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In this paper Low's problem is understood as a generalization of problems which are sol-
ved by dispersion integral equations of Chew and Low, Shirkov, Chew and Mandelstam, and

the like. The abstract definition of Low's problem is based on the properties of analyticity,
crossing symmetry, and unitarity of the unknown functions h~(z) which are physically inter-
preted as partial-wave amplitudes. In this paper we show that a relevant formulation of the
abstract problem of Low can be given by a nonlinear system of algebraic equations. This
system can be solved numerically by the classical methods of nonlinear functional analysis,
Newton's method, and the method based on the Banach-Cacciopoli theorem. In both cases the

calculations are applied directly to h~(z). This has an advantage over the conventional N/D

method in that it is not necessary to control the appearance of zeros in the denominator.
Another advantage is the possibility of resolving problems when there are cuts in the physi-
cal plane.

I. INTRODUCTION

By Low's problem we mean the mell-known

problem of S-matrix theory —the determination of
N functions h "(z), n =1, 2, . . . , N satisfying certain
conditions of analyticity, crossing symmetry, and

unitarity. The precise definition will be given in
Sec. II.

Low's problem in particular cases is usually ex-
amined by means of a system of nonlinear integral
equations of the Cauchy type. In the present paper
another way of treating this problem is suggested:
its reduction to a nonlinear, infinite algebraic sys-
tem, which is convenient both for theoretical in-
vestigations and numerical calculations.

If it is possible to represent the functions h (z)
by the Cauchy integral, then Low's problem is
reduced to Low's integral equation (1). However,
it the condition of analyticity is weaker, so that
functions h "(z) can no longer be represented by
the Cauchy integral, the possibility of expanding
them in power series often remains. In this case
the relevant formulation of Low's problem will be
algebraic.

Low's equation is normally written as the sys-
tem (1) of nonlinear singular integral equations. '

Upon appropriate choice of the crossing matrix
C "8 and of the constants A. „,o. = 1, 2, . . . , N, Eq. (1)
assumes a specific form, and to a greater or less-
er degree it can describe various real processes
in which the h "(z) represent the partial scattering
amplitudes. Typical examples of such equations
are the equation of Chew and Low' describing pion-
nucleon scattering at low energies, the equation of
Chew and Mandelstam, ' and the equation of
Shirkov' by means of which pion-pion scattering

is studied.
The algebraic formulation of Low's problem is

closely related to the possibility of expressing
h "(z) by power series. Representing h "(z) by pow-
er- series expansion, we satisfy the first condition
defining Low's problem, the condition of analytic-
ity. The imposition of the remaining two condi-
tions of unitarity and crossing symmetry lead to
the system of nonlinear algebraic equations (14)
which have to be satisfied by the coefficients of the
power series.

The nonlinear system (14) is the algebraic ana-
log of Low's integral equation. Algebraic systems
of the type (14) have been subject to few investiga-
tions. Thus, for example, for N= I in a particular
Low problem closely related to the equation of
Castillejo, Dalitz, and Dyson (CDD), the algebraic
system was used to determine its numerical solu-
tion by means of Newton's method. ' The possibil-
ity of applying Newton's method for the numerical
solution of the dispersion integral equations was
also suggested in Ref. 6.

Algebraic formulation of Low's problem is also
given in Ref. 7, where a more general algebraic
system is derived which is equivalent to Low's
Eq. (1) in particular cases. The generalization
consists in the following: Eq. (1) is satisfied by
solutions h "(z) which are analytic in the cut plane
with the eventual exception of the point z =0. Func-
tions h"(z) which correspond to the solution of the
algebraic system are analytic in the cut plane z
from which a whole region s, not only the point z
=0, can be removed. Therefore, while the solu-
tions of (1) make it possible to investigate scatter-
ing amplitudes with only one simple pole, the al-
gebraic system in Ref. 7 is also suitable for the
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cases when h (z) has more complicated singulari-
ties on the cut plane.

It is proved in the present paper that the formu-
lation of Low's problem by means of the conditions
for analyticity, unitarity and crossing symmetry
is equivalent to the algebraic formulation contained
in the system (14). In this manner an analytical
apparatus for its numerical solution has been in-
dicated.

Numerical treatment of similar problems by
Low's integral equation is effected by means of the
N/D method or the method of the inverse Low am-
plitude, which are typical for dispersion relations.
One of the main objects of the present work is to
popularize the idea that numerical results can also
be obtained in the given case through classical gen-
eral methods of nonlinear functional analysis,
namely Newton's method and a method of calcula-
tion based on the Banach-Cacciopoli fixed-point
theorem, which will be called the Low-amplitude
method in this paper. This method has the advan-
tage of eliminating automatically the necessity of
watching for the appearance of zeros in the physi-
ca.l plane of h (z). Moreover, as we shall point
out, this method is suitable both for solving the
algebraic system and for solving Low's integral
equation for which the N/D method was preferred
sp far.

