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Using Q theory as a model, the analytic structure of the six-point function is investigated.
Specifically studied is the kinematical region appropriate to the single-particle inclusive
reaction where the missing mass is much less than the incident energy. With some idea
about the analyticity, a finite-energy sum rule is derived. This sum rule can be used to
study the concept of generalized duality. The most striking feature of the sum rule is a pos-
sibility that the "triple-Regge vertex function" can be calculated by the data on the inclusive
reaction with relatively 1ow missing mass, i.e. , the resonance-production region.

f. INTRODUCTION

It has been conjectured that the cross section
for

a+b-c+anything

is related to the absorptive part of a scattering
amplitude for

a+6+c-a+b+c
when the amplitude is analytically continued to the
proper kinematical region. ' Then various asymp-
totic behaviors of (1) can be obtained from that of
(2). It is assumed that the asymptotic behaviors
of (2} can be obtained by the O(2, 1) expansion. '

Subsequently, it has been verified in the context of
field theory that the amplitude for reaction (2),
when continued analytically, indeed has an absorp-
tive part which is proportional to the cross section
for reaction (1).'

We see the analogy between the four-point func-
tion and the six-point function developing. The in-
clusive cross section and the six-point function
satisfy a relationship similar to that between the
total cross section and the four-point function.
The O(2, 1}expansion in the six-point function cor-
responds to the Regge expansion in the four-point
function. We therefore see that the machinery
developed for the four-point function (forward-dis-
persion relations, finite-energy sum rules, etc.)
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s= (P.+P,)',

f =(P. q)', —

M'=(P. +pb —q)',

P '=m'

Pt, =m,

where the momenta are defined by Fig. 1.
The result of our analysis indicates that the an-

alyticity on the M' plane for fixed t &0 and large s
and s/M' is directly related to the analyticity in

the mass variable of an ordinary Regge residue
function. Given the possibility that there might be

may be perhaps applicable to the six-point function.
What follows is the first attempt along this line.

In order to start the program, we must first get
some idea about analyticity. No doubt the problem
of analyticity and crossing for the six-point func-
tion will be complicated. At present we can gain
insight only by investigating a reliable model. For
this purpose, we will use Q' theory as our guide.

The kinematical variables for our problem are

some complex branch point on the M' plane in ad-
dition to the singularity obtained from unitarity,
we must be cautious in applying analytic-function
theory to the scattering amplitude. We will, how-

ever, assume, for the time being, that such com-
plex branch points are absent. This assumed an-
alyticity, together with the idea of triple-Regge
dominance, yields a sum rule which corresponds
to the finite-energy sum rule for the four-point
function.

In Sec. II we discuss the optical theorem for the
six-point function. In Sec. III we consider possi-
bilities for complex cuts and state a theorem on
the analyticity of the relevant Feynman diagram.
In Sec. IV we prove the theorem. This section can
be skipped without loss of continuity. In Sec. V we
derive a finite-energy sum rule. In Sec. VI we
present sum rules which require additional as-
sumptions about fixed poles, etc.

II. GENERALIZED OPTICAL THEOREM

The cross section for reaction (l) can be written as

(2p)2s2

A(s, t, M')= lim ', ' t d'xe "*(q' — 'p)'( +pbotu~p, ( )xp, ( )0~ ppbotu),
q2~ $3 m J

where p, (x) is the field operator for particle c. Let T be the amplitude for the process shown in Fig. 2:

lim ', ' i Jj
d'xe "*(q'—lb')(q" —p')(pp buot~ T(Q, ( )xp, ( )0)~pp ibn). (3)

2.q~2~„2 m
I

T is a function of 25 I orentz scalars that can be constructed out of the 6 four-vectors and thus has singu-
larities for 25 different channels. It has been shown that in the forward limit when s and t are fixed,
s & s-channel threshold, t &0, the absorptive part of T in M' is proportional to A. We would like to sketch
the reasoning behind the above statement. Let us first define what we mean by forward limit. Since the
limit is used to relate the cross section to the absorptive part of T, all the four-vectors must approach a
real limit. That is, limP; = limP'; = real four-vector, limq= limq' = real four-vector. But it is important to
keep in mind that the direction and the rate at which these four-vectors approach the limit is not specified.
For example, in the special frame in which p, =0, we can have

p, =(m, 0, 0, 0),

p, = (E+fe„0,0, p, ),
q=(qo+«b~ qx&0~ qb)~

p. = (m, 0, 0, 0),

p,'=(Z —ie,', 0,0,p,'),

q = (qo+&&, y qx~0, qg)

