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A new general proof of the Pomeranchuk theorem in the form of the average behavior of total
cross sections is given. It contains the features of the Martin and Meiman proof and is more
precise. By considering the integral of the forward amplitude, this proof can be extended to
cover slowly increasing and decreasing total cross sections. The unitarity restriction on the
relative behavior of particle-antiparticle total cross sections is studied in general, again
without making the smoothness assumption. In particular, using unitarity, it is shown that a
modified form of the Pomeranchuk theorem is valid when the total cross sections are asymp-
totically unbounded.

I. INTRODUCTION

Since the publication of the original paper by
Pomeranchuk' on the asymptotic equality of parti-
cle and antiparticle total cross sections 0, 0, there
have been many attempts to give a general proof of
this theorem with as few assumptions as possible. '

To the best of our knowledge, the two most satis-
factory proofs are given by Meiman' and Martin. '
Meiman shows that if the forward scattering am-
plitude f is bounded by E, where E is the labora-
tory energy of the incident particle, then the set
of the limiting values of o —o contains zeros, and
if 0 —0 has a limit, this limit is zero. In the proof
given by Martin, the condition

~ f ~ jE ~ C assumed
by Meiman is replaced by a weaker assumption

~ f ~
/E lnE-0. Martin shows if the limit v —o ex-

ists as E-~, independently of the oscillations of
o. and o, this limit is zero. Although it is not clear
that the Martin method can handle the case where
there are severe oscillations (where the Meiman
proof is valid), it is quite suitable for the experi-
mental situation where ~0 =0 —0 does not change
sign but contains experimental errors. No as-
sumption on the smoothness of 60 within the exper-
imental error is needed. As we shall show below,
the proof by Martin can be extended not only to
cover the situation when 4cr has severe oscilla-
tions, asinthe Meiman proof, but also to give more
quantitative results on the distribution of the
zeros. The mathematics involved is elementary
and transparent.

As was discussed elsewhere, the unsatisfactory
aspect of the Pomeranchuk theorem is that we have
to assume that o, 0 neither vanish nor become un-
bounded as F-~. From the basic principle of

axiomatic field theory we only know that 0, 0 are
bounded above by the Froissart-Martin' bound,
0 ~C ln'E, while their lower bound under the best
condition is o ~ (E lnE) ' which is far from what is
needed to prove the Pomeranchuk theorem. Al-
though present experimental evidences are consis-
tent with the assumption that 0, 0 tend to constants
(within experimental errors), they cannot exclude
the possibility that 0, 0 vanish or become unbounded

at much higher energy. At this stage of the devel-
opment in high-energy physics, there is no con-
vincing way to extrapolate the behavior of the total
cross section at a lower energy to a much higher
energy. The present investigation has its origin in
our attempts to give a general proof of the Pomer-
anchuk theorem for Ao jv which covers the cases
of slowly decreasing and slowly increasing total
cross section without using the smoothness as-
surnption and to study the restriction given by uni-
tarity on the energy dependence of 0 and o..'

It will become clear that the proof by Martin can-
not be modified for our purpose, without making

strong assumptions on the analytic structure of 0

and o so that the physical assumption or the unitar-
ity condition can be continued to the unphysical re-
gion where the oscillation no longer becomes a
problem. We are thus led to examine the disper-
sion integral directly in the physical region. Be-
cause we have to deal with the principal-part inte-
gration, severe oscillations are produced if no

smoothness assumption is made on the behavior of
a, 0. To avoid this oscillation problem, we have to
consider an averaged behavior of f(E). The basic
idea is contained in the bounded-mean-oscillations
theorem. ' Such an averaged behavior was used in
the past by Jin and Martin' in connection with the
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property of the Herglotz function to obtain the low-
er bound for the even-crossing amplitude. It was
also used by Khuri and Kinoshita' to construct uni-
valent functions for the even-crossing amplitudes
from which many interesting results can be ob-
tained. Although the averaged function which we
shall use is closely related to those discussed by
Khuri and Kinoshita, it is unclear whether their
sophisticated method can be adapted to demonstrate
the results discussed in the following sections;
however, this is unimportant. It will become clear
later that we lose no information by performing
this averaging; in fact, the strongest statement
one ean make for av and Av/v is their average be-
havior.

In Sec. II, we give an extension of the proof of
Martin to give a more precise condition on the av-
eraged behavior of 60, in parti. cular the density of
the zero when there are severe oscillations. In
Sec. III, we show why the proof neither can be ex-
tended to other eases, nor a good restriction im-
posed by unitarity ean be obtained. Section IV con-
tains a new proof of the Pomeranchuk theorem
(with the usual physical assumption) when v, 1 are
bounded above and below by constants. In Sec. V,
the Pomeranehuk theorem for b.v/v is proved for
decreasing total cross sections by using the re-
sults of Sec. IV. Section V deals with the general
relations between 0, 5 as deduced from the unitar-
ity restrictions. In particular, the Pomeranchuk
theorem for b, v/v is proved when v, v are unbound-

ed without any physical assumption.

II. AN EXTENSION OF THE MARTIN PROOF

OF THE POMERANCHUK THEOREM

In this section we extend Martin's proof of the
Pomeranchuk theorem to give a quantitative condi-
tion on the averaged behavior of ~0. We believe
that the result obtained here gives the strongest
restriction on the averaged behavior of 4a, so that
the newer proof discussed in See. IV must be tested
against the results obtained here.

Martin's proof consists in using the crossing
symmetry and the analytic properties of the for-
ward scattering amplitude which are deduced from
the axiomatic field theory. The crucial poi.nt in the
paper of Martin is to realize that the usual as-
sumption,

Ref(E)-
z „ Imf lnE

ean be replaced by a slightly different assumption,

E „ElnE

for a situation where cr, 0 have lower bounds and

E lnE

holds for any complex direction in the upper-half
E plane. In particular, setting E=i~E ~, we must
have

(4)

Using Eq. (3), we have

f„(iE) E'
t

Imf„(E')dE'
~ J El2(El2„E2) +v (5)

This is the main result of Martin. However, by a
simple manipulation of the right-hand side of Eq.
(5), we shall show below that it is possible to get a
strong condition on Av, when condition (4) is used.
For this purpose, let us separate the right-hand
side of (5) into two integrals:

f„(2E) E' C ~ Imf„(E')dE'
E l2(El2 + E2)

E' t" ~v(E')dE'
4P2 El(EI2+E2)

where E, is sufficiently large and the optical theo-
rem is used in the second integral. Taking the
limit E-~ on the right-hand side of Eg. (6), the
first integral is O(1). The second integral can be

upper bounds as constants. This enables him to
use the condition (2), in the nonphysical region by
the Phragmdn-Lindelof theorem. Thus the problem
of oscillation can be minimized. Had the form (1)
been used, one would have to assume that the ratio
Re f/Im f be analytic in the upper-half plane before
the Martin method could be used. But this would
be indeed a very strong assumption.

In the following, for simplicity, we shall assume
that dispersion relations exist. A finite region of
nonanalyticity ean be handled in a straightforward
manner as discussed by Martin. Let us denote by

f,f the forward amplitudes for a particle and its
antiparticle on a target. For particles with spin,
these must be understood as the spin-averaged
amplitudes. f and f are polynomially bounded in

the complex E plane. " Qn the real axis the Frois-
sart-Martin bound applies; hence, at most, two
subtractions are needed for the dispersion relation
for f„(E)=f(E) —-f(E):

f„(E)=aE+
2E' f' Im f„(E')dE'

(3)
7T

with Imf„(E) = (q/4v)n, v(E), where q is the labora-
tory rnornentum of the incident particle. The
crossing relations and the assumption (2) for both

f and f, combined with the use of the Phragmen-
Lindelof theorem enable us to deduce that
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E' 1«(E') I

d
4~ 2 g I3

Hence it is O(1) by assumption on o and o. The
first integral on the left-hand side of (7), I,(E),
can be written as

1 "' ~o(z')
42( 2

1

~
~o(z')E'dz'

4m gt2 +@2

The la,st term on the right-hand side of Eq. (8) is
O(1) since as E-~

(8)

Combining (6), (7), and (8) we have as E- m

f„(iz) 1 a ao(z') dz'+terms O(1).
g

1

Using (4), (5), and (9) we have the final result:

1 ' ~o(z') „,„ lnE ~ 8' (10a)

By a change of variables x' = lnE', x = lnE, Eq.
(10a) can be rewritten as

1
lim — «(x')dx' =—( «) = 0

3C~ o X 1

(10b)

and is simply a condition on the averaged behavior
of Ao.

Equations (10) gives a strong condition on the av-
erage behavior of Ao'

(i) If b.o has a limit as E-~, this limit is zero
(ii) If it does not have a, limit and if it does not

change sign as E-~, Ao must have an infinite
number of zeros; the density of the zeros is such
that Eqs. (10) are satisfied.

(iii) If «changes sign and does not have zero as
a limit, it must oscillate indefinitely around the
point zero; otherwise we can choose an energy F.,
sufficiently large, above which Ao does not change
sign, and the above argument can be used. Even

rewritten as

E'
",

~ n.o(E')dz' Z' I'" «(E')dz'
4~2 J Et(EIR+EB) 4+2 l El( ZI2+Z2)

=I,(z)+I.(z).
(7)

We can rewrite I,(E) in the following form:

when it oscillates indefinitely around zero, Eqs.
(10) require that its "average" value must be zero
This last statement cannot be made in the Meiman
proof.

Although the proof given here is not as elegant as
Meiman's proof, our result is more powerful since
it deals with an averaged behavior. This suggests
that it is more advantageous to work with an aver-
aged forward amplitude as we shall do later.

%e remark in passing that the Martin proof of the
Pomeranchuk theorem for the differential cross
section can also be strengthened by the same meth-
od as discussed in this section.

III. DIFFICULTY IN THE GENERALIZATION

OF THE PROOF

In this section we point out the difficulty in using
the Martin proof as extended in the last section to
a more general situation. There are two reasons
why we want to do this. First, we want to prove
the Pomeranchuk theorem in the form Ao jo when

the cross sections tend to zero slomly like a loga-
rithm, or when they become unbounded as F.-~.
Second, we want to study what are the restrictions
imposed by the unitarity on the relative behavior of
0 and o. In particular, when the cross sections be-
come unbounded as E- ~, we want to give a gener-
al proof for the Pomeranchuk theorem in the form
b, o/o- 0 using only unitarity. For a "Hegge" be-
havior of 0 and o this last point was shown to be
valid by Eden and Kinoshita. "

Let us examine the first point. The basic physi-
cal assumption is given by Eq. (1) but not Eq. (2).
It is only when the total cross sections behave like
a constant that they are equivalent. For a situation
where 0, o decrease or increase slowly, we cannot
replace (1) by (2), hence we have to deal directly
with assumption (1). It is possible to modify as-
sumption (1) by requiring

„ Imf lnE
lim = 0.

To use the Martin method to continue this physical
assumption in the complex F. plane, we must as-
sume 1jIm f is analytic in the upper-half plane and

Imf(z+ie) '

Im f (-E + is)

()ne can relax (11)by requiring only that it is
bounded below and above by constants which are
nonzero. Under these conditions one can derive
the Pomeranchuk theorem which has a form simi-
lar to Eqs. (10), but the assumptions made here
are very strong.

The second point is that we want to examine the
unitarity condition
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I f I' ~,E' ln' Ev„, ,
1

z 16&nz' (12a,)
IV. PROOF OF THE POMERANCHUK THEOREM
FOR THE AVERAGED TOTAL CROSS SECTIONS

If I' ~,E'I n~Ev„, ,16zm2 (12b)

which holds only in the physical region (m is the
pion mass). To use Martin's method we must ana-
lytically continue this expression in the complex E
plane. Again this cannot be done unless 1/v and
I/v are analytic in the upper-half plane and condi-
tion (11) is valid.

Another drawback in the Martin method is that we
cannot obtain the best restriction due to the unitar-
ity relations (12), even in the special ease where
o, o are bounded above and below by constants. To
see this, without loss of generality, let us set o ~ o.
Inequalities (12) can be rewritten as

if(E) i .(v...)"'
ElnZ 4M&m '

where o =lim supo. Because of the analytic
property of the function f/(E lnE) and the Phrag-
mdn-Lindelof theorem, this inequality should hold
in any complex E direction as ~iE ~- ~. From this
we can deduce the upper bound of Ao in terms of
v,„. But inequality (13) cannot give a strong con-
dition. It is sufficient to have narrow high peaks in
o& which is unlikely but cannot be excluded experi-
mentally because of the experimental resolution,
to weaken the result derived for Ao. This suggests
that an average behavior of Ao. and o must be con-
sidered.

To sum up this section, let us state the main
points. We find that the assumptions on the analytic
behavior of v, v and (11) are too strong. Even if we

accept these assumptions, it is not clear whether
the conclusion on b.v or b.v/v in the form of Eqs.
(10) is consistent with the initial assumptions.
This brings us to study the averaged behavior of

f and f, which enables us to deduce the Pomeran-
chuk theorem and related theorems without making
the analytic continuation to the unphysical region.

The following proof of the Pomeranchuk theorem
is elementary and does not require any sophisti-
cated mathematics. Similarly to Sec. II, we shall
restrict ourselves to the situation where o, o are
bounded from below and above by constants. Let
us define the following averaged amplitude:

1 i
s Ref„(E')d

lnE JI
(14a)

( )
1 ( Im f„(E')dE'Img„E

I
(14b)

where for simplicity we set ln(E" —1)= lnE" and
we omit a constant term on the right-hand side of
Eq. (15). It is clea, r now that Eq. (15) is much eas-
ier to work with than the usual principal part inte-
gration, since the singularity at E'=E is only log-
arithmic. Instead of using the usual physical as-
sumption in the form of Eq. (1), we shall make a
weaker assumption,

Reg(E)lim
z Im g(E) lnE

(16)

and a similar expression for Reg(E). For the be-
havior of o, o considered in this section, assump-
tion (16) can be derived from (1) by using the
Schwarz inequality.

Let us split the integral on the right-hand side of
Eq. (15) into two parts:

where we have taken the lower limit of the integra-
tion as unity for convenience and f„(E)is defined
by Eq. (3). By interchanging the order of the inte-
gration in Eq. (14a), which is always possible, we
have the following expression for g „(E):

C" Imf „(E') E"
&lnE g~ E' E/2 E2

0

(15)

1 f' ' Imf„(E') E" d, 1 Imf„(E') E"
Re@(E)=

J~
"„n „, E'+ "„ ln „,dE',

0 I
(17)

where E, is sufficiently large so that the left-hand side of (16) is less than c. We can take the limit E-~
inside the first integral This yi.elds a term of O(1). The second term on the right-hand side of Eq. (17)
can be expressed as follows:

hv(Z') E", i
" E' Ev(E'), )" bv(E') E"

E E+a

E ~ g ( vs) EE2 E+a + (Eq)

EI

In the limit E-~, as is shown in the Appendix, we have



PROOF OF THE POME RANCHUK T HEORE M. . . 28'79

( ')
Re g „(E) ~, ll ln —,dE '+R(E)

2772 ]~
with ~R ~

~ M, where M is defined by

M(E) —„, ~
l«(E')IldE'+, , „ l~o(E')I E,.

1

(19)

(20)

For the case discussed in this section ~b.a
~

on the
average is bounded as E-~, hence M defined by
Eq. (20) is of O(1). Combining Eq. (19) with the as-
sumption (16), we finally arrive at the condition

Using assumption (16) we have finally

(( ))
E~-- (o) (22c)

E' n.o(E')lim, ln —,dg' =0.
ln F Jg F E' (21)

This is our main result. We can draw the same
conclusions as in Sec. II:

(i) If the limit o —v =&o exists and it is different
from zero (let us call it C), then using (21) we have

lim, 2 ln' —= 0

which implies C =0.
(ii) Even if b, o does not have a limit, and if Ao

does not change sign asymptotically, Eq. (21) re-
quires that 4o must have an infinite number of
zeros. The density of the zeros must satisfy (21).

(iii) Equation (21) is also valid when Ao changes
sign as discussed in Sec. II.

The equivalence between Eq. (21) and Eq. (10)
can be seen more clearly by rewriting it as

2~'Reg„(E) 1 s dE' ~s no(E")
lnE z- ln'E ~ E' E E"

l

(22a)

This can be shown straightforwardly by integrating
by parts the right-hand side of (22a). By compar-
ing it with Eq. (9), using the definition for Re g „(E)
as given by Eq. (14a), it is seen that (10) and (21)
are equivalent. The final result for Reg„(E) in the
limit E- ~ (in the physical region) is the same as
if we calculated first f„(iE) for E sufficiently
large, then performed afterward the average inte-
gration.

The right-hand side of (22a) is simply the aver-
age value of Av over the triangle ABC in the x' and
x" plane (Fig. 1), where we have put x = lnE, x'
=lnE', x"=lnE". This is simply the "average of
the average" value of 60. This result is totally
expected since we deal with an integral of the scat-
tering amplitude. Let us denote the right-hand
side of (22a) by ((a&x)). We have

where

] X

(&x) = —
~

v(x')dx'.
X

We have not achieved anything better here than
those given in Sec. II. The advantage of the method
presented here is that it can be extended to prove
the Pomeranchuk theorem, when the total cross
section becomes unbounded or decreases slowly to
zero. It also enables us to study the restriction
imposed by the unitarity.

V. POMERANCHUK THEOREM FOR SLOWLY

DECREASING TOTAL CROSS SECTIONS

lim v(x')x'"dx' =~,
Qo

(23)

xi

Xi
ll

X

Let us remark first that with assumption (16),
there is no difficulty in demonstrating the Pomer-
anchuk theorem for increasing total cross sections.
This case will be proved later, using only the uni-
tarity restrictions, inequalities (12). The proof
for the cases of slowly decreasing total cross sec-
tions requires however some modification. By
slowly decreasing total cross sections 0 and o we
mean those which make the following integral di-
verge:

X p X

((~o)) ~ —, dx' b o(x")dx" .
X ~oo

1 1X

(22b) FIG. 1. The region in the x'x" plane yielding ((Eo)),
the right-hand side of Eq. (22a).
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where x=lnE, x'=lnE', and n is positive and suf-
ficiently large but finite. We can of course use for
the weight function any slowly varying function
y(E) defined by Meiman' such that it is analytic in
the upper-half E plane with the condition y(E+i0)
=qr*(-E+i0) for E sufficiently large. For simplic-
ity we have chosen the weight function (lnE)". This
choice is quite reasonable since the Pomeranchuk
theorem can only be proved for a class of slowly
decreasing function of the logarithmic type. If
o(E) decreases like E ' where e &0 but small, the
Pomeranchuk theorem in the form of b, o/o cannot
be demonstrated.

We can follow exactly the same procedure as in
Sec. IV provided that Reg„(E)-~ in the limit
E-~. For this purpose, instead of writing a dis-
persion relation for f„as given by Eq. (3), we can
write a dispersion relation for f„=f„(E)(lnE),
where m is positive and sufficiently large such that
condition (23) is satisfied. We can now define

From this we obtain an equation similar to Eq. (19),

Regs(E) ~, i[ ln —(lnE')
E ~ 2m 21nE

1

bo E'x, dE', (24)

provided the right-hand side of (24) dominates over
the corresponding integrals defined by Eq. (20).
Any Ao(E) such that (lnE) Ao(E) is bounded below
and above by constants will satisfy this require-
ment. Combining Eq. (24) with the assumption (16),
putting x'=lnE', x=lnE, we have

x
„(x'—x) x' b, o(x')dx'

(25a)~-" J x' [(r(x')+o(x')]dx'

J x' ao(x')dx'

x-- j x™[v(x')+o(x')]dx'
x]

I

(26b)

Hence the average value of b.o jr+ o obeys the Pom-
er anchuk theorem:

(&c.)
„(cr +o )

(26c)

VI. ASYMPTOTIC THEOREMS DERIVED

FROM UNITARITY

(27b)

where g(E), g(E) are similarly defined as Eqs.
(14). It follows that ~g„(E) ~

is less than the sum
of the right-hand sides of (27a) and (27b). This
section deals with the consequences imposed by
the unitarity condition. We have to examine sep-
arately three situations:

(i) Total cross sections become unbounded as
E~ oo.

(ii) Total cross sections become bounded but do
not tend to zero as E-~.

(iii) Total cross sections tend to zero as E-~.
Case (i) is most interesting since the Pomeran-

chuk theorem can be derived. We shall proceed
with this case first.

A. Unbounded Total Cross Sections

Using the Schwarz inequality for g(E) and g(E),
we have

~21nE 1 r' o(E')
g(E)~.- 4~3. I.E J I

(27a.)

This is our final result on the relation between the
relative asymptotic behavior of 4' and o+o. Sim-
ilar to Eqs. (22a) and (22b), we can rewrite (25a)
as

Equation (19) derived in Sec. IV is valid for this
case without any modification. We must however
make the following assumptions as E-~:

»m (("-» =0„(o +P„) (25b) [M(E)]-', E' ~a(E')
d „

2& lnE @ E E' (28)

where ho, o„, and o are obtained by multiplying
the corresponding values of Ao, o., and o by the
weight function (lnE) .

The physical interpretation of this equation will
become clear for a class of b,cr(x) such that

x x
(x' —x)x'"4o(x')dx' ~ qx x' b, o(x')dx'

x ~ oo J.1

(26a)

where g is a small, positive but finite constant.
Putting this in (25), we have

where M is defined by Eq. (20). As was shown in
Sec. IV, when ~o is bounded from below and above
by constants, (28) can be proved. This is also true
for any ao(E) such that (lnE) "b.o(E) are bounded
from below and above by constants. We are unable
to prove inequality (28) in general. At this stage
we can regard this inequality as an assumption on
the asymptotic behavior of ho which is expressed
essentially in terms of its moments. Using (28)
with Eq. (19) and the unitarity condition (27), we
have the following expression:
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p3/2
[(&o&)"'+(&o&)"'],

ity that the particle total cross section is bounded,

zohi/e its antiparticle total cross section becomes
unbounded.

B. Bounded Total Cross Sections

where &o& and &o') are defined by Eq. (22c).
The I«t-hand side of (29) can again be expressed

in the same form as the right-hand side of Eq.
(22a). It follows that (29) can be written as

p3/2

I &«o» I
- ~2~3 [(&o&)"'+(&o&)"']. (30a)

if both (o) and (o) are unbounded as E-~. [If only
one total cross section is bounded, say o, then on
the right-hand side of (30b) only the term 1/)t &o&

survives. ] We thus finally arrive at the following
result:

&o&+ &o&
(31)

This result is independent of any physical assump-
tion provided that the high-energy behavior of 60
is such that inequality (28) is satisfied.

Similarly to the previous section, we can re-
express the "double average" « t),o» in terms of the
single average &t).o& if we restrict ourselves to a
less general class of behavior of ho such that

p X X

(x' —x)4o(x')dx' ~ qx ll
Ao(x')dx'

~x~ 1

Dividing both sides of Eqs. (30) by &a&+ &0&, we get

&«o)& v"' (&o&)"'+(&o&)'"

&o& + &o& v 2 v 3 m (o& + &o&

and hence

(( t).o&) &"' 1 1

(o)+(a) ~2Wsm ((a))"' '((a))"*)

In this section we deal only with the situation
when one total cross section remains finite at in-
finite energy, while the other can tend to zero or
become finite. It is well known that even if 0, o

have a limit, the Pomeranchuk theorem cannot be
demonstrated by using only unitarity. However a
restriction can still be made on the magnitude of
the ho. We generalize this result here without

making any assumption on the existence of their
limits. S'e shall shoto in particular that it is not
Possible for o to tend to zero u)hile o remains fi-
nite.

Although the result of the previous section re-
mains unchanged, i.e., Eqs. (29) and (30) are still
valid, the bounds obtained there are not strict
enough for our purpose. This comes from the fact
that we worked with the bound for g„(E) It is b.et-
ter to work with those given by Eqs. (27).

For this purpose, let us denote

g, (E)=g(E)+g(E).

For the behavior of the total cross sections con-
sidered in this section, using the same method as
in Sec. IV, it is straightforward to show that

Begs(E) is O(1). If the Pomeranchuk theorem in

the form of Eq. (21) and Eq. (22) is not satisfied,
we then have that gs(E) is negligible compared
with g„(E) in the limit E —~,

Thus, we simply have to replace the left-hand side
of Eqs. (27) by 2[g„(E)] For defini. teness, let us

suppose that (o& is less than &cr&. Instead of (30a)
we now have a better bound:

(32a)

where x =lnE, and x' = lnE', and q is a small, posi-
tive constant. Using this with (29) we have

~g &sl2
l&«o» I

~ (&o&)'".
3 m

(33)

m3/2

I &t) & I
- ~2~3 „[(&))"'+(( &)"']

1(t) o&1 v'" 1 1
&o&+&a&s: v 2 MSqm v o

+ ~p

and hence

(32b)
This inequality asserts that if &o& tends to zero,
«ho» also tends to zero; hence it is not possible
for (o& to remain finite. In particula. r, if a and t), o

has a limit, then

&&o&

zh-- &a)+ &o&
(32c)