The Low-amplitude method is advantageous when
dealing with nonresonant (adiabatic) solutions.

At the same time the N/D method is definitely to
be preferred for numerical investigation of reso-
nant solutions (solutions containing CDD poles).
As was shown in Ref. 9 the Low-amplitude method
is also applicable for numerical treatment of reso-
nant solutions. In its present-day form, however,
it is less efficient than the N/D method for this
class of problems. An illustration of the possibil-
ities of the Low amplitude method is the determin-.
ation of the upper bound of the coupling constantf',„ for the adiabatic solution of the Chew-Low
equation. This was performed in Ref. 9 by apply-
ing repeatedly the Banaeh-Cacciopoli method di-
rectly to the integral equation (1). The value ob-
tained for f',„ in this way was f',„=0.07, where-
as the experimental value referring, however, to
the resonance solution is f'=0.087. An f',„de-
fined in another way has been determined in Ref.
8, which investigates the conditions of applicabil-
ity of some fixed-point theorems.

In the present paper the algebraic system has
been simplified to the extent of its being suitable
to prove the uniqueness and existence of the solu-
tions of Low's problem. These proofs will be pre-
sented in another publication. " In some sense
they are more general than the corresponding
prppfs pf Warnpek '" and Atkinson' fpr the jnte-

gral equations. The generalization is reduced to
the fact that the algebraic system also permits
solutions h "(z) with poles, cuts, and other singu-
larities in the physical plane, while there can be
one pole for solutions of integral equations at
most.

The present work has been written along the fol-
lowing lines:

In Sec. II the algebraic system (14) is derived
(from an appropriate development of h (z) into a
power series).

The conditions under which the basic and alge-
braic formulation of Low's problem are equivalent
are studied in Sec. III.

Section IV discusses the question of the numeri-
cal solution of Low's problem both by the Low am-
plitude method and by Newton's method.

The essential results of the work are summa-
rized in Sec. V.

II. DERIVATION OF THE SYSTEM OF
ALGEBRAIC EQUATIONS

The questions discussed in the present paper
are closely connected with Low's Eq. (1) which in
its integral form is'

h"(z)= "+— dz f(z)
Z

Ih (z')I' Qs=xC "Slhs(z') I'
X +z'-z Z + Z

In (1) the unknown functions h "(z) (n = 1, 2, . . . , N)
are the partial scattering amplitudes (for instance,
of the p waves of pion-nucleon scattering); C"8

(n, P = 1, 2, . . . , N) is the crossing matrix which
should be equal to the square root of the unit N-
row matrix, though otherwise arbitrary, and A, „
(n =1, 2, . . . , N) are values proportional to the cou-
pling constant f'. The A. „satisfy the condition

S
X„=—Q C AB.

g= 1

The remaining notation is as follows: z' is a real
number 1 &z' &~; f(z') is a given function of z',
z =x+iy is a point in the complex cut plane p with
cuts -~ & x & —1 and 1 & x & ~; h "(z) are related to
the phase shifts 6 by the formula

h (x) =f '(x) exp[i'„(x)] sino„(x) .
Equation (1) is equivalent to the following prob-

lem. ' Determine the functions h (z) if it is known

that they satisfy the following conditions.
(a') Analyticity: The functions h (z), zF(P —g),

where g is the point z = 0, are analytic.
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2Z
1

This transformation changes the cut plane p in the
interior P of the unit circle af the Z plane. The
cuts -~ &g ~-1 and I ~g ~~ of the original plane
are mapped into the unit circle Co of the Z plane.

After the conformaI transformation the function

j(x), 1 «x & ~ is transformed into the odd function

E(y), --,'m & p & —,'m, and the region s into the re
gion S. After the transformation the problem (a),
(b), (c), (d) is reformulated in the following way.

Find the functions H (Z), o. = 1, 2, . . . , N, which

satisfy the conditions:

(A} Analyticity: H (Z} are analytic . in the annu-
lax' region

1&r, & fzl&r, &1.

(B) H"*(z)=H (z*).
(C) Unitarity:

(2)

(3)

(b) f ""(~)= a"(~ ).
(c) Unitarity: Imh "(x)=f(x)IA (x)l', 1 &x &~.
(d) Crossing symmetry:

I "(-x- fo) = p", , C"'I '(x+ fo).
(e) Behavior at infinity: The integrals in (1)

converge. The contribution of the contour integrals
J'[IP(z)/z]dz taken on a semicircle with an infinite
radius in the upper hfdf-plane is zero.

Let us denote by s some arbitrary subregion of
the physical cut plane p. s can contain a cut or,
in general, be a part of the physical plane in which
h'(z) are not analytic. On the assumption of this
condition the region of analyticity of h (z} is p- s.
On the whole it is smaller than specified in condi-
tion (a'). The latter should be replaced by the con-
dition

(a) Analyticity: The functions k(z), zc(p- s)
are analytic.

We shall use the name Low's problem for the
problem (a), (b), (c), (d): it is a generalization of
the problem (a'), (b), (c), (d), (e) which is equiv-
alent to Eq. (1).

It is more convenient to discuss Low's problem
in the complex plane of the auxiliary variable Z
=X+ iY=Re'~ related to the original variable z by
means of the conformal transformation

Here and below H (y) means H"(e'~).
Condition (A) is a modification of the condition

according to which the functions H"(Z), ZE(P —S)
are analytic. Conditions (A), (B), (C), and (D),
being very convenient for the investigation of
Low's problem, will be treated as its basic for-
mulation.

Further on, the index e will be accepted to take
values 1, 2, . . . , N.

Holder-continuous functions will be used in our
further exposition.

A periodic function G(y) of period 2m will be
called Holder- continuous periodic function of
period 2m and of order e or briefly a Holder-con-
tinuous function if it satisfies the fo1lowing condi-
tion: IG(y ) G(y)l Kly' —q&I', w"ere y' and y
appurtain to a. segment [ip„g,], p, &-w, g, & v and
K and e are positive constants (c & 1). The func-
tions H"(y) are supposed to be Holder-continuous.

The function E(y) is supposed to satisfy the fol-
lowing conditions:

(1) IE(y') —E4)I -A, l v"- v I'~,

where K, and E'l 6l ~1 are positive constants and

y ' and y belong to the segment [--,'m, —
2m] .

(2) E(+-,'m) = 0.
Under these conditions the auxiliary function

E(y) which is defined by the equalities

E(q) =E(q),

E(p) =O~ )1T ~~ p ~~gF

is also Holder-continuous.
In order to give the problem (A}, (B), (C), (D)

an algebraic form we proceed in the following way:
In view of condition (A), we develop H (Z) in the

Laurent series

H (z)= g H„"z" (6)

from which, having in Blind that, in view of Eq.
(3), the coefficients of the power-series expansion
H„" are real, we obtain for IZI=1

ReH"(y) = g "„Hscnoy,

ImH (y) =E(y)IH (y}l', —~m &y & 2s (4)

where E(qr) is an odd function.
(D) Crossing symmetry:

N

H (y+ w) = P C "SH'(q ), ~& (p & w-
8;-l

where the matrix elements C 8 are real and sat-
isfy the condition

ImH (y) = g Hsinny.

It is necessary to differentiate between series
(7) and (8) and the Fourier series for ReH"(y) and
ImH" (y):

ReH"(y) = C, + g C", cosuy,
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C „=II„+II,,
& = ~y 2~ ~ - ~

y ~

In order to satisfy conditions (C) and (D), the
following formula is applied:

7r/2

S„=— dy sinvyImH (y)
~/2

+— '

dip sinvy ImH (rp) .
m~, /,

In view of (4), (5) and (11), Eq. (12) becomes

H"„=H „+—
J~ dy sinvcp F(y) )H (y) ('

-7f/2

m/2 N

+ (-1)"— dy sinvy F(y) P C"Ia'(y) I'
7T ~/2 g= 1

(i2)

or

H „=H"„+— dp sin vy F(y) ( H "(y)('CX CX

( 1)U ~w
+

7l' J dy sinvy F(y) P C "8)HB(y)(',

n =1~2 . . .N; v=1 2 . . . m. (13)

The further transformation of Eq. (13) proceeds
as follows: After introducing the series (7) and
(8) into the expression

L (y) = (H"(y)('= jRea"(y))'+ (Ima'((p)('

we have the series

ImH"(y) = p S„sinvy.
@=1

The coefficients of the series (7), (8), (9), and
(10) are related by the equations

C 0! ~of

N

E„"(H„;a„)=a.a.„+(-1)"QC"'Hsas„.

To the system (14) is to be added the equation

N

Ho= QC"Sao, n=1, 2, . . . , N

which is derived by integrating (5) with respect to

y from -m to m.

The formal operations leading to (14) can be
justified with the help of standard theorems of the
theory of Fourier series '3 ". (In Refs. 13 and 14
they speak of the Lipschitz condition instead of the
Holder condition. ) The main points are: (1)
Rea"(y) and ImH (y) being Holder-continuous,
the same holds for L "(y) Hen. ce, the last ex-
pression is equal to its Fourier series

L, coskp .
A"--oo

(2) The multiplication of Fourier series is car-
ried out in the usual way because the functions are
Holder-continuous and therefore quadratic integra-
ble. (3) Termwise integration is justified be-
cause the series, being series of Holder-continu-
ous functions, are uniformly convergent.

In particular cases the system (14) is the alge-
braic equivalent of the integral equation (1).
Equation (14) was obtained by applying power-
series expansions. It expresses nonlinear alge-
braic relations between the coefficients of these
series. Hence, according to the basic formula-
tion of Low's problem, it can also be considered
as the algebraic formulation of this problem.

III. EQUIVALENCE OF THE TYCHO FORMULATIONS

OF LOW'S PROBLEM

where

L ~cosh y,
ce

P H.",„H„".

Then the last series, multiplied by F(y), is intro-
duced into (13) to get the basic formula

and

E(v,' k) =— dy sinvy cosky F(rp)r -.

H„=a „+ P E(v, t) g E,{a;H„,„),
~oo m= -'I

n=1~2q. . . ~N) v=1)2q ~ . . ) o (14)

where

Low's problem (A), (8), (C), (D) cannot be re
duced to the integral equation (1) in the general
case, since the condition of analyticity is weak-
ened. However, as can be seen from the follow-
ing assertion, it can be solved by means of the
algebraic system (14), provided certain condjjtions
are observed.

Theorem. Let H (y), n=1, 2, . . . , N, be period-
ic functions of period 2w satisfying the Holder con-
dition of order e, 0&a ~1, in the interval
[-w- q, m+ g], where q is some positive number.
Let E(y), -2m ~ y ~ —,'v, satisfy the Holder condi-
tion of order e, 0 & e ~ 1 and let E(+~m) = 0. Let the
functions H (Z) satisfy the conditions of the prob-
lem (A), (S), (C), {D).

Then the coefficients H„" (n = 1, 2, . . . , N;
n =-~, . .. , -2, -1,0, I, 2, . . . , ~) of the series (6)
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will satisfy the algebraic system (14).
With certain modification of the conditions of the

theorem the opposite assertion is also true: Let
the system (14) have real roots H„
(o. = 1, 2, . . . , N; n = 0, +I, +2, . . . , +~) satisfying the
following conditions:

(1) The series

Q H„sinn@ and P H „sinn'
n=l

are convergent on the whole interval -v & y &vr to
certain functions V, (y) and V (cp), respectively,
which are known to satisfy the Holder condition of
order e, e &0&1, on the interval [-m —q, w+q]
where g is some posi:tive number.

N

(2) H„"=(-i)"Pc'H„', n =o, -i, -2, . . . , — .
8=l

Then the series (6) converge to the functions
H (Z) which satisfy the last three conditions of the
problem (A), (B), (C), (D).

If besides that the roots of (14) satisfy the con-
ditions

II„~He '" n=0, 1, 2, . . . , ~

H„~He f", n= —1, —2, . . . , -~
where H is a positive constant, and the positive
constants 8, and 8,. obey the conditions 8, &jlnr,

~

and 8, & ~lnr, . ~, then the functions H (Z) satisfy
condition (A) too.

The proof of the first part of the theorem is con-
tained in the derivation of (14).

In order to prove the second part of the theorem
we substitute (15) into (14), then multiply by sinvp
and sum from v=1 to v=~'.

Q H„sin vy
—Q H „sin vy = P "(y) + P C Q (y),

where

1 +~ r
P (y) =—Q sinvq& g LI", d( sin v) cosk( F(g)

7E @~l

V",(y) = QH,"sinvy, -w & y &w
v=1

is Holder-continuous of order e, 0 &e &1, then its
conjugate function

U+(y) = QH, cosvy, -v &y &w
Ij= l

is also Holder-continuous of the same order e.
Similar statements are also valid for V "(y) and
U (qr). From here it follows that the expression

[U, (y)+ U (p) +H,")'+[V,(y)+ V"(y)]'

is Holder-continuous and therefore it coincides
with its Fourier series

Hm+k Hiii coskp .

On the other hand, as

Z Hm+a H~

by definition, the series

LP cosky = L (y)

is uniformly convergent, and its sum L (p) is a
Holder-continuous function of order e, 0 &c &l.

