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frames, our polar angle P, equals m minus Mueller's.
The MRE in Eq. (4) does not exist when ~2 and co4 are

equal to P&, , which is imaginary for large (s/M ) and
finite t . Hence, we have to first continue to the region
where P&, is real, expand T(p„p&,p, ) into an MRE {or
a multiparticle partial-wave expansion if 82 is real),
collect the Toiler angle pq, (or Treiman-Yang angle)
and the residue function (or partial-wave amplitude) into

a function of t and Pq, , and then continue the amplitude
T back to the region concerned in the context.

A. H. Mueller, in Multiperipheral Dynamics, 1971
Coral Gables Conference on Fundamental Interactions
at High Energy, edited by M. Dal Cin, G. J. Iverson, and
A. Perlmutter (Gordon and Breach, New York, 1971),
Vol. 5, p.48.
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We study the pion radius and the isovector nucleon radii in the limit in which the pion
mass approaches zero. The leading terms in this limit are calculated.

I. INTRODUCTION

Despite some interesting suggestions to the con-
trary, it is generally agreed that the only satis-
factory way to understand the successes of current
algebra and partial conservation of axial-vector
current (PCAC) is in terms of the proximity of the
real world to a fictitious world which is invari-
ant —in the Nambu-Goldstone sense —under the
chiral SU(2)SSU(2) group. The pion is presumed
to be the massless Goldstone boson in the sym-
metry limit; its mass, p., must therefore stem
entirely from the symmetry-breaking terms in the
hadronic Hamiltonian. '

One can probe the transition from the real world
to the symmetry limit by allowing p. -0. In gen-
eral one would expect infrared singularities to
arise in this limit, preventing the transition from
being a terribly "smooth" transition. ' The pseudo-
scalar nature of the pion guarantees, however,
that in a Yukawa-type theory of pions and nucleons
these singularities are rather benign when com-
pared, for example, to the infrared singularities
encountered in perturbative treatments of quan-
tum electrodynamics. (Perhaps this is the reason
why pionic infrared problems have received very
little attention in the literature. ) Nevertheless,
singularities can, and do, arise in parameters
zohich me exPexirnentally relevant in the zeal
seoxld.

In this paper we investigate the singularities in
pion and nucleon radii in the limit p, —0. We show
that if the electromagnetic form factors;".atisfy
dispersion relations with no more than one sub-
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4~ vM' Bv' f„' p,

(z —v)(r ) = g 1 M
4w 2M2 p,

(1 2)

+f.t,' s.
Here f, is the pion decay constant, q, is an un-
kno%'n parameter with the dimension of mass, g
is the pion-nucleon coupling constant, g„ is the
axial-vector to vector ratio in nucleon P decay
(=—1.22), M is the nucleon mass, v~ and ~„are the
anomalous magnetic moments of the proton and

traction (so that the radii are in principle calcu-
lable in terms of other parameters) the two-pion
contribution to the dispersion integrals yields sin-
gular terms proportional to lnp. in the radii; for
the Pauli radius of the nucleon there is an addition-
al p,

' singularity. ' Furthermore, subject to cer-
tain innocuous assumptions —which are stated be-
low —the coefficients of the p,

' and lnp. terms ad-
mit of precise computation. We conjecture that no
singularities emerge from higher intermediate
states and that our computation of the singular
terms in the radii is therefore exact.

Our results, derived in Secs. II and III, are as
follows:

(r, )= » ln—1 q~8n, p,

+ terms finite in the limit p, -0.
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the neutron, respectively. A' ' is one of the stan-
dard covariants in pion-nucleon scattering. 4 In
Eqs. (1.2) and (1.3) and in the rest of the paper
"f.t.'s" stands for "terms finite in the limit p. -O."

In Sec. IV we discuss the possible relevance of
these results to the real world.

A(t, s, u) =B(s, t, u)

=C(u, s, t). (2.5)

Substituting Eqs. (2.5) and (2.2) in Eq. (2.4) one
obtains the 2m contribution to the spectral function:

ImE, (t) =E,(t)f»(t )'8(t —4g2), (2.V)

II. THE PION RADIUS

A. Notation and Definitions
where f»(t), the vm amplitude in the I = 4=1 state,
is defined via

Let j (x) be the electromagnetic current density,
e the unit of (positive) electric charge and )q, a)
an invariantly normalized one-pion state of 4-mo-
mentum q and isotopic index a. The pion form
factor, E,(t), is defined via

q'=--,' (t -4p2) .