In the forward limit, all e's approach zero, but it is our choice as to how they go to zero. In what follows,
we make the distinction between primed and unprimed variables only if it is important to keep track of

Pa

Pb

I

Pg

I

Pb

FIG. 1. Diagram for an inclusive process. FIG. 2. Diagram for a six-point function.
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ie ' s . In the forward limit when s and I, are fixed and s & s-channel threshold, t & 0, only those variable s
that are linearly related to p, ~ q, p, ~ q', or P,

' ~ q can vary . They are

M' = ( P, +P, —q)', M, ' = ( P, —P,' —q)' = 2t + 2m' -M',

M,' = (P, + P, + q')' = s + s' + 2 p' —M',

X, = ( p, —q)' = 2m'+ p, '+M' —s —t,
M, ' = (-P', +P, —q)' = 6m' + 2 p' —s —s' —2t +M',

X, = ( p,
' —q')' = 2m' + p.'+M' —s' —t,

X7 = (Ps+ q )' = s' + p' —, M'+ t, X, = (pf, + q)2 = s + p' -M'+ t,

where we have set P,' = p, ' = m' . These channels are shown in Fig. 3 . The absorptive part in M', when
s = s, +ic„s'= s, +ie„t real is

2iAbsT = T(s = s, + te„s'= s, +is„t, M' =M, '+ is»M, ' = 2t + 2m' —M,' —ie»

M2 = 2so+ 2p —Mo +l(eq + E2 —E3),Mq = 6m + 2g —2so —2t +Mq +i{ E~ —-@2+63),

X7 = so+ p, +t —Mo +t(e2 —E3), X~
= so+ p, + t+ t(t~ —E~),

X,=-s, +M, +2m +y. —t+i( e, +-E,), X, = —s, +M, +2m +p, —t +i( ,e+E,))

-T(s = s, +is„s'= s, +to„M'=M, ' —ie„M,'= 2t + 2m' -M, '+i@„
M,' = 2 s, + 2 p,

' -M, ' + I (e, + e, + e,), M, ' = 6m' + 2 p.
' —2s, —2t +M, ' + i (-e, —e, —e,),

X~
= so + p, + t —Mo + t (E2 + e3), XB

= so + /' + t + x (6 ~
+ c~),

X4 = —s +MD + 2m' + p,
' —t +i ( e, —-e, ), X, = -s, +M, '+ 2m'+ p,

' —t + i(E2 —E~)) . (6)

Note that if we choose e„e„e,such that [e,~&~e, ~, ~e, ~&~e, ~, only the discontinuity in M' and M, ' contrib-
utes to the difference . Al 1 other channel variable s are evaluated on the same side of their respective cuts .
[That is, the small imaginary part of all variables except M2 and M, 2, does not change sign between two
terms on the right-hand side of Eq. (5), the unitarity equation. ]. In other words T has singularities cor-
responding to each channel associated with the variables listed in footnote 4, but it is possible to isolate
a sheet on the M' plane which contains only the singularities due to the M' and M,

' channels . From now on,
"M' plane" refers to this sheet. The absorptive part of T in M' can be evaluated from Eq. (3}.

Abss2T(s = s,

+is�„s'

= s, + te„t, M')

lim g '~ (q' —p, ')'(2v}'[ 6 (p, +p, —q- p„)(P,p~ out~ /, (0) ~n)(n~g, (0)~p, p, in)

+ 6'(p. —p,' —q —p„)(p,p, out~&,"(0)~n)(n
~ &,(0)~p, p in) ] .

Note that the first term on the right -hand side is non ze ro only if p, +p, —q = p„and the second te rm is non-
zero only if P, —P,' —q =p„.The se two regions do not overlap . Consid er the region where P, +P, —q = P„.
We want to show that

Abs„2T(s= s, +tE» s'= s, —te» t, M ) =A,

where

A = lim g '2 ' (q' —p, ')'(2w)~5~(p, +p, —q —p„)(P,p, in~@, (0) ~n}(n~ P, (0)~p, p, in) .
PPl

Of course the distinction between Abs T and 4 are "in" and "out" states . Let us define an analytic func tion
F(s, M', t) such that

E E 1/2
lim F„(so+i'„M2+te„t) = 'z (p, P. out~/, {0)~n) .

Fy, 63~ O

Then Eq. (6) is proven if we can show that

lim F„(s,—ie„M'+is„t) = ', '
{n~p(0) ~P.p, in)*

E'ysE3~ 0 m'

sinc e the continuation of T from s ' = s, + i6 y to s sp E6 y
is given by the continuation of I'

„

fro m s '
sp +

to s sp 1f j Let t & 0 and thus be below the t-channel threshold. By reducing b we obtain'
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(p, p, out~/ (0}~n}= »m F(s +le„M +Ie„t)m'
Cy~O; 62~0

d'"' '"'((''- *( p. ( (,0), , (,'(0) )Ol&3 alt( ~m 2 Pb+Pmb

+ P 0 0 o 0 . Q x 0 n

(8)
where we have performed the x, integration by using an integral representation for the 6) function. If we
evaluate Eq. (8) in the rest frame of a,

s = 2(m +m E+i m e, +i Eeh),

the continuation to the opposite side of the cut in s is equivalent to continuing pb to the other side of its
cut. On the other side of the cut in pb, the sign of ic changes:

1(i(, —i „M' „i(= (' —'
I

d' '& ''((, ' '} ('. (',(,0(, , (', (Dl )
1

Pn ~b

If b is reduced in (E,E,/m, m()'~'(n~p(0)~p, p, in}, it
is quite easily seen that indeed Eq. (7}holds.

We stress again the most important point: there is
a sheet in the M'plane uhich contains only theM'-
and M, '-channel singularities. If the singularities
from the other channels cannot be separated, there
is no simple relation between the cross section
for the inclusive reaction and the absorptive part
of the six-point function. Let us take a particular
example: a = m, b = proton, and c =K . The pro-
cess which gives the right-hand cut, shown in Fig.
3(a), is nonzero when

M' & (gr +m)'.

(For the left-hand cut see below. ) The break in
the cut is due to the requirement that q'= p,~'. The
cut in the region

(Ps + m&) &M ~ (Ds —}(s)

corresponds to the emission of a K meson, since
it can easily be verified that q, ~ p,~. The cut in
the region M' ~ (Ws+ ps)' corresponds to the three-
particle scattering process since q, &-p.~, pro-
vided s and s' are analytically continued to the
proper side of the cut.

The left-hand cut comes from the diagram shown in
Fig. 3(b). We are interested inthe case where s and
s 'are held fixed and large. In particular, (P, —q)'
= t & 0, (p, —p', )' = -s & 0, (q+p,' p =s + I(' —M'+ t.
Then this diagram corresponds to the cross section
for the inclusive process K +P - m + anything and the
scattering process K + m'+ p-anything. The inci-
dent energies squared for these two reactions are
(P(, + q')' = s+ p' —M'+ I and M,2, respectively The.

This cut corresponds to the left-hand cut shown in
Fig. 4.

P

M'
Pa

— - P (a) q

P P
b P

M2
I

= p' (b)
a a

P Pb

q

Pa

P

q'

pa (e)
I

Pb

'a

(f)
I

P

q q

Pb P (c)
2 b

P M2 P'

P

Pb

q

p (g)
I

Pb

P Paa

=q (d)

p M p
b b

P

q'

'a

I

Pb

FIG. 3. Channels that have singularities on the M2

plane when s and t are fixed.

square of the momentum transfer between n and K
is t. The cut on the M' plane corresponding to this
process is located at the position

M, '=2t+2m'-M' (m~z+g, )', M, '=mr'.
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Po Pb
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III. COMPLEX CUTS?

So far we have been discussing the singularities
whose existence is guaranteed by unitarity. Are
there any other singularities? It is our task to
investigate the additional singularity structure of
the amplitude T, besides the cuts shown in Fig. 4,
in the region ~M'~ c (Ws —it, )'. We do not have to
look far to find such singularities. In fact the box
diagram shown in Fig. 5 will give a complex
branch point on the physical sheet in the region
~s/M'~ = O(1).' Another region of interest is where
~s/M'~ »1. In this region such a trivial example
cannot be found. Therefore, restricting oneself to
the region ~s/M'~»1, we will now investigate the
singularity structure implied by a certain class of
Feynman diagrams in Q' theory. We will notice
some very important simplifications.

