two
different extrapolations at higher energies. The
results so obtained are collected in Table I, where
for all the entries the input values are the ones
mentioned above.

The subtraction point was the same for all the
three channels and was fixed at q,

' = -5.0. The
fixed values for the cutoff for the p, f„and g
channels were, respectively, 48, 70, and 48; these
values were chosen such that the output quantities
may remain near the input quantities. The results
imply the existence of self-consistent output values
for masses and coupling but do not indicate the
possibility of a simultaneous bootstrap' with the
same value of cutoff in all the three channels. The
variation of the output parameters with different
cutoffs is considerable; it is far more pronounced
than that observed by Zachariasen and Zemach. '
(In their result, the p&& width is off by a factor of
4, as has been noted by Capps. ") Our output pa. —

rameters may be moved up and down the energy
scale relatively. easily by a variation of the cutoff;
for example, in a calculation with Fig. 2(a) and

q, '=-3, for a change of cutoff from 48 to 70, the
p-resonance position changes from 22.5 to 13;
widths are similarly affected. This behavior of
the solution has been instrumental in finding the
self-consistent values. The variation with the sub-
traction point is less pronounced; for a change in
its value from -2 to -10, the change in the output
values was only a few percent. The choice of in-
elasticities also affects the results considerably,
as can be seen from Table I. It is possible that a
simultaneous variation of the functional form of q
and the cutoff might lead to a simultaneous boot-
strap with the cutoff the same in all the channels.
But it still may not be very realistic because the

actual inelasticities in the p and f, channels are
quite small. As is seen from Table I, two differ-
ent higher-energy extrapolations in the curves of
Fig. 1 do not lead to markedly different results.

The curves of Figs. 2 and 3, where the experi-
mental points are plotted only up to q' = 24, are
to be used for p and f„respectively. With the
same cutoff and q,

' and the same input as above,
the two different extrapolations in each case
cause less than 15% variation in the output values,
showing thereby that for a calculation on low-en-
ergy resonances the inelasticity contribution at
lower energies assumes the most important role.
The average output masses in these two cases are
25 and 54, respectively, and the average widths
are 1.32 and 1.78.

In the next part of our calculation (i.e., in meth-
od II) for the sake of simplicity we put q=1
throughout; D» is now vanishing and D, is a con-
vergent integral. Here again simultaneous self-
consistency could not be achieved, but the self-
consistent output parameters may be found in the
individual channels. For example, fixing the other
input parameters of the potential at their experi-
mental values, we have p-self-consistent output
quantities at m~'= l3 and Fp:1 11. However, if
the previously mentioned input values are used for
each of p, f„and g, then the output masses and
widths in their respective channels are 21, 66, 206
and 2.28, 2.14, 2.07, respectively. The only ad-
justable parameter is now q, ', but variation with
respect to it is very small; its value was fixed at
qo =-20.

In conclusion, we mention that our model is a
simple one, and we have made rather weak as-
sumptions to solve the equations; no doubt a better
solution is called for. The N/D technique used
here is easy to apply and more accurate solutions
could also be found easily, but fundamentally it
will still remain an approximate method. The
Pads-approximant method, on the other hand, al-
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though complicated numerically, appears to be a
more attractive alternative.
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The spontaneously broken gauge theory is formulated in the generalized renormalizable
gauge (R& gauge). A parameter ( can be adjusted to include existing gauges, U gauge,
R gauge, and 't Hooft-Feynman gauge as special cases. Three applications of the R&-gauge
formulation are given. First we compute the weak correction to the muon magnetic moment
unambiguously in the existing models for leptons, Secondly, we discuss the large-momentum-
transfer limit of the Pauli magnetic form factor of the muon. Finally, we discuss the static
charge of the neutrino, and show that an appropriate regularization makes it vanish.

I. INTRODUCTION

The possibility of constructing a unified theory
of weak and electromagnetic interactions in terms
of a spontaneously broken gauge symmetry has
attracted a great deal of attention lately, following
the works of Weinberg' and 't Hooft. ' In this paper
we shall present a formulation of spontaneously
broken gauge theories (SBGT) which is particularly
suited for practical calculations. In this formula-
tion the gauge condition one adopts is a general-

I ~ization of the one used by 't Hooft and depends on a
parameter $ which can vary continuously from 0 to

In this gauge, which we shall call generically

the A
& gauge, the massive-vector-boson prop-

agator is precisely the one invented by Lee and
Yang in their discussion of the g-limiting process:

1 Pgv 1
ll&(P& h) gP& ( P2 M2/( P2 ~2

1 l 1
ggv ~2PPPv I P2 M2

The difference between the B&-gauge formulation
of SBGT and the g-limiting process applied to the
electrodynamics of massive vector bosons is this:


