2900 WILLIAM

son, Nucl. Phys. B45, 637 (1972).

151 am indebted to B. Renner for this suggestion.

16C. J. Christensen, V. E. Krohn, and G. R. Ringo,
Phys. Letters 28B, 411 (1969); H. Filthuth, in Proceed-
ings of the Topical Conference on Weak Intevactions,
CERN, 1969 (CERN, Geneva, 1969), p. 131; H. Ebenhoh,

PALMER 6

F. Eisele, H. Filthuth, W. Fohlisch, V. Hepp, E. Leit-
ner, W. Presser, H. Schneider, T. Thouw, and G. Zech,
Z. Physik 241, 473 (1971).

YR. Socolow, Phys. Rev. 137, B1221 (1965).

BR. J. Oakes, Phys. Letters 30B, 262 (1969).

195ee also Ref. 9.

PHYSICAL REVIEW D

VOLUME 6, NUMBER 10

15 NOVEMBER 1972

Operator Droplet Model at Finite Momenta*

David R. Harrington
Department of Physics, Rutgevs — The State University, New Brunswick, New Jersey 08903
(Received 26 June 1972)

The operator droplet model at finite momenta is discussed, using an infinite set of general-
ized s-channel ladder graphs. The model is shown to follow from the assumption that the
centers of mass of the scattering systems move with constant velocities. The conditions for
the validity of this assumption are investigated and shown to be closely related to the condi-
tions for the validity of Glauber theory for the nonrelativistic scattering of composite sys-

tems.

I. INTRODUCTION

The operator droplet model® has been used ex-
tensively to discuss the high-energy scattering of
elementary particles.?2™* When applied to the scat-
tering of two nuclei it is equivalent to Glauber the-
ory®:® provided the meson degrees of freedom are
ignored: One simply has the option of working with
many-body wave functions (the usual form of Glau-
ber theory) or with the equivalent second-quantized
theory (the operator droplet model). The operator
droplet model, however, is more general than
Glauber theory in that it applies to the scattering
of any two high-energy systems, whether or not
they are composed of a definite number of constit-
uents. It may, for example, be possible to use it
to extend Glauber theory so as to take into account
in a systematic way the meson degrees of freedom
of nuclei.

Until recently the validity of the operator droplet
model was simply postulated as a natural extension
of Glauber theory. A recent paper by Chang, "8
however, demonstrated that the model could be ob-
tained as the infinite-momentum limit of the set of
all generalized s-channel ladder graphs. It is not
clear, however, how relevant this derivation might
be for finite momenta, and in particular for gener-
alizing Glauber theory, which is usually applied at
momenta down to 1 GeV/c and below.

In this paper the possibility that the operator
droplet model might be valid at finite momenta is
discussed, using the same set of graphs. Besides

furnishing a certain amount of foundation for a
generalization of Glauber theory, this “derivation”
makes more explicit the approximations and as-
sumptions involved. Furthermore, the condition
for the irrelevance of the time ordering of the op-
erators is directly related to the vanishing of
equal-time commutators, rather than the light-
cone commutators as required in Chang’s discus-
sion.

In Sec. II the set of graphs under discussion is
defined, and it is shown that the operator droplet
model is obtained simply by assuming that the cen-
ters of mass of the high-energy systems move with
constant velocity. Section III contains a detailed
analysis of this assumption and the corresponding
conditions on the nature of the interaction and the
mass spectra. The paper concludes with a sum-
mary of its results and a discussion of some pos-
sible applications of the operator droplet model at
finite momenta.

II. THE MODEL

Although it is likely that the operator droplet idea
can be applied to more general processes, only the
scattering of two high-energy systems, denoted by
s and s’, moving in opposite directions, will be
considered here. The state of the system s is
specified by giving its internal state, labeled by an
index @, and its momentum P. Its energy is then

E(@,p)=[M@)+p?] V2,

where M (a) is the mass of s in the internal state a.
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The states of s’ are described in an analogous way.
The two systems can scatter via an interaction
of the form

f d*x[ gp(x) +g'p'(x)] p(x),

where ¢(x) is a scalar field and p and p’ are com-
muting scalar operators acting on the states of the
system s and s’, respectively.® Only the contribu-
tions to the scattering amplitude from graphs of ’
the type shown in Fig. 1 are considered: For the
process

FIG. 1. The third-order ladder diagram. The upper
blob represents the system s, initially in its internal
state o; with total momentum P; and finally in its inter-
nal state o, with total momentum P;. The lower blob
similarly represents the system s’. The wavy lines rep-
the scattering amplitude T is given by resent the interaction between the two systems due to
the exchange of a particle with propagator D (x —x’).
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Here 7 indicates the time-ordered product, which, of course, can be taken independently for the p and p’
operators, while D(x - x’) is the propagator of the field ¢.
The operator droplet model is obtained by the simple replacement

=<pf, Qy; Py, 0

p(x)=p(t, )= p(0, T - 1), (2)
where Vis a velocity typical of the system s, with the analogous replacement
p'(x")=p'(0, F' =¥'t") (3)

for the system s’. These replacements amount to assuming that the systems travel with constant veloci-
ties, unaffected by their interactions with each other except in their internal degrees of freedom: As far
as the motions of their centers of mass are concerned the systems act as external sources. The condi-
tions under which these replacements are justified are discussed in more detail in Sec. IIIL.

With these replacements for p and p’ the integral in the exponent in Eq. (1) is simply

fdt dt’ d® d3r'p(0, T - V) D(t -/, T -F')p'(0, T/ =¥V't') = fdtdt'd"r d*'p(0, F)D(t = t',T - F' +Vt =V'¢')p’'(0, T').
(4)

Now, choosing a reference frame such that ¥V and ¥/ are in the +z and -z directions, respectively,
fdtdt'D(t =T =T 4T =T) = (0 +0")7! fdrch(T; T, -7, 0, ()

independent of z and z’. Here 7=¢t-¢', {=z -2z’ +vt+v't’, and T, and ¥/ are the projections of ¥ and ¥ on
the x-y plane. Finally, defining

X(F.-T))=—gg'(v+v')? fdrdiD(T; T, -7, 0), (6)

o(F,) = f dzp(0, ), (7)
and

o'(F])= f dz'p'(0, "), ®)

and assuming that p and p’ commute with themselves at equal times so that the time ordering can be ig-
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nored,’® we have

i(2")454(1’f +pf=Di 'P{)T(ah afaq,al; ﬁn 5;: Di, P!)

=<p;, ay; Bf, g ;

| exe[ i far.derto() x(E - () —1} B iy o)
©)

Note that because of the approximations which have been made the energy and longitudinal momentum of
each system are conserved.

A useful alternate expression for T can be obtained by Lorentz-transforming each system to the frame
where its longitudinal momentum is approximately zero. Because p and p’ are assumed to transform as
scalars and because, as will be shown in Sec. III, the energy differences in the average rest frames are
ignored, under these transformations

o(F,)= v o(F,) (10)
and

o'(F))—-y' "0’ (T.), (11)
where

y=(1=-0v")""2 ‘ (12)
and

Y= (=), (13)

We thus obtain (assuming an invariant-state normalization)
i2m)* 0% ps + pf — bi — PI)T (g, f; gy @5 Dy DFs Dis DI)

:<§;0)’ a(fO);ﬁ(fO) , o{(fo)

{exp[im')-l [@r.driotx(E - #0(50)] —1} 59, o359, o),
(14)

where the superscripts (0) indicate quantities in the new frames where the longitudinal momenta of the two
systems approximately vanish.

The evaluation of expressions such as Eq. (14) has been discussed in detail by Lee.* For the scattering
of two nuclei, when the meson degrees of freedom are ignored and many-body wave functions are used, the
exponent becomes simply?

i('}’)’l)_l E[ X(-fn.L —?n’_L)y
n,n
where n and »' label the constituent nucleons in the two nuclei, and T, and T,/ are the positions of these nu-
cleons relative to a common origin.

III. THE APPROXIMATION where ¥V and ¥ are the characteristic velocities of
the two systems s and s’. In this section the na-
ture of the approximations involved in these re-
placements will be discussed.

Since the time-ordered exponential in Eq. (1) can
be expanded in powers of p and p’, and complete
p(x)=p(0, T = Vt) sets of intermediate states inserted between the

operators, the replacements above are equivalent
to the assumption that (concentrating on the system
p’(x")=p’(0, T =¥'t"), s for brevity)

It was shown above that the operator droplet
model is obtained from the sum of all generalized
s-channel ladder diagrams by the simple replace-
ments

and
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(5kak|0(x)|ﬁj aj>z<-§kaklp(0,—f ‘WH@ 0‘;‘) (15)

for all such matrix elements which contribute sig-
nificantly to the integrals or sums over the p’s and
a’s.
Since by translational invariance
(Pror|p(X) By @y =expli( p, - p;)  «]
X{Pr ot | p(0)|D; @, (16)

the replacement will be valid if a ¥ can be found
such that

(Ex=Et=Y - (- D)t 17)
or

(Ek--‘?'ﬁk)tz(Ej—v'-ﬁj)t (18)

for each non-negligible matrix element. If the ¢ is
canceled the last relation, when multiplied by

y=(1-v2)2,

becomes

EQ=EP, (19)
where

EQ=y(E; -%-D;) (20)

is the energy of the jth state in the frame moving
with velocity ¥ relative to the original frame.
Since ¥ is a typical velocity of the system in the
original frame, the new frame is just the “average
rest frame” for the system s.

It is convenient at this stage to write Eq. (19) as

EQ =M (21)
for all j, and to define

E=yM (22)
and

p=VyM. (23)

Then M, E, and D can be thought of as, respec-
tively, the typical mass, energy, and momentum
of the system s. With this notation Eq. (20) be-
comes

E;=E+%+(P; -D) (24)

for all j. It is easy to show that if these relations
hold in any Lorentz frame they will hold in all
frames moving parallel to ¥ relative to the first
frame, provided the appropriate transformed val-
ues are used for v, E, and p. )

The approximate expression (24) can be derived
from the exact expression

Ej - [M(Otj)z +'§j2]1/2
provided a few simple conditions are satisfied: If

E;? — E* <<E® then

Ej - [Ez + (Ejz - EZ)]I/Z

~E+(E2~E?)/2E — (E;* =E?}/BE®+ - +.
(25)
Now

Ef-E*=p; -+ M*a;) - M?
=2p - (B; = D) +(B; - DF + M*(a;) - M?,
(26)
so that
E;=E+%¥ (5; -p)+(B; —-DF/2E
+[M?*(a;) - M?]/2E - (E;» —E?)?/8E® ++ .
(27)

A necessary condition for the validity of the sub-
stitution leading to the operator droplet model is
therefore that a ¥ and an M can be found such that

{(B; =B)/2E +[M?(a;) - M?]/2E
-(E-E®/8E®+---}At<1

(28)

for all p; and M (a;) contributing significantly to
the integrals, where Af is the range of ¢ over
which there are significant contributions to the in-
tegrals over time.

To study this problem in more detail it is sim-
plest to suppose that the substitution ¢s valid for
one of the systems, say s’, and then investigate
the conditions under which it will also be valid. for
the other system, s. The system s can be consid-
ered to move in the operator field

®(x)=g’ fd“x’D(x-x’)p'(x’); | (29)

when the replacement is valid for the system s’
this simplifies to

®(x)~g’ J’dt'dswp(t 1 F-F)p"(0, F =% 1)
-g' fdt’dar’D(t — T =T =% 1)p'(0, )

zy.[d3”'V(lf-f’lv')p’(O,f’), (30)

where



2904 DAVID R. HARRINGTON 6
, > the various states be small enough that the internal
Ve =g ,f atD(, 1) (31) motions can be ignored during the interaction.'' It

is the static spherically symmetric external field
¢ produced by a stationary point source of strength
g’ at the origin. The argument of V in the integral
is simply the Lorentz transform of |T —F’| from
the average rest frame of the system s’:

['I’, -7 l;' =[(—f1. _"LI)Z +’}”2(Z —z =y’ t,)z]l/z .
(32)

Since p’ is assumed to transform as a scalar,
and because all states of the system s’ are as-
sumed to have approximately the same energy M’
in the average rest system, when the s’ states are
transformed to the average rest system we can
make the replacement

p(0, %)~ p(0, T7),

where z,=yz' and T/ =T'. It is thus clear that ®(x)
is just the potential operator produced by a system
with internal degrees of freedom, the center of
mass of which is moving with the constant velocity
¥’. Furthermore, this approximate potential oper-
ator is stationary in the frame where the compos-
ite system is at rest because we have ignored the
energy differences among the different internal
states. [If s’ is a nucleus, and its meson degrees
of freedom are ignored, then in its average rest
frame ®(x) is simply 2 , V(| ~T,/|) - the motions
of its constituent nucleons during the interaction
are ignored.]

In the average rest frame of the system s’, then,
the system s will be moving with velocity v,
=(v+v")/(1 +vv’) through a static potential of range
R which will be, roughly, the sum of the range of
the potential V and the radius of the internal states
of s’. During the interaction the momentum of the
system s will change by amounts of the order of
1/R. The duration of the interaction in this frame
is about R/v,, and thus condition (28) will be satis-
fied if

(1/RPQEL) ™M (R/vy)=(2p R)7' <1
and
[Mz(aj) - Mz](ZEL )—1(R/'UL )
={[M%(a;)-M>?]/2M}(R/y v, )< 1.
[The third term in (28) will generally automatically
be small if the first term is small.]
The first condition is familiar from the nonrela-

tivistic eikonal approximation, while the second
condition requires that the excitition energies of

is difficult to proceed further with this condition on
the masses without a detailed model for the inter-
nal states of the two systems which would give
their masses and form factors. Experimental in-
formation can be utilized, however, to estimate
the probability of exciting different internal states
in different types of collisions. For example, if
the incident particle is a pion, both M2 and AM?
are perhaps best taken of the order of 1 GeV?,

and the operator droplet model would therefore
probably not be valid unless the pion’s laboratory
energy were at least several GeV.

1V. DISCUSSION

It has been shown above that the conditions for
the validity of the operator droplet model at finite
momenta are closely related to those for the valid-
ity of Glauber theory in nonrelativistic scattering:
First, the momentum of each system in the frame
where the other is approximately at rest should be
much larger than the inverse range of the force
field produced by the other system, which will de-
pend on both its distribution of matter and the
range of the elementary interaction. The second
condition reflects the fact that the effective spread
in the mass squared of a system determines the
rate at which its constituents move relative to the
center of mass. This rate is required to be small
enough that during the collision the constituents of
each system can be taken as static in the average
rest frames.

Without a detailed model for the internal states
of the colliding systems these conditions are nec-
essarily somewhat qualitative. It should be possi-
ble, however, to use a mixture of éxperimental in-
formation and experience gained from crude mod-
els’? to make reasonable estimates of the condi-
tions under which the operator droplet model might
be valid. It should of course be remembered that
all of the analysis above is based on a restricted
set of graphs and an overly simple underlying field
theory; it is not yet clear whether the model can
be extended to more realistic situations.

One of the original motivations for this work was
to see whether Glauber theory could be generalized
so as to include in a consistent way the meson de-
grees of freedom of nuclei. It appears that this
might well be possible using a version of the oper-
ator droplet model; the real difficulty will be the
long-standing problem of developing a useful theo-
ry of the individual nuclear systems which includes
their meson degrees of freedom.

Another possible application of the operator
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droplet model is to the scattering of systems which
may contain substantial amounts of several differ-
ent types of internal states. For example, the p
meson for some purposes can be thought of as a
quark-antiquark pair, whereas it nearly always
decays into two pions (which might be thought of as
two quark pairs); it may also have some admixture

of nucleon-antinucleon states. All of these differ-
ent pieces of the p’s internal states could presum-
ably be accommodated in the operator droplet

model. It might then be possible to analyze exper-
iments where p’s are produced on nuclei to decide
on the relative importance of the various pieces.!®
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IT. T. Chou and C. N. Yang, Phys. Rev. 175, 1832
(1968).

%J. Benecke, T. T. Chou, C. N. Yang, and E. Yen,
Phys. Rev. 188, 2159 (1969).

33. Y. Lo and A. W. Reid, Nucl. Phys. B36, 493 (1972).

‘B. W. Lee, Phys. Rev. D1, 2361 (1970).

SR. J. Glauber, in Lectures in Theoretical Physics,
edited by W. E. Brittin and L. G. Dunham (Interscience,
New York, 1959), p. 315.

®R. J. Glauber, in High Enevgy Physics and Nuclear
Structure, edited by S. Devons (Plenum, New York,
1970}, p. 207.

'S.-J. Chang, Phys. Rev. D 2, 2886 (1970).

8See also the related work of E. Eichten, Phys. Rev.
D 5, 1047 (1972); S. Weinberg, Phys. Letters 37B, 494
(1971); L. N. Chang, G. Segre, and N. P. Chang, ibid.
39B, 207 (1972).

t would probably be more reasonable to consider

vector exchanges, especially for the infinite-momentum
limit, but the scalar case is notationally simpler and
differs only by trivial energy-dependent factors in the
approximation used.

101f p and p’ do not commute with themselves at equal
times, the time ordering must be retained: - The result-
ing expression may still be useful, however, if the com~
mutation relations are simple enough.

1A clear discussion of this point for nonrelativistic
scattering can be found in Ref. 5, pp. 364—368.

2gee, for example, the recent work on production re-
actions in the harmonic-oscillator quark model by
A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal
[Nucl. Phys. B29, 204 (1971); B37, 541 (1972); B37, 552
(1972)].

13This would provide a more detailed model for the
coupled-channel theory developed for similar purposes
by G. von Bochmann and B. Margolis, Nucl. Phys. B14,
609 (1969).