In the region ~s/M'~ » 1, we expect the dominat-
ing process in the inclusive reaction to be the
Regge exchange shown in Fig. 6. In particular in
the case of m'p-m'+X at M'=m~', Fig. 6 repre-
sents an elastic m'p-m'p process which is domi-
nated by the Pomeranchukon exchange. Experi-
mentally, in the reaction P+P-P+X, ' it is seen
that I =

& baryon resonances are produced and the
cross section is constant in energy. Furthermore,
the 633 resonance production cross section goes
down rapidly with energy. This indicates that in
the reaction PP-P+X, Pomeranchukon exchange
gives the cross section which is constant in s and
the lower-lying trajectories, for example, p, give
the contribution which decreases with s. In fact

Pb

pa

q~ 0
s

FIG. 5. The box diagram which gives a complex sing-
ularity in the physical sheet.

FIG. 4. The singularities of channels M and M& on
the M plane. The reaction in the M channel is 7r +P

K +X. The positions of the singularities are: (1) phys-
ical region for ~ +p K +X, (m&+pz) «M &(~s-pz );
(2) region related toK+7( p X, (vs +p, g) ~M; (3) phys-
ical region forK p 7( +Z+, I =2t+2m -m&, (4)
physical region forK p 7( +X, 2t+2m —(~s-p) ~M'

«2t+2m —(m&+p ); (5) region related toK p~+ X,
M2 «2t + 2m2 —(V s +p )2.

P Pb

FIG. 6. The dominant diagram in the inclusive re-
action at small t and ~s/Mt~» 1.

P

P

Pa
Pb

FIG. 7. The class of diagrams in $3 theory that were
studied. It has the following properties: (i) The four-
point function associated with the lower black blob cor-
responds to the arbitrary sum of diagrams in Q theory,
so that it behaves as [-(p~+k&) j~' P(k&, (k&, +p, -q)2, t)
in the limit of large (p, + k&) . Similarly for the upper
black blob. (ii) The cross-hatched blob is a six-point
function which represents an arbitrary Feynman diagram
with n propagators and / loops.

these experiments tell us that Fig. 6 is the domi-
nant contribution. We use this experimental re-
sult to say that in the limit of large

~

s/M' ~, only a
certain class of diagrams is important in Q' theory.
Consider the diagram shown in Fig. 7.

(i} The four-point function associated with the
lower black blob corresponds to the arbitrary sum
of diagrams in Q' theory, so that it behaves as
[-(p, + k, )'] i "p(k,', (k, +p, —q)', t) in the limit of
large (p, + k,}s. Similarly for the upper black blob.
Furthermore, we assume that the asymptotic be-
havior of P(m, a, m, ', t) on the complex m, ', m, '
plane is such that a double dispersion relation can
be written. The ladder diagrams satisfy these
criteria.

(ii) The cross-hatched blob is a six-point func-
tion which represents an arbitrary Feynman dia-
gram with n propagators and l loops.

From the experimental evidence presented
above, in the limit of large s/M' the set of dia-
grams belonging to Fig. 7 gives the dominating
contribution to the amplitude. We therefore re-
strict ourselves to these diagrams. A crucial
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question is whether the class of diagrams con-
tained in Fig. 7 possesses singularities other than
those required by analyticity. To answer this, we
will prove in Sec. IV the following theorem.

Theorem. In the limit of large s, the necessary
condition for a. diagram [Fig. 7 satisfying (i) and

(ii} above] to possess complex branch points on
the physical M' plane is that P(m, ', m, ', t} pos-
sesses a complex branch point on the my or m2'

plane, or a branch point at m, ' or m2' ~ p. p p p

is the mass of P.
If p(m, 3, m, ', t) possesses only a cut on the real

axis at p, &m, m, the analyticity of the diagram
in Fig. 7 can be deduced from that of the diagram
in Fig. 8 and only the cut due to unitarity shown in
Fig. 3 is present in the amplitude T. This theorem
reduces the study of the six-point-function ana1.y-
ticity to that of the four-point Regge-residue func-
tion in this particular kinematical limit. For ex-
ample, if we sum over only the leading logarithm
in the ladder diagram, P(m, 3, m 3, t) = constant.
Thus to this order, Fig. 7 contains cuts only on

P Pb

P Pb

FIG. 8. The diagram whose Feynman denominator
function is the same as that of Fig. 7 in the limit of
large s.

P(m, ', m, ', t) ~ I/(m, ')"'".
m 1

Incidentally, Eq. (9) is consistent with having no
complex cut on the m, ' plane.

(9)

the real axis corresponding to the unitarity cut
shown in Fig. 4. We feel, however, uneasy to re-
strict ourselves to the leading log since the non-
leading log is also important in obtaining the as-
ymptotic behavior of the residue function'

IV. THEOREM

This section contains the proof of the theorem stated above. A reader who is not interested in the de-
tails may skip this section without losing continuity. The Feynman amplitude of Fig. 7 with l loops and n
propagators in the cross-hatched blob may be written as

p(k, ', (k, +P. -V)', t)P(k, ', (k -P.'+q')', t)[-(k, +P.)']"[-(k -&l) ]".

J,=, '(k, '- ~0')[(k, +t.—q)'- tto'] (k,'- t .')[(k, -P.'+ e')'-u. ']II".= (q' —&.')
(10)

where we have labeled the momenta flowing through the loops by k, , the momenta associated with the in-
ternal lines by q„,and the mass of the internal particles was taken to be p p

' " By the asymptotic behavior
assumed in (i} above, we can write an integral representation

(k3 Po )[(kx+P q) P,o 1 4c (k3 t33 )[(kz+p q) &3 ]
2

~
2y I 2 2 2wt.c (k,' —t .')[(k, +&.-e)'-t .'] "' .c (k,' —t,'}[(k,+&. V)' P.']--

2 2
g

2$P(P1 & tt2 t t t3/0d 2d 2

c (,'- V,'}[(,+P. q}*-P ]—
where the path of integration p, ,', p., may be complex depending on the singularity structure of
P(m, o, m, ', t). A finite number of subtraction constants will not affect our argument below. Using the rep-
resentation

(-s) 1 (m') "
sinn+ m s —m'+ iq (12)

which is valid for a&0, we can rewrite Eq. (10):

l"3 P2 Pl(l 3 st2»+0 P2(l 3 lt"3»P0J Pp + p
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where

pl+2 d 4k

[(k + q'}' m-'](k, '-ll, )[(k,+p, —q)' —p, ](k, -y.,')[(k, —p,'+q')' -p. '][(k, +p, )'-m, ']Q,"=,(q,
' —tlc')

n+6~ g+2 n+6
(+5=(! n d'1,. It d*5 1 —E *&)

4 t=l f=l 2=1

X Ql —P.
&

X3+ k +P -g -P, X4+ k2 -P, 3 X5+ 4'2 —P +g -JLl, X

n+ 6 -n -6
+ [(k, +P.}'-m,'] x,+[(k, +q')'-m, ']x, + Q (q,' —tl, ')x„ (14)

r=7

G is the integral involved in the diagram shown in Fig. 9." When the loop integration is performed in Eq.
(14), we obtain

(
~ l n+ B 5(gn+ 3 X 1)Cn+ 4-2i

(D+tsC)"" "
where C is a function of x only and"

(15)

6 25 n+6
n=Z f ( . . .5, *,„.) .'+Ef (*„,.„&5;— 2 *,5.*+,*,~ .**,~ 5,*,~ 5,**,+5,**,~ 5,**,) C.

k=l i= 1 r=6

(16)
The X& are all possible invariants that can be constructed out of six four-vectors. They are given in foot-
note 4. The m„'are external masses. With Eq. (15), the m, ', m, ' integration in Eq. (13) can be performed
explicitly. Note that in order to perform this integration, it is necessary to keep n &0, D' = D+ml xl
+m, 'x, 550. Such a region exists (e.g. , where m, '=0, X, =0) and analytical continuation to their physical
values can be performed after the integration. The result is

I'(n+ I)I'(n —2l+ 4 —2a)F I,( 2t 6) ) dl4I dt32 IP(tl, 1 P2, t, l30')P(tl3 1 tl4 1 1 tl0 )1
Pp

where

(17)

D'=D+ml X, +m2 X2.

In the forward limit and large s, we have

I Is=s = —s = —s2 2P X =X =X =0

x, = x, = t+ 2(m' + q'), -
2

Xlp X l5 masses ~

x4=xb=(Pb —q)

x, =x, =(Pb+q')',

Writing D' explicitly,

n+3 gn+2-2( -2nX - n-lx - ln5~In+ 3 X 1)Xl X2 (~ -lX.
(Dl )n -2 I + 4-2 n

2=1
(18}

tinguish s and s'. We can simplify Eq. (20) by the
relations (4); the result is

D'= g,M'+g, s+g3S +g4~+g5p +g6m
n+ 6

2 2 2 2 2p*,d, +5, *,+v, , *,~ 5, *, 5, *,) c,
r=6 (21)

Pa

D'= (f,+f4+f„+f„+f,+f, +f 0+f~)m

+(f +f +f,.+f„}tl'+f.(pb

+f (p 3q3')'+(f, +f,)[-t+ 2(m'+ q'}]+f,( p, + q')'

+f (Pb + q)'+ (f f.o)s + (f, f„)s'--
+(f„+f„)t+f2M +f2, M, +f 4M, '+f,bM,

'
n+ 6

2 2 2 2 2XrP0+ OIX3+ l3'2 X4+ P'3 Xb l 4 XB C (20)r=6

(k&+ q'

q'

(kl+P -q

q

(kl+P, ml, x
la

I I+q-p, p&, x6 )
I

Pb

yg1 l
~

l ~
5IIIII

tll) li

P
l~ +I ~ x&) b

The equality among the invariants in the forward
limit is true only for the real part. At this stage
it will be seen below that it is important to dis-

Pp

FIG. 9. Diagram for G defined by Eq. (14).
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where

g1= (f4+f5 ft -fs f22 f23 f24 f25)t

f4+f6+f16 fso+f24 f25)

g3 = (-f5+f3 +f12 f2-1+f24-fss) t

g'= ( f. -f-. f.+f-, +f. f.+f-,.+f„2f..-),
g.=(f +f.+f.+f +f.+f.)

gs = ( f1+f2+f4+fs+ 2f4+ 2fs+ 2fs+ 2fs+f1o

+f„+f2+f„+2f23+6f„).

Equation (17) with the D' function given by Eq. (2l. )
is a general form of the amplitude.

We are interested in a particular kinematical
region, namely, large s and s', and s is evaluated

on the upper side of the cut in s, s' is evaluated on

the lower side of the cut in s', and t &0. We can-
not simply take the large-s limit of Eq. (17) along
the real axis since the integral representation (17)
is not defined there. In order to get around this
point, we define the functions h2 and h3'.

g2( lt ' ' ' t Xn+6) X1~2(X2t ' ' 1 Xn+ 6)t

g3(Xlt ' ' ' t Xn+ 6) X2h3(X11 31 ' ' ' t Xn+ 6)'

(We note that f& oo x, for

j = 1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 16, 21, 24, 25

and f, oox,. for

j= 1, 3, 5, 6, 7, 9, 10, 12, 14, 15, 17, 20, 24, 25.

This follows since we must cut the line associated
with x, or x2 to form the invariants X,. listed in
footnote 4.} We divide the integration region of
Eq. (15) into four parts by inserting

[8(h,)+ 8(-h, )][8(h,) + 8(-h, )] = 1 (22)

into Eq. (15). Later we will be looking for a
term proportional to s' which comes from the
region where h„h2»~1/s~. Therefore, we can
write I as sum of four integrals. (If the integra-
tion region where h2 or 63= 0 is important, then it
requires extra care. } Calling I„.. . , I, terms with

8(hs) 8(t23), 8(hs) 8(-h3), 8( h)82(h-),3and 8( h)g2(--I)2, 3
respectively, we see thatI, has cuts when s, s' &0,
I, has cuts when s & 0, s '& 0, I, and I4 have cuts
when s&0, s'&0 and s&0, s'&0, respectively.
Therefore a large s, s' limit can be taken in
the direction where it is regular in s and s', that
is s, s'- -~ for I„s--~, s'-~ for I„etc.We
will demonstrate the technique for I,. The tech-
nique can be applied for I„.. . , I4 also. Writing

1n+6 n 6 Cn+2-21-2ag(h )gp }X
-a-1 —a-1

I, =e '" g dx&6 Q x,. —1
0 j=l 1

(23)

we take the large s, s' limit of Eq. (23). Note, however, that Eq. (23) converges only for n&0. There-
fore, what we must do is to single out the region of integration where I, behaves like s s' and analytically
continue to a&0 after doing the integration explicitly. Note that for &&0, such a term is not the leading
term. Furthermore, when s, s -~, the integral representation ceases to be valid since I, will diverge
when s and s' reach the threshold value for their respective channels. When all other invariants are kept
below threshold, in particular negative, the integral is well defined when s, s'- -. I, is well defined on
the upper-half s and s' planes as well as on the negative real axis, and therefore using the Schwarz re-
flection principle, it is analytic on the physical sheet of the s and s' planes except for the cut on the real positive
axis. Therefore, wecancontinuethes, s'--at limittoobtains-at+is and s'-~ —se. (The assumption about
the real integration range for p,„.. . , ps is important here. ) Note the presence of x, " ', x, ' in the
numerator of Eq. (23). When s and s' are large, the integration region x, —~1/s~, x, —~1/s'~ gives the dom-
inant contribution proportional to s "s' . When I4, or 132 —~1/s~, the contribution proportional to s s' does
not arise. Therefore, we can restrict ourselves to the region I3„I22»~1/s~. This justifies the splitting of
I into I„.. . , I, . First we fix s'&0 and take s- -~. Setting y =x,sI2,/If,

n+ 6

i ~n-2t+4-al ~ xn-2l+ 4-2 n
0 i=2 /1+Y) (24)

where A =D —sg2. In taking the larger-s limit, the x, appearing in R as well as in the 5 function and C can
be set to zero. I.e. , f~ for

j = 1, 3, 4, 6, 8, 9, 10, 11, 12, 13, 21, 24, 25

drops out of the problem. In particular, we note that f„f„f„,f» corresponding to M„M„ys,gs drop
out. So Eq. (24), for large s, does not contain singularities from the channels shown in Figs. 3(c), 3(d),
3(e), 3(h}. [Later we will see that when the large-s' limit is taken, the limiting expression does not con-
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I

Pa

y=-~~~ 8 =arg sh~/R
n

y= sh, /R
ki +p

I

P

P

Pa

FIG. 10. Path of integration for Eq. (24).
FIG. 11. The diagram which gives the s~, s ~ limit

when s and s' are large.

tain the singularities from the channels shown in Figs. 3(f} and 3(g) and contains only those in Figs. 3(a)
and 3(b).] Note that the path of integration depends on what we take for the phase of sh, /R. The singularity
of the integrand at y = -1 never makes the integral diverge. In fact we take the path of integration shown
in Fig. 10. Since the value of the integral is zero everywhere except along the positive real axis,

R'=[R],,— .

;,„F(-n)I'(n-2l+4—a) "'e C" 2' ' "8(h )8(h, )h, x

(28)

The large-s limit can be taken in the same way. t.ontinuing to the region 0. &0, and continuing s and s'
from the negative axis to sp+lf and s, —ic, respectively, along the positive real axis, we have

~s~"r'(-o)r(n —2l+4} "+' C" " '~+'8(h, )8(h, )h,~h,
r(n - 2l+4 —2o.)

where

n+6

K=tf„f„}M'+(f„+f)t+(-f, +f, +f„,+f,+2f )m' — Q *,g„,'+p, ,'x, +g,', +g,'*,+v, ,'*,) c.
r=e

(27)

All invariants which were multiplied by x, and x, were eliminated. Finally,

m2

F, ~

~2™ (, )
. , JI g dq, 8(h, )8(h, )fc "'"-'p,(„,',„,', t,„,'),(„,',„,', t, „,')

xhi (x3s ' ' sxn+6)h2"(xs~ txn+6)C" (28)

where the subscript 1 corresponds to the contribution of I, to I'. Assuming that the p, ; integrations are on
the real axis p & p.,', we can deduce the analyticity of F on the le plane from Eqs. (27) and (28}. Note
that K is exactly the denominator function for the four-point function when two of the external particles
have mass t Since the reg. ion x, —1/s, x, - 1/s gives the contribution, it can be represented by Fig. 11.
The four-point function to arbitrary order in the coupling constant has been discussed in many places. ""
The only possible additional complication in our problem is that two of the masses are / &0, and that some
of the internal masses py p4 are integrated from p,,' to ~. But we note that Ref. 13 shows that the
propagator is negative definite below threshold when all the external particles are on their mass shell.
The continuation