The fact that the series g," „L~ cosky is uni-
formly convergent allows us to change the order of
summation and integration in the expression for
P "(q ):

1" h 7l

P (y)= —gsinvy
77 II~ l

dij sinvg ( Q L cask(}F(i'iI,

P (y) = —P sin vy t d( sin vg L "(()F(g) .
7T p r

(20)

As L"(P) and F(P) are Holder-continuous, their
product L "(P)F(g) is also Holder-continuous. Then,
according to a theorem of the theory of Fourier
series, the Fourier series (18) converges to the
function L"(y)F(y):

P'(y) = L (y)F(y) .

and

(18)

oo +~ w

x Qsinvy P LP dgsinvgcoskPF($) .
p= 1 k= -~

7r

(19) 0"(q + ~) = L"(q )F(V ) . (22)

If in Eq. (19) we substitute p+m for y, and take
into consideration that

(-1)' sinv(y+ m) = sinvy,

then the right-hand side of (19) becomes identical
with the right-hand side of (18). Then, with regard
to (21) we have

According to Privaiov's theorem (see Ref. 13,
Chap. VIII, Sec. 13) if

If in (22) we substitute y+ w for y we obtain

Q"(y) =L (qr+w)F(y+m). (23)
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Introducing (21) and (23) into (17) we obtain

ImH"(y) = L"(y)F(y) + g C "aL"(cp+m)F(y+ w),
8-l

(24)

where

gH„"cosncp and gH „cosny
n=l f1=i

are convergent in the interval [—m, m], then on both
sides of the latter equality there are series which
converge to functions conjugate to ImH"(y+n) and
ImH (y). From the latter equality and (27) we have

ImH"(y) = Q H„"sinn' = V,"(y) —V "(y) N

H"(pp+w)= QC"'H'(q), —w &q &z. (28)

is Holder-continuous of order c, 0&a &1.
Let y belong to the [--,'z, —,'m]. Then introducing

y into Eq. (24) we obtain

lmH"(y) =L (cp)F(cp), --,'w & y & ,'n. - (25)

ImH"(y+m) = gc aLa(pp)F(qr),
8=1

l l--,p &y c,m.

(26)

Comparing Eqs. (25) and (26) we see that

If in (24) we substitute @+n for 1p, with y belong-
ing to the interval [--,' w, —,'w) we obtain

From what was said above it also follows that
H (y), -n & y &w, is Holder-continuous of order
c, 0&a&1.

Now we are in a position to verify the conditions
of the converse of the theorem.

If the last condition of the theorem is also ful-
filled (this condition should also be added to the
theorem in Ref. 15), then the functions H (Z) are
analytic in the region r, & ~Z( &r, , i.e., the condi-
tion (A) of the problem (A), (B), (C), (D) is sat-
isfied. This is so because in that region the series
g„'" „H„"Z" is majorized by the expression

N

ImH"(cp+m)= gC BlmHa(y), —w &1p &z.

(27)

PH p( 1 —"') gH *p( 1 —
)

In the latter equality the interval [--,'w, —,'w] has been
expanded to the interval [-a, w]. This is possible
because we have

S
Q C "&C&a=5„8.
y=l

Taking into account that ImH (y) is Holder-con-
tinuous we could derive from (27) the following re-
lations:

(-1)"(H„"-H"„)= Q C"'(HB H'„), —
g=l

fl 1 f 2y ~ ~ ~
y

~

As according to the conditions of the theorem
N

(-1)"H „= g C "SHS„, n=0, 1, 2, . . . , ~
8=1

from the latter equality it follows that

(-1)"H„"= QC'H„',

n=-~, . . . , -2, -1, 0, 1, 2, . . . , ~.

Multiplying by cosncp and summing from
n=-~, . . . , -2, —1, 0, 1, 2, . . . , ~, we obtain

OO N

H„"cos (p+s)= QC s r Hscossp).
pg —~ OO B=l ~ 00

Since it was shown above that the series

in which both series are convergent.
Condition (B) is also satisfied because H„" are

real numbers.
Conditions (C) and (D) are also satisfied; this

could be seen from (25) and (28). With this obser-
vation, the proof of the theorem is completed.

Condition (1) of the second part of the theorem
actually means that the functions ImH (cp) are
Holder-continuous. According to Privalov's theo-
rem it follows from the above condition that
ReH"(pp) and hence H (cp) are H'older-continuous-
a condition which is included in the first part of the
theorem. The first part of the theorem has been
formulated under the condition of Holder continuity
for H"(cp) with the purpose of simplifying the ex-
position. This condition, however, contains some
unnecessary information, and could eventually be
replaced by the following condition: ImH"(1p) is
Holder-continuous. Superfluous information exists
also in the condition

P H„-..p(-;.)=O

from the analogous theorem in Ref. 15, and this
condition could be omitted.

Condition (2) of the second part of the theorem is
a generalization of the equalities A."=-Q &,C "SXa

which the residues in Eq. (1) obey. It should also
be added in the theorem from Ref. 15.

Let us suppose that we know the conditions under
which the solutions H„" of the algebraic system (14)
exist and are unique. This would be sufficient to
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prove the existence and uniqueness of solutions of
the problem (A), (8), (C), (D) provided condition
(1) of the second part of the theorem is satisfied.
It turns out that such a possibility exists. In Ref.
13 (Chap. II, Sec. 3) it is proved that if H„"
= O(1/jn j'+') then the series

H" sinn@ and g H"„sinn@
n=l n=l

converge to Holder-continuous functions of order
e, 0&a&1.

The equivalence theorem of the present work is
based mainly on the assumption that H"(y) are
Holder- continuous functions.

In the corresponding theorem in Ref. 15 the con-
dition+„= „jH„j&~is imposed instead of the
above assumption. This condition is satisfied if
the functions P„" „H„Z" and hence, the functions
H"(cp) are continuous (see Chap. VIII, Sec. 12 of
Ref. 13) and have a bounded variation. (See the
Hardy-Littlew'ood theorem in Chap. VIII, Sec. 12,
in Ref. 13).

If the formulation of the second part of the theo-
rem in Ref. 15 is completed as suggested above,
then the method of proof will be similar to the way
the corresponding proofs were made here.

As stated above, the condition of H"(y) being
HoMer-continuous can be interchanged with the
condition of H (y) having a bounded variation. This
can also be extended to the function E(y) In this.
case we would have an analogous theorem in which
the functions H (y) a,nd E(y) would have a bounded
variation —the first in the interval [-v, n], and the
second in the interval [-—,'w, —,'m] .

IV. NUMERICAL SOLUTION OF
LOW'S PROBLEM

After the equivalence between Low's problem
and the system (14) has been established, the prob-
lem of the latter's numerical solution can be dis-
cussed.

In order to obtain numerical solutions of (14) the
infinite limits are replaced by finite ones. The
correctness of this procedure could be established

Here f' is the coupling constant and the index o.
is determined by the isotopic spin I and the full
moment of momentum J of the pion-nucleon system
in the following manner:

a =1-I=2,

(y =2-I=2, J= ~

The function f(x} is determined by the equation

f(x) = p'v'(p) where p = (x ' —1)' ~' (m„= c = ii = 1; m„
is the mass of the pion) is the pion's impulse in
the c.m. system, and v'(p) is the cutoff function.
The cutoff function can be selected in different
ways. ' ' A cutoff function

v'(p) =e "(1+a'p') ', a=0.27 (30)

with k «1 can be used for the numerical solution.
It coincides with the function given in Ref. 16 for
a=0.

In order to facilitate the numerical solution and
theoretical investigation, (14}will be rewritten in
such a way that it will be clear that the H„values,
n=0, 1, 2, . . . , ~, are related to the interior of the
circle C, and the II„"values, n=-l, -2, . . . , -~ to
the region outside the circle (the interior of C,
corresponds to the physical sheet of the original
variable z and the region outside C, to the second
Riemann sheet). With the notation

theoretically; however, we have limited ourselves
to numerical experiments confirming it.

The system (14) was successfully solved numeri-
cally in connection with Low's problem, which cor-
responds to the equation of Chew and Low. ' In this
case C ~ and A. are equal to

( 1 -8 16
C 8- —'I -2 7 4 ~,

4 Ij
(29)

Tf =H„", n, = [=0, 1, 2, . .. , ~,

Eqs. (14) become:
N

8=x

(31)
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In order to apply the fixed-point theorem in (31), we take 7, = f 0+ 7 „T,= t „+r„"where the numbers
z, correspond to an approximate solution and are known, and t 0, I, are unknown small corrections. After
the substitution, (31) becomes

4 max &max C max gmax

t„= P Q F(t , q
.])Z-„(t„-f„)+2P P F(v, q

.()Z-„(T;,f,)
(=0 /=0

Xmax (max X.lnax g rgax

+2 P P Z(v, ~+~)Z"„(R „;f,)+2 P g ~(v,.g+~)E"„(R „;~,)
g=o X- x g-o

K max q max Kmax p max

P +(~;n ()&-".(7„~„)+ Q Q +(v, ~-y)&"„(If „ff „)+R"„-~.
(=0 TP 0 p=I

Q I
y

2'3 ~ ~ ~
y Ny &

' ' '
& ~max (32)

As has been pointed out earlier, infinite sums are
replaced by finite sums in the system (32) which
is intended for numerical calcu1ations.

The numerical solution of (32) for a problem cor-
responding to the equation of Chew and Low has
been found by means of a fixed-point method in the
Banach-Cacciopoli variant which can be considered
as an algebraic version of the Low-amplitude
method used in Ref. 9. The solutions obtained have
been compared with the numerical solutions of the
integral equation (1). The latter were obtained~

applying the Low- amplitude method with k = 0 in the
cutoff function (30). The maximum difference be-
tween the two solutions was 0.5/p.

Reference 9 seems to be the only work in which
the numerical solution h (z) of the integral equa-
tion (1) is determined by the help of the Low-am-
plitude method. The inverse Low™amplitude meth-
od' and the N/D method are preferred instead. In
these methods the unknown functions are the aux-
iliary function S"(z)= 1/h"(z) in the first case and
N"(z) and D "(z)=N (z)/h (z) in the second. If the
denominator h (z) = 0, S (z) and D "(z) may not cor-
respond to the correct solution of Eq. (1). That is
why the Low-amplitude method in which h "(z) never
appears as adenominator has the advantage of elim-
inating the necessity of searching for zeros in
h (z). Therefore it is convenient for calculations
with large values of the coupling constant where
surprises are likely to crop up. Such an investiga-
tion has been carried out in Ref. 9 (it was also
proposed in Ref. 8}, by successive application of
the Low-amplitude method in the following manner:
f' is given values f', &f', &f', & ~ &f', f, be-
ing a sufficiently small positive number. The nu-
merical solution of (1), h",(z), is determined in the

first place with the maximum possible precision
for f o. Then starting from h, (z) as a zero-order
approximation, we find the solution of (1), h, (z),
for f'= f'„etc.

The results obtained in this manner are shown in
Fig 1. T.he value f' =0.07 is the highest possible
value of f' for the adiabatic solution of the equa-
tion of Chew and Low which can be obtained in this
way. This value is close to the experimental 0.087
for the resonance solution.

It is also to be noted that for f' = f',„ the graph
in Fig. 1 indicates the presence of a corner in the

5, curve which probably may be related to a cut in
the A'(z) plane. To prove this let us accept that;

for f'= f',„ the curve behaves as a corner in the
neighborhood of the maximum. To some extent
Fig. 1 gives grounds for such a hypothesis. This
neighborhood will be considered- in the plane of the
auxiliary variable & = )+iq which coincides partial-
ly with the first sheet of the physical plane for
q &0, and for rl & 0 with the second sheet (the half
line ( ~ 1, rl = 0 in the plane corresponds to the up-
per side of the physical cut). In these conditions
let us consider the harmonic functions U(g, q)
=Re@'(z) and V(g, 7i) =1m''(z), supposing that in the
vicinity of the corner g =- z. Obviously the curves
U($, 0}and V($, 0) would also have corners. The
functions U((, q) and V(], q) can be considered ap-
proximately as harmonic for g &0 because g &0 cor-
responds to points in the first sheet. If we suppose
that U($, 0) and V($, 0) are known, then we can use
the weH-known Poisson's integral to find the solu-
tion of the Dirichlet problem for the upper half-
plane, i.e., the functions U(g, q) and V(), q). The
fact that U(], 0) and V(g, 0) have corners leads to
logarithmic terms in the expressions for U(g, q}
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FIG. 1. Numerical solution of Low's equation.

and V($, q), q &0. The next step is to make an
analytic continuation of U($, q) and V((, q) into the
lower half-plane q &0. This being done, it is easy
to see that these logarithmic terms can be in-
terpreted as having been generated by a cut lying
in the second sheet of the variable z. This cut
touches the 0-g axis in the vicinity of the maximum
of h'(z). For f' &f',„ this cut would probably pass
into the upper plane, thus violating the condition of
analyticity which is indispensable for the integral
equation.

The system (14), after its transformation into
(32), was also solved numerically by Newton's
method. A solution was found for a problem cor-

I

responding to the equation of Chew and Low with
the data adduced earlier. It differs from solutions
obtained by other methods by several tenths of I/p.
The first experiments were unsuccessful because
precision decreased rapidly upon increasing the
number of iterations. As proved later, the rea-
son this occurred was the truncation of (32). If the
$,„, g,„, p. ,„, v,„, and A. were infinite in (32),
t"„would have been real (H", and v„are real by def-
inition). However, as the sums in (32) are truncat-
ed the solutions of the truncated equation become
complex. By substituting t"„with t'„+it"„ in (32)
and separating the real and the imaginary part, we
obtain the system of equations
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t,"+7, = g c"'(t,'+78),
/=1

g max '/max

Q F(v, n ()-tE„"(tK, t'„) —E"„(tf; t'„')]

X.max g maxK max &max

(=0 /=0 i=i K=o
+2 g g F(v, 7i—()E"„(r„;tg)+2 Q g F(v;X+&)E"v(& ~it'g)

X.max K max 6 max &max

+2 g p F(v;~+~)E",(z»7, )+ g g F(v;q-g) E,"(7„7„)

X max p max

+ P Q F(v; A —p)E„(f,t » it „)+g",—7"„,
X= & p=l

E

Q c&St 811

8=&

(33)

g max &max

g=o Ij=o

K max &max

F(v; 'g-$)[E",(t)','t'„)+E,(t),'t'„')]+2 Q Q F(v; q-t, )E,(7„;t )
)=0 $=0

X max (max
+2 Q g F(v, z+])E"„(A „tf), n=. 1, 2, . . . , N; &'''&~max'

Iterations using Newton's method can be effected
with arbitrary precision in the system (33). We
assume II „=II,' for an approximate solution, as
the values of H,""are very small. It is absolutely
necessary to take the latter into account in order
to guarantee the convergence of the process of
successive approximations, though not in order to
improve considerably the precision of H, .

Methods for the solution of dispersion integral
equations other than the N/D method and the in-
verse Low amplitude method are described in Refs.
18-21.

V. CONCLUSION

The S-matrix problem, called Low's problem in
this paper, is defined in Sec. II in an abstract way
by the conditions (A), (B), (C), (D).

The main point of the investigation is the proof
of the theorem in Sec. III, which guarantees a one-
to-one correspondence between the abstract defini-
tion of Low's problem and the algebraic one given
by the system (14). The latter offers a possibility
of solving Low's problem numerically. In Sec. IV
two methods are proposed for this purpose. The
first is the well known Newton's method of suc-
cessive linearizations. The second is based on the
Banach- Cacciopoli principle of contracting mapping
and leads to an iterative numerical algorithm. It
is to be stressed that iteration is the main way to
get numerical solutions of the related integral
equations of dispersive type. However, in this
ease iterations are indirect because h (z} are rep-
resented either as N/D or as 1/(F(z)). In this
paper we have shown that the Low-amplitude meth-

od, where the iterations are applied directly to the
partial-wave scattering amplitude h "(z), is suitable
for numerical treatment of the algebraic system
as well as for the corresponding integral equation.
It. is noteworthy that this method is suitable not

only for investigation of the adiabatic solutions.
As has been proved in Ref. 9 it gives numerically
the resonance solutions as well, i.e., solutions
which depend on CDD poles. However, in this
case the N/D method is more advantageous.

A reinvestigation of the numerical procedures
described here is in progress, and will soon be
submitted for publication.

Note added in Proof. Professor A. Martin kindly
drew my attention to the fact that the existence of
cuts on the second sheet of h (z) contradicts its
analyticity of the first sheet. (See also A. Martin,
Problems of Theoretical Physics, essays dedi-
cated to Nicolai N. Bogoliubov on the occasion of
his sixtieth birthday (Nauka Publishing House,
Moscow, 1969}.

In Sec. IV the appearance of a corner in the 5,
plot was tentatively interpreted as a manifestation
of the existence of a cut in the second sheet of
h'(z). If the corner which was conjectured on the
basis of a numerical analysis really exists, the
assertion about the existence of a cut must be mod-
ified. As Professor A. Martin suggests then in-
stead of a cut there must exist suitably arranged
poles which approximately simulate a cut.
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A consistent light-cone formulation of the algebra of fields is derived by the use of Schwin-
ger's quantum action principle. The current commutators are extracted from the theory for
a massive Yang-Mills field interacting with fermions by an invariant coupling. Deep-inelastic
scaling sum rules are found which are formally valid and which relate F2(w) [=F~(u)] to the
Fourier transform of the diagonal matrix elements of a bilocal operator. In addition, fixed-
mass sum rules (valid if Class-II graphs do not contribute) are derived. These relate inte-
grals of various structure functions to the bilocal operator mentioned above. In the Born ap-
proximation these fixed-mass sum rules are not valid, except at the physically interesting
point q =0.

I. INTRODUCTION

In 1949 Dirac' pointed out that it is feasible to
quantize a theory on a hyperplane tangent to the
light cone (a method he calls the "front form").
During the past few years techniques which use
such a quantization have been developed' ' in or-
der to understand better high-energy processes.
Several authors' ' have shown that for quantum

electrodynamic s the. light-cone quantization for-
mally gives the same 8-matrix expansion as in a
conventionally quantized system. Here we take
the light-cone theory of vector mesons as the
proper theory and therefore do not need to ques-
tion the consistency of the two methods of quanti-
zation. There are many advantages to a light-
cone formalism not found by conventional quanti-
zation methods. For example, Cornwall and