Equations (30b) and (82) exclude also the possibil-

The right-hand side of (34) is larger than that, ob-
tained directly from the ordinary dispersion rela-
tion by a factor of 2M2/v 3 because we have used
the Schwarz inequality in obtaining inequalities
(27).
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C. Decreasing Total Cross Sections

We study first the case of slowly decreasing total
cross sections. This case was studied in Sec. V
with the physical assumption (16) to derive the
Pomeranchuk theorem. We study here the restric-
tion due to unitarity. Proceeding as in Secs. VIA
and VI B, we have

p3/2

(«o.»- &„,3 (Inz)""((o &)"', (35)

where

ElnE
I

"o(Eg(z') E'dz'+, Il ', dz'
4m2E gE I

(37b)

On the other hand, because of the positivity of the
total cross section 0, we have

E

I f,(z) I
& ln2 jt o(E')dz'.

E

If we now require that

and

((«„»=, , J(, (I~')" ln —dZ
I lim

J, v(E') In(Z'/Z)dZ'+ M'

J o(Z')dz'
E

(38)

(o )=, (lnE')" dE'1 I' o(z')

and n&0. In deriving inequality (35) we have as-
sumed that (o„) is smaller than or equal to (og. It is
clear that we cannot get a strong condition because
of the factor (lnE)"" on the right-hand side of (35).

It may be interesting to note however that (35)
requires that on the average the asymptotic behav-
ior of 0 and o cannot be too much different. For
example, if (o& decreases as a logarithm, (o& can-
not decrease like a power of E. In the special case
when v- (lnz) and o- (lnE) "with 0&n &a. , then
inequality (35) acquires that n & 2o. , a result ob-
tained previously. '

When 0 and o decreases sufficiently fast, say
faster than any power of lnE, it is more convenient
to write directly a dispersion relation for f and f
instead of f„(E)of f~(z) in order to study the re-
striction imposed by the unitarity,

E " Imf(E')dE' E Imf(E')dE'
E'(E' —E) & g E'(E'+ E)

(36a)

where the number of subtractions is determined by
the unitarity condition (12). Let us define

Reg(z)= il
"'f'z,' 'dz

I El

then the asymptotic value of g(z) is given by I,(z).
This condition is valid when o(z) goes to zero suf-
ficiently faster than cr(z).

Using the Schwarz inequality for g(z) and g(z)
together with Eq. (12), we have

E I/2 f. E I/2

Ig(z) I
& ~ lnz ) v(z')dz'

I

Hence if (38) is valid, we have

r E El/2 ]nE E I/2
V(Z')dZ' -, ~ Jt

o(Z')dZ'
I I

(39)

This is our final result. It shows that the parti-
cle-antiparticle total cross sections cannot have a
totally arbitrary energy dependence. In particular,
if o —E, o-E " with n &a, then inequality (39)
requires that n &2n. Although the result given in
this section is weak, it is interesting that unitarity
can still give some constraints.
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Im E' E'
E' E' —E0

(" Im f (E') E'
J~ E' E'+E

0

=f,(z)+f,(z).
For E sufficiently large we have

E
I,(E)&, v(z') ln —dE'+M',

4m2

(36b)

(37a)

APPENDIX

We give here the details of the calculation which
leads to Eqs. (19) and (20). Let us denote respec-
tively the integrals on the right-hand side of Eq.
(18)H„H„H„and H, . Let us first consider
H, (z):

E+ a

Let us set E' =y' and E =y and consider the fol-
lowing function:
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h(y') = y'ln

Its derivative with respect to y' is
/

h'(y') =1+in

Hence it is a monotonically decreasing function for
y'/(y' —1)& 1. Hence for E sufficiently large,

/2

E12 E2

and we have finally

IH, (E) I
- . "

I
&a«')

I
E'«'.

Let us now consider II,:

Z-a

E+a
40 E' dE'E-a )~,

(A3b)

1 E2 1
& —lnE'Ef2 E)2 E2 E2

for E sufficiently large. Using this inequality, we

have

H, (E) can be rewritten as

(A2) 1 E+a
+ l«(E') l»IE" -E'ldEE- a z-a

"-' ~a(E') E'
ln dE'.El E12 E2H, (E)= i

4E
(A3a)

Similarly in the region of integration of (A3), we
have

~4 — lnE limsup Ao E

+2 — ln2E limsup 60 E . A4
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