If we write

(2.8)

(q„b ( j„(0)(q, , a) = ie (q, + q, )„e2'5E„(t),

t = (q. —q, )'-- o (2.1)

(q, , b;q, , a~ j„(0)~0}=ie(q, —q, ) e"'E„(t),

t=(q, + q, )2~0, (2.2)

with E„(0)=1.
If F„(t) satisfies a dispersion relation with no

more than one subtraction, we can write for the
mean square radius of the pion

f»(t) =e@»sin6», (2.9)

a» being the mn scattering length in the J = /=I
state. Current algebra and PCAC predict that'

the unitarity condition ensures that 6» is real
in the interval 4p. '&t &lent, '; it is in fact the usual
phase shift.

Finally, we note that the threshoM behavior of

f» (t) is specified by '

Wt

, f„(t)=a„+0(q'), (2.10)

p 00

7T J4p2
(2.3)

1
12vf ' (2.11)

where the spectral function ImF, (t) is given by the
unitarity relation:

ie (q, —q, )„ImE„(t)e"'

B. Singular Part of the 2w Intermediate State Contribution

The expression for the radius may be written in
the form

=-,' Q (2v)'6'(q2+ q, -q„)

&& (q b; q, , a [T(n}(n ~ j„(0))0}, (2.4)

~5 (2,2}=I, +I„
ImF„(t )

m ~4„2 t'

(2.12)

=/t(s, t, u)6, 56,2+B(s, t, u)6„6M + C(s, t, u)6,26„,

where

t =(q, +q, )',
~ = (q) —q&)

u =(q,'-q, )',
s+t+ u =4p,'.

(2.5)

These amplitudes satisfy the crossing relations

T being the usual collision matrix.
The 2n —2n matrix elements of T may be ex-

pressed in terms of three invariant amplitudes A,
B, and C via

(q,', d; q'„c~T~q„a;q„b}

1 I" ImE, (t)
77 0

(2.14)

1 4 (
2 2)5/2

0

f„ t *Mt
C(q')=-E.(t)"" . , q. =-q(~').

(2.15)

(2.16)

Now as +-0, the integrand in Eq. (2.15) becomes
singular at the lower limit unless C happens to
vanish. However,

where A. is some real parameter -with the dimen-
sion of mass -independent of p, .

Under the assumption that ImF, (t) is bounded on
the cut, for all t and (real) ((/, , ~I2~ is also bounded;
singularities, if any, must therefore lurk in I, .
In order to examine I, it is convenient to rewrite
it in the form
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C (0) = F,(4tj')a„

1
— ——,as lU, -0.

12m f,' (2.1V)

(2.18)

We expect, therefore, a logarithmic divergence
in the limit p. —0. The divergent part can be iso-
lated immediately, provided one can assume that
C (q') is "slowly varying" in the vicinity of q = 0.
one obtains:

needed to derive Eq. (2.19) are satisfied. The ra-
dius obtained by direct differentiation of Eq. (2.23)
indeed agrees with (2.19).

It is important to emphasize that Eq. (2.19) is
not true in arbitrary nonchiral models of the n. n.

interaction. The simplest example is furnished by
the A.P4 theory. In this theory the only parameter
with the dimension of mass is p, ; one expects,
therefore, that the radius would blow up as 1/p'
rather than ln p. .'

III. ISOVECTOR NUCLEON RADII

A. Notation and Definitions

A set of conditions which are sufficient, but not
necessary, to ensure that C (q') may be regarded
as "slowly varying" in the interval 0 &q = rn are
lC (m')l&, lqC'(q')l&~. Equation (2.18) then fol-
lows from (2.15) by partial integration. Hence

(2.19)

Note that there is no way to assign a value to the
scale parameter q, .

