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A general method is presented for unitarization via a complex trajectory function, and argu-
ments are presented for its validity in the x-m problem. The method is applied to a Veneziano
amplitude with two satellites. Solutions are found to exist from threshold to slightly above
the p mass and appear to require a markedly nonlinear Regge trajectory. Reasons for the
failure of the solutions to exist above the p mass are discussed.

I. INTRODUCTION II. THE MODEL

In the last three years since Veneziano's' form
of the scattering amplitude first appeared, an
enormous number of papers has been published ex-
ploring most of the imaginable. ramifications, ex-
tensions, and generalizations of the amplitude. '
However, the problem of incorporating unitarity
into the amplitude has remained largely unsolved,
although certainly not because of any lack of ef-
fort. ' Common to most of these approaches is the
assumption that unitarity is a small correction to
the Veneziano beta function plus perhaps a couple
of satellites. Inelastic effects are generally ig-
nored, At least one author, ' however, has sug-
gested the importance of inelastic effects in a uni-
tary amplitude. Finally, the imposition of unitari-
ty has until now been accomplished, if at all, only
at the expense of destroying some other property,
most notably crossing symmetry. This is unde-
sirable since the explicitly crossing-symmetric
nature of the Veneziano amplitude is one of its im-
portant features. As well, the violation of crossing
symmetry has no obvious physical interpretation,
whereas the violation of unitarity can be identified
physically with a source of flux. Thus, the prob-
lem of restoring crossing symmetry is expected
to be more difficult than that of imposing unitarity,
simply because in the latter case, there is a physi-
cal interpretation which may be a useful guide to
the correct solution.

We have devised a general method for unitariza-
tion via a complex trajectory function4 which inputs
only experimental data to the fullest possible ex-
tent. The method was applied to a Veneziano n-~
amplitude in order to investigate to what extent
unitarization was possible, to what extent (if any)
the original form of the model was modified, and
to what extent the resulting predictions agree with
the experimental data. The choice of model is de-
scribed in Sec. II, the method of unitarization is
described in Sec. III, the results ar.e discussed in
Sec. IV, and some conclusions and speculations are
given in Sec. V.

The experimental data' on n-n scattering indicate
that, for the energy region below about 1 GeV, the
scattering is predominantly S wave for I=O, and
predominantly P wave for I=1, with a relatively
small contribution from the l= 2 state, Also, the
scattering in this energy region appears to be al-
most exclusively elastic. This suggests that in
this energy region the first two partial waves of
the m-m scattering amplitude ought to be a good
approximation to the full amplitude. This is ex-
pected to be a good approximation at least to the
extent that the higher partial waves are small rel-
ative to the S and P waves.

The most convenient theoretical description of
~-~ scattering is in terms of Lovelace's' crossing-
symmetric solution which gives, for the s-channel
isospin amplitudes,

A~= (s, t, u}= 2[F(s, t}+E(s,u)] —,'E(t, u), —

A'='(s, t, u) =E(s, t) -E(s, u),

A'='(s, t, u) =E(t, u).

(&)

(2)

The most general Veneziano form for the symmet-
ric function E(s, t) is

E, ~+ C
r(p-n(s))r(p-n(t))

~" I"(p+n —n(s) —n(t)) '

where n(s) is the exchange-degenerate p-f trajec-
tory.

The amplitude is required to have a pole at
n(s) = 1, but no pole at n(s) =0, so Coo =0 and C»
WO. Further, it is required that the S and P waves
satisfy unitarity at the p mass for arbitrary p width
so Cyy 4 0 Final ly, the Adler zero' is required at
s=t=u=m„', both in order to maintain similarity
with other calculations' and to improve the proba-
bility of obtaining reasonable scattering lengths. ~

Hence, one of C,„@0, so that it is not necessary to
specify n(m, 2} a Priori.

The simplest form for E(s, t) consistent with the
above constraints is therefore
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E(s, t) =g
I'(1 —a(s))r(1 —o, (t)) F(2 —o.(s))r(2 —a(t)) I'(1 —u, )'r(n - 2o,,)&

F(1- et(s) —a(t)) F(n —n(s) —u(t)) I"(2 - n, }'F(I - 2n, )j
I'(1 - o, (s))r(1 —o.'(t)) F(2 - o.(s))r(2 —o.(t)) F(1 —n )2F(n —2o, )

r(2 —n(s) —e(t)) r(n —o.(s) —a(t)) I'(2 —o.,)'F(2 —2n, )

where a, = o(m„}and n=2, 3, or 4. The constant g is an over-all normalization and H is essentially the
ratio of the satellite term to the parent term. The second term in each bracket is constructed to ensure
that Z(m„', m„') =0.

III. UNITARIZATION

1fr(s}= A (s, z)P, (z)dz,
16m s (6)

where, as usual, s is the square of the c.m. energy

The principle underlying the unitarization scheme
has already been suggested in Sec. II. Presumably,
if a scattering process is dominated by a small
number of the lowest partial waves, the sum of
those partial-wave amplitudes is a good approxima-
tion to the full amplitude. Consequently, when
these partial-wave amplitudes are unitary, their
sum should approximate the full unitary amplitude,
at least to the extent that the contributions from
the nonunitary partial waves can be neglected.

Thus, in any model of the amplitude which con-
tains a number of fixed parameters along with un-
known energy-dependent variables, the experimen-
tal data can be used to establish the parameter
values, and then the partial-wave unitarity equa-
tions can be used to predict the unknown variables
as functions of energy. This determines every-
thing, in principle, including phases and cross
sections. For consistency, the higher partial
waves must turn out to be small.

For the proposed r-~ amplitude, the parameters
to be fixed are g and H. The unknown energy-de-
pendent variable is the complex trajectory function
n(s). The real and imaginary parts of the trajec-
tory are predicted as functions of energy by the S-
and P-wave unitarity equations.

The usual objections to a complex trajectory
function in a Veneziano amplitude are that ances-
tors are introduced and that, necessarily, all res-
onances occurring at a particular mass will have
the same total width. The ancestors are irrelevant
provided that they are small enough to be unobserv-
able. For resonances occurring at the same mass,
although the distances from the real axis to the
poles in the complex plane are the same, it is only
in the narrow resonance approximation that the re-
sulting cross-section peaks measured on the real
axis necessarily have the same widths. Thus, the
validity of both objections for a specific model can
only be decided a Posteriori by actual calculation.

The partial-wave amplitudes are

and ~ is the cosine of the s-channel center-of-mass
scattering angle. Since z = I + t/2q', where
q'=-,'(s-4m, '), n(t) must be known in the region
-4q' & t & 0 to perform the integrations. For the
energy region from threshold to the p mass, t will
lie in the region 0& t&-0.6 GeV'. This informa-
tion is experimentally accessible for the p trajec-
tory in charge-exchange scattering. " The best
linear fit, the best linear fit passing through one
at the p mass, and the usual choice o.(t}=0.46
+0.885/ have X' values of 0.73, 1.5, and 48, re-
spectively. As subsequent results were not very
sensitive to the precise choice of n(t}, the second
fit, o. (t) =0.55+ 0.769t, was chosen for the detailed
calculations.

The values of the parameters g and H were fixed
by imposing unitarity at s = mz, where the p mass
m~, and width F& are experimentally observable, "
Heo. (mz') was assumed to be unity, and initially
Imn(m~') was estimated to be 0.067 from the nar-
row-resonance approximation Ima = mp I"&Beo. ', with
m~= 765 MeV and I'~=118 MeV. Bee' was assumed
to have the same value at m~' as input d'or the re-
gion 1&0. In the event that the slope of the solu-
tion at m~ differs significantly from the initial
guess, an iteration procedure must be used to find
a value of Imn which reproduces a width at mz'
consistent with the experimental value FR=118 MeV.

The S and P waves were then required to satisfy
the unitarity relation

1+2iqf, =q, e"~'

at s= m~'. This form was used in order to include
possible effects of inelasticity, For each partial
wave Eq. (7) defines a family of ellipses in the
g-gH plane. For particular values of the inelas-
ticities at s = m~', g and H are fixed by the inter-
section of the S- and P-wave ellipses. A typical
pair of ellipses is shown in Fig, 1,

Certain qualitative features of the solutions are
evident from the figure. For a particular partial
wave, the interior and boundary of the elastic el-
lipse g, =1 constitute the entire range of values for
g and gH which make the partial wave unitary at
that energy. For two perfectly elastic partial
waves there will always be one intersection at the
origin (the trivial solution). Unless the ellipses
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FIG, 1. S- and P-wave ellipses in the g-gII plane for
go=1, gg=0. 98, s=mp, and Ima(mp ) =0.067.
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are tangent at the origin, there will be a second
intersection near the origin (the regular solution).
There will also be two intersections more distant
from the origin (the exceptional solutions). These
last two solutions can fail to exist if one ellipse
turns out to be much smaller than the other. It is
also evident that for H =0, the ellipses become line
segments whose only common point is the origin,
so at least one satellite is always necessary.

This procedure has an obvious generalization to
include any finite number of partial waves, but
this involves the rather undelightful prospect of
finding the intersections of ellipsoids in higher
dimensional spaces.

The physical content of the solutions is most
evident from the simple pole approximation. Cal-
culations to lowest order in Imn predict that, in
the limit of perfectly elastic resonances, the regu-
lar solution will have zero P-wave residue at the
pole, and one exceptional solution will have zero
S-wave residue at the pole. Only the remaining ex-
ceptional solution is predicted to have nonzero res-
idues at the pole for both the S and P waves. Here-
inafter this solution will be designated the first ex-
ceptional solution, and the other exceptional solu-
tion the second exceptional solution. It is therefore
expected that the first exceptional solution offers
the best chance of providing a physically reasonable
unitary amplitude.

With g and H fixed by enforcing unitarity at the
p mass, the S- and P-wave unitarity equations are
now well-defined equations for the variables Beo.
and Imo. at any energy. In principle, these equa-
tions completely determine Rem and Ima and con-
sequently the amplitude, including phases and
cross sections, as functions of energy. The only
information that has been put in is o.(t) for & ~ 0,
the mass and width of the p, and the S- and P-wave
inelasticities at the p, all of which are experimen-
tally measurable quantities.

In practice, when the energy is varied away from
the p mass, simultaneous solutions for Rem and
Imn do not always exist. This can be understood

O.OI
l.O

I

l.2
I

I.4 Rem

FIG. 2. S- and P-wave curves in the Rem-Imn plane
for elastic partial waves at s =0.64 GeV .

as follows: For a fixed energy, unitarity defines
the inelasticity parameter g, as a function of the
two real variables Ren and Ima. A particular
choice of g& therefore implicitly defines a curve
in the Rem-Imn plane. Simultaneous solutions to
unitarity correspond to the intersection of the S-
and P-wave curves in this plane. In the event of
multiple solutions, the solution continuous with the
value n(m~') is chosen. In some cases, the curves
fail to intersect at a particular energy, indicating
there are no unitary solutions at that energy. A
representative pair of such curves is shown in Fig.
2. It may be possible to induce a solution by allow-
ing the inelasticity parameter to vary. Then, if the
curves fail to intersect for values of the inelasticity
parameter less than or equal to unity, no unitary
solution exists.

Computing n(s) point-by-point in this manner for
s& 4m, ' has several advantages. First, no as-
sumptions are necessary with respect to the as-
ymptotic linearity of Reo.(s) or the analyticity re-
quired by a dispersion relation. Secondly, ex-
trapolation of the predicted trajectory to negative
energies provides a consistency check since the
procedure should reproduce the input trajectory
for t & 0 fairly closely. Finally, since the unitarity
equations yield well-defined functions within a
specific model, questions concerning existence,
asymptotic behavior, and analytic structure could
be answered, in principle, by direct calculation.

IV. RESULTS

Initially the S and P waves were assumed to be
perfectly elastic below 1 GeV' since, experimental-
ly, the inelastic effects do not appear to be ap-
preciable below the KK threshold of approximately
1 GeV'. For perfectly elastic S and P waves, the
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FIG. 3. Rem {s)predicted by the first exceptional so-
lution with Imn (m&2) =0.13.

values of H for the first and second exceptional
solutions were 0.32 and 0.35, respectively. These
values were relatively insensitive to variations in
Imo. (m~'), changing by at most 1% for an order of
magnitude variation in Imo, (m~'). The over-all
normalization g, on the other hand, showed a
strong direct variation with Imn(m~'). These cor-
relations agreed with the predictions of the simple
pole approximation which stated that g was pro-
portional to Imn, and H was independent of Imn.

Solutions for the complex trajectory function cor-
responding to the first exceptional solution existed
for values of s from threshold up to 0.6 GeV', just
above the p mass. For higher values of the energy,
the solutions ceased to exist as the S- and P-wave
curves no longer intersected (Fig. 2).

The outstanding characteristic of this solution
was the highly nonlinear behavior of Reo. (s), es-
pecially as s increased through the p mass (Fig. 3).

300
(GeV-2)

cr) (n. 7f.)

Calculation of the phases and partial-wave cross
sections indeed showed resonances in the S and P
waves with the P-wave cross section about three
times as large as the S-wave cross section. How-
ever, the initial guess of Imn(m~') =0.067 resulted
in too narrow a p width, so it was riecessary to
raise Imu(m~') to 0.13 in order to obtain a p width
of 110 MeV. Figures 4 and 5 show the phases and
cross sections for Imu(m~') =0.13, including the
extrapolation of the P-wave cross section that was
used to estimate the p width.

Assuming an elastic P wave, plots of q, (s) vs
Rem(s) for Rea& 1, 0.6 & s & 1 QeV', revealed that
the existence of the solution could be extended to
between 0.7 and 0.75 GeV' by allowing an inelastici-
ty in the S wave of about 15%. For s = 0.75 GeV'
and beyond, q, (s) failed to drop as low as 1.0 for
Ben+ 1.0.

With an elastic S wave, the same curves for q, (s)
indicated that the existence of the solution could be
extended to at least 1 GeV' provided that the P wave
was allowed to be substantially inelastic (as much
as 75%). As well, Reu(s) would rise much more
sharply with s than linearly.

The trajectory function corresponding to the
second exceptional solution also existed from
threshold up to s = 0.6 GeV'. The real part showed
an even more pronounced nonlinearity than that cor-
responding to the first solution (Fig. 6).

The phases and partial-wave cross sections
showed a resonant P wave and a nonresonant S
wave about an order of magnitude smaller than
the Pwave. Again th.e initial guess of Imn(m~')

2.0 200

0.0
(00

—
I .0
4m' 0.2 0.4

s (GeV2)
mp

FIG. 4. Phases of the S and P waves predicted by the
first exceptional solution with Ime (m&2) = 0.13.

50
0.36

J. I

m' 0.65 s (GeV2)
P

FIG. 5. 8- and P-wave cross sections predicted by
the first exceptional solution with Ime (m& ) = 0.13. The
broken line represents the extrapolation of the solution
above s=0.6 GeV used to estimate I'&.
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source of the difficulty. The calculations of q vs
Re@ suggest that part of the difficulty may lie in a
failure to properly include inelastic effects. How-
ever, this cannot be the only source of trouble
since, experimentally, inelastic effects appear to
be small below the KK threshold at 1 GeV'. Also,
the existence of the solutions is not expected to be
particularly sensitive to sma11 variations in the in-
elasticity, at least in the simple pole approxima. -
tion, with which most of the results have been con-
sistent.

The ancestors introduced into the higher partial
waves by this method do turn out to be small rela-
tive to the unitary partial waves and so present no

problem.
The objection that equal-mass resonances have

equal widths is not as easily dismissed if the S
wave is truly resonant. For the only solution
which has resonances in both S and I' waves the
widths differ by at most 40%%up. Such a discrepancy
could be accounted for by the extrapolation to the
real axis alone, suggesting that the widths at the
pole are the same. Then, if the e really is a broad
resonance, the model is in trouble. The case of a
narrow resonance cannot be summarily dismissed
since the data on this point is not clear. Since p
widths up to 150 MeV are acceptable it should be
possible by raising Imn(m~') to obtain an e width

of 200 MeV while still maintaining an acceptable p
width. Then, the solution would agree with the in-
terpretation of a narrow e.

The remedy for equal widths which immediately
suggests itself is to introduce a separate daughter
trajectory for the e, thus removing the degeneracy
of the p and e poles as they move away from the
real axis. This means introducing a second tra-
jectory about which almost nothing is known ex-
perimentally, and which, if successful, would give
unequal width resonances at the cost of extra pa-
rameters plus at least a dubious theoretical inter-
pretation. Thus, while the introduction of a daugh-

ter trajectory is a logical possibility it is not a
very palatable alternative, and so was not attempted.

Qn the other hand, if as has been suggested" the
S wave is nonresonant in the p region, but with a
substantial phase of about 60', the relevant solution
is the second exceptional solution. Then the equal
resonance widths present no difficulty, but the pre-
dicted S-wave phase is negative above threshold and

about -30' around the p which does disagree with

the data presented.

It may also be possible to extend the existence of
the solutions and to correct the ~ width by adding
more sateHites, but again, this involves introduc-
ing more parameters of dubious physical signifi-
cance which is contrary to the spirit of this whole
method. In fact, it seems to us that no finite num-
ber of satellites will solve these problems.

The most outstanding shortcoming of the entire
scheme presented herein is the manifestly nonuni-

tary I=2 amplitude. The usual procedure for ob-
taining I= 2 scattering in a m-m amplitude is to add

a Pomeranchukon term. This was not done for two
reasons. First, there is no commonly accepted
prescription for writing down a Veneziano-like
Pomeranchukon amplitude. Secondly, as previ-
ously argued, to the extent that the I= 2 scattering
is small compared to the I= 0 and I=1 scattering
experimentally, this method should provide at
least a first approximation to.the unitary ampli-
tude. Of course, a detai1ed quantitative compari-
son with the data would be expected to show some
discrepancy, but no clear contradictions are ex-
pected.

These results lead to the conclusion that, first,
unitarity can be introduced into the Veneziano am-
plitude by this method only at the cost of consider-
able nonlinearity in the trajectory function. Second,
whether or not the I=O S wave contains a broad
resonance (and the experimental situation is still
somewhat ambiguous about this), these results sug-
gest that the interpretation of the Veneziano ampli-
tude, with unitarity suitably incorporated, as a
physical amplitude is probably wrong. Although the
failure of this method to give a physically reason-
able unitary amplitude can be attributed largely to
the lack of a Pomeranchukon term, and to requir-
ing degenerate parent and daughter poles away from
the real axis, it seems much more reasonable, to
us, to argue that the Veneziano amplitude must be
interpreted, at best, as a type of Born approxima-
tion to the "true" amplitude. In this case it is un-
reasonable to expect that enforcing unitarity in the
Veneziano amplitude should give physically mean-
ingful results.
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It is shown that spontaneous breakdown of gauge-invariant SU(2)I x U (1) lepton-hadron the-
ories can induce hadron chiral-symmetry-breaking terms consistent with parity and hyper-
charge conservation and with earlier results of the {3,3*)+ (3*,3) model. The theories limit
to SU(2) x SU(2) for hadrons, zero Cabibbo angle, and no isospin-bresking term (u3) when the
cross coupling between leptons and hadrons is removed or when the SU(2)~ & U(1) gauge sym-
metry is realized without spontaneous breakdown. The Cabibbo angle is not constrained.

Indications that spontaneously broken gauge-
symmetric theories may be renormalizable ' have
stimulated a revival of Weinberg's SU(2)~ && U(1)
unified theory of leptonic weak and electromagnetic
interactions. ' Theories of this type have encoun-
tered several problems, including those associ-
ated with triangle anomalies, ' and the suppression
of neutral strangeness-changing currents when
hadrons are incorporated. ~ Detailed models' in a
four-quark context have appeared which seem to
avoid these difficulties. Apart from quark-anti-
quark bilinears carrying charm and an SU(3)
x SU(3) singlet, the remaining bilinears in these
models belong to the (3, 3*)+(3*,3) representation
suggesting again this simple multiplet for all, or
at least the charm-conserving part, of hadronic
chir al-symmetry-breaking tex ms.

Such intrinsic symmetry-breaking terms of the
form+, .c,u, with u, scalar members of' the (8, 3*)
+ (3*,3) representation, whatever their origin
(quark-antiquark bilinears, e-model fields, etc.),
pose, however, yet another problem' a,ssoeiated
with bringing ln the hadrons because they explicit
ly break the SU(2)~ x U(1) gauge symmetry of the
weak and electromagnetic interactions. Since ini-
tial gauge symmetry of the tbeorjj appears t0 be

an essential ingredient of renormalizability argu-
ments, ' these hadron chiral-symmetry-breaking
terms [necessary in the canonical picture" of
SU(3) x SU(3) breaking to support pseudoscalar
masses and the PCAC (partially conserved axial-
vector current) condition] conflict with the renor-
malization program. steinberg ' and Schechter
and Ueda' have therefore conjectured the full
SU(2)~x U(1) invariance of the lepton-hadron the-
ory, with hadronic chiral-symmetry-breaking
terms elegantly supplied by the same mechanism
which spontaneously breaks the lepton theory.

In a recent note, "it was shown how this mech-
anism succeeds in simultaneously breaking the
lepton and hadron symmetry in an SU(2) XSU(2)
o-model context for nucleons and pions, joined to
the leptons via an SU(2)~ x U(1)-invariant mixing
term. This model preserves the lepton theory,
maintains the canonical view of hadron chiral
SU(2) X SU(2) symmetry breaking, and realizes an
intimate connection between lepton and hadron
symmetries. An extension of this symmetry-
breaking mechanism to strange hadrons, in a full
SU(3)x SU(3) hadron context, must take into account
the theoretical work" "of recent years which
suggests that (1}the Cabibbo rotation ls related