To see how things work out in a simple model
with elastic unitarity in the physical region, we
consider the model of Brown and Goble. ' In this
model

with

m 4 p.
ln ~ +0

77 P, Q11mP mP
(2.21)

(2.22)

Equations (2.21) and (2.22) guarantee that the am-
plitude in Eq. (2.20) has a resonance at mass m
with width l

The form factor can be determined explicitly by
noticing that, in this mode/, F,(t) and f»(t)Wt/q'
have the same singularities; both are real analytic
and polynomially bounded in the t plane cut from
4 p,

' to ~ and their phases are identical over the
entire cut. Furthermore, f»(t) t /q' has no zeros
for any finite t. Hence [F,(t)/f„(t)vt /q'] is a
polynomial; if we assume for the sake of simplici-
ty that F,(t) also has no finite zeros, we obtain:

(2.23)

The constant in Eq. (2.23) has been chosen to en-
sure that F,(0) =1.

one can check explicitly that all the assumptions

et 1, q' 2 Wt+2qf (t) = —+—r q'+ ~ —ln ——— i-q' " a " V't w 2 lL(,

(2.20)

We write the electromagnetic current in terms
of its isoscalar and isovector pieces.

j,(x) =j,'(x)+ j„'(x),

normalizing the pieces via (2/e)Jjs(x)d'x = Y, the
total hypercharge, and (1/e)Jjor(x)d'x=I, , the 3-
component of isospin. The four form factors as-
sociated with the nucleon are defined by

(3 1)

(p, lj'„(0)lp,& =eu(p, )m'

20'

x r„F'(t)'
2M

(P2-Pi)"F', (t) u(p, )

(r'&;=—6F,"(0)/F,.'(0) (a =S or V; i =1, 2) (3.3)

are determined by

F;"(0)=—,' dt .@42 t' (3.4)

The spectral functions in Eq. (3.4) are deter
mined by equations analogous to (2.4),

ImF;(t) = --,' g f ~(2~)464(p, + p, -p„)

x(p, p I&in&(nl j'„(0)10& (3.6)

P~ being an appropriate projection operator.
In the present paper we restrict ourselves to

the isovector radii. The only relevant intermedi-
ate states are therefore those with G parity+1
(2w, 4m, 6w, etc.).

a=S or V. (3.2)

Here the lP,.&
are invariantly normalized nucleon

states, the spinors are normalized by u (p) u(p) =1,
M is the nucleon mass and the internal matrix,
M', is defined to be —,

' for a = S and —,
' ~, for a = V.

Our normalization of the current is such that
F~s(0) =F~(0) =1. Also, F, (0) = (z~+z„)-=0.12 and

F, (0) = (~~ —~„)—= 3.7.
If the form factors satisfy dispersion relations

with no more than one subtraction, the mean
square radii of the nucleon
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To handle the 2n intermediate state contribution we shall use the usual decomposition of the m'm-NN

amplitude in terms of invariant amplitudes 4:

&Pi P.~Tlq» a'q. »=-a(P. )[&+-'~ (q, -q.)B]v(F,), (3.6)

with

Equations (2.2) and (3.6) substituted into (3.5) yield

Imp"(t) = ——' a'-'(t) — b'-'(t) ——,
' [b'-'(t) -b'-&(t)]~F*(t)1 4w ~g] pq

1 p2 ' 2 & 2 0

3 M
imp,'(t) = — — a,'-'(t)+, b' (t) Z,*(t),

4w t pq ' p'

where

(3.7)

(3.8)

(3.9)

(3.10)

q =[—'(t —4v, ')]' ' P =[—'(t -4M')]' ' for t ~ 4M'

and

=+i[—,'(4M' —t)]"' for t -4M',

a,' 't ~" ds s+ —,'t —I'- p.
' A''s, t

(3.11)

(3.12)

We shall find it convenient to study the small-q behavior of these partial-wave amplitudes, for the pro-
cess nm-NN, by relating them to the amplitudes for the crossed reaction m+N-n+N, through the so-
called Froissart-Gribov representation. Since both reactions are described by the same invariant func-
tions A and B evaluated over different domains of s and t, the requisite relationships can be established
via fixed-t dispersion relations (assumed to be valid without subtractions):

where

V12 V2kp0

M v 2-v' m
v'2 —v2B Ij0

(3.13)

(3.14)

1 2 2 1v = (s -M' —g'+-, t)2M
t -2p2

4M (3.15)

andy is the wN coupling constant. [Note that s = (p, + q, )', t= (q, -q, )' for wN-wN and, s = (-p, + q, )',
t =- (q, +q,)' for ww -NN. ]

Equations (3.12), (3.13), and (3.14) lead immediately to the following expressions for the partial-wave
amplitudes:

~ g 00 'Ma' '(t)= d 'ImA' '( ' t) 1 — tan ' (3.16)

b', '(t) =g' —tan ', + dv' ImB' '(v', t)tan '2, 4' 4m ", aq
Pq t —2p. ' mQq„' v'M (3.17)

b( )( ) ~ —2p 3(t —2p ) 4pq i 4pq
2 4~2q2 I6~2q2 t 2 p2 t 2 ~2

+» dv' ImB' '(v', t) 3- » +1, tan ' (3.18)

These expressions are appropriate for t in the interval 4p, ' & t & 4%2 so that 9 = -ip is real.
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B. Singular Parts of the 2m Contribution

convenient expressions for the 2n contribution to the radii are obtained by substituting the partial-vrave
amplitudes ir. Eqs. (3.16), (3.1V), and (3.18) into the expressions (3.9}and (3.10) for the spectral functions
which, in turn, are substituted into Eq. (3.4). As in h pion case, the singular parts of the radii stem
from integration in the neighborhood of the threshold, i.e.,

(3.19)

In order to isolate the most singular terms we shall deem it legitimate to set F,(f) =1 in the integrand;
the terms thereby ignored are expected to be of order F„'(0)x(terms retained) i.e., plnpor g21n2((2. The
contribution of the nucleon pole term in Eqs. (3.1V) and (3.18) is then immediately obtainable, by explicit
integration 9

(3.20)

(3.21)

The nonpole (np) or continuum contribution can be written in the form

( qp 2

( )(n» 4+3 q (q2+ ~2)5/2

vf
dtd[(md& '(w', dl+v' lmV' '(m', d)] l ——mn '(— +Lt.'s, (3.22)

F2~'(0)&„»=-, dq», »2 d&o' ImA( '(&u', q) 1 - —tan ' —,
v

3v+-2'v'ImB' '((d', q) 3-, +1 —,tan ' —, +f.t.'s. (3.23)

Here we have introduced the variable &u'=v'-t/4M and displayed A' ' and B' ' as functions of &u' and q
rather than v' and t. Also, we have set (P/M) =1; this entails neglecting terms of order p2/M2.

To proceed further we assume. that ImA( '((d', q) and ImB' '(&u', q) are "slowly varying" —in the sense
mentioned earlier, after Eq. (2.1V) —functions of q around q =0 and interchange the order of integration in
E(ls. (3.22) and (3.23). Then, as shown in detail in the Appendix, the singular parts of F,"' (0) can be readily
extracted. %e find

F, '(0)(5» = 12, »—, , [ImA( '((d(, 0)+&uimB' '(~, 0)]+f.t.'s,
12'lt' p ~ 40

(3.24)

12K /L ~ (d
(3.25)

The integrals on the right-hand side of Eqs. (3.24) and (3.25) can be recognized as first derivatives at the
origin of forward pion-nucleon amplitudes.

Combining the pole and continuum contributions, Eqs. (3.20), (3.21), (3.24), and (3.25), we obtain:

(2',2)"= ——,+,—[A.' '(v, 0)+vB'-'(v, 0)] ln—+f.t.'s,
v=0

(3.26)

(3.2V)
g' 1 M tg 6 1 8 () M

(zv —z, ){2'2 ) =
2
——— 2+ 2

—di' ((d, 0) ln—+f.t,.'s.
Jt/I2 p 4m eM2 4w' 8v

Here B' ' is defined to be B' ' less the pole term. Note that the combination of derivatives in Eq. (3.26) is
determined by the Adler-%eisberger formula"

—[A' ' {v, 0) + vB( '(v, 0)] =,(1 -g„2) .
V= 0 'll'

(3.2 & )
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Unfortunately the derivative in Eq. (3.2V) is not
determined by current algebra or any other mod-
el-independent argument.

IV. CONCLUDING REMARKS

(r,') = (0.6)n~ +f.l.'s) 6'
p.

=—0.52 F, (4.2)

=—(0.4-1.07) F' (4.1)

(1) The foregoing results pertain only to the 2m

intermediate state in the dispersion integrals.
How about the 4w and higher states? We conjec-
ture that these contributions are finite in the limit
p -0; our conjecture is based on a simple count-
ing of powers of q in the phase-space integrals in
Eqs. (2.4) and (3.5). It does not seem possible to
substantiate this conjecture without making many
assumptions about higher point functions; even in
simplified models the labor involved appears to be
prohibitive. Incidentally, this phase-space sup-
pression of singularities has been encountered in
another context by Pagels and Zepeda"; they found
that the 3w-state contribution to the mNN form fac-
tor is free of singularities in the limit p. -0.

(2) Having isolated the singular parts of the pion
radius and the isovector nucleon radii we are nat-
urally led to ask: Are these results just mathe-
matical curiosities or can one use them to obtain
meaningful estimations of the radii in the real
world where p, is small but nonvanishing? There
is a difficulty of principle here stemming from the
fact that the mass scale in the logarithmic singu-
larities cannot be fixed by our analysis, and a
change of scale changes the numerical values of
both the singular and the regular parts of the radi-
us.

The numerical situation can be gleaned from the
following relationships [obtained by substituting
numerical values" for the various parameters in
Eqs. (1.1)-(1.3)]

(r, ') —= 0 06 ln ~ +( (.' s) 6'

(r')~= 0.6 I--,'In-t) +f.t.'s F'
p.

=-O.V2 F'. (4.3)
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Here F stands for fermi (10 "cm), the numbers
after the second equality sign are experimental
values" and the question mark in Eq. (4.1) is in-
dicative of the fact that the data on the pion radius
are extremely crude. (Note that the )(),

' term in
the Pauli radius has been replaced by its numeri-
cal value).

It is obvious that the singular terms, with the
logarithms expressed in terms of a single mass
scale, cannot -for any choice of scale —account
for the experimental values of all three radii.
This is not surprising if one remembers that the
singular terms stem solely from threshoM con-
tributions to the dispersion integrals. One cannot
ignore such important medium energy effects as
the p-resonance contribution (-0.4 F~ in all the
radii). Also, high-energy effects may not be en-
tirely negligible for the Dirac radius. Proper in-
clusion of the various contributions is, of neces-
sity, a highly model-dependent undertaking and
lies outside the scope of the present paper.

APPENDIX

In this appendix we sketch the derivation of Eqs. (3.26) and (3.27). With the assumptions that (a)
ImA( ) ((d', q) and ImB' ) ((d, q) can be regarded as slowly varying functions of q near q =0, and (b) the order
of integration in Eqs. (3.22) and (3.23) can be interchanged, and with neglect of terms which are potentially
of order p/M, we obtain

E~'(0)&„&=, , [ImA( )((d, 0)+(d 1mB( '(&u, 0)] t . . 2),-~2 f, ((d, q)+f.t.'s,12m'„„(o' (Q' +p,

v 1 d~ (-)E2 (0)(„P)= —
12 3 2 ImA' '(ml 0)J r 2 2i»2 fl(~ 612K o lV+P j

ImB' )((d, 0)&,»,», f, ((d, q)+f.t.'s,
127l' "o 0+P j

(AI)

2)
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where

(d CO -1 qf (~ q)= 1 ——tan '
) q2

/, (w, q) =, 3 -(, + 1)
—tan '(—)

The integrals over q can be evaluated explicitly. Let

(As)

(A4)

Then

p /I +I/) (A5)

p/2 g(g2+ p/2) 1p3 /1 1p2 3/2 ~(g2 ~ ~2)1/2 ~/„(~2 ~2)1/2
I =-

1 p/2 i12 (y2 + ~2)3/2 (y2 + ~2)1/2 p/ p/2 ~2 2
p/ (y2 i12)1/2 y(1p2 ~2)1/2+ tan ' —+ 2 ln

S p/' A. S &p &u2 —i12//S 1,A.

2 2 y2+ i12 (g2+ i12)1/2 2 (g2+ I/2)1/2 y2+ P2

(A6)

(AV)

As p. -0 we have

I,-+ ln ——,+ — tan ' — + —,
' ln, (AS)

I,-—,+ 1+ —, tan'— (A9)

So long as the I, become large no faster than ln~ at ~ =0, no infrared singularity can emerge from the
p/ integration. This follows from the fact that near p/=0, ImA' '(&u, 0)-O(/d2) and ImB' '(~, 0)-O(p/). The
only singularity in the p, - 0 limit is therefore the one isolated in the first term on the right-hand side of
(AS). Consequently,

+, '(0)(.p)
= 12, &—,Iim&' '(~, 0) +Ip/Bm' '((o, 0)] -f+.t.'s,

12K p, 40
(A10)

(A11)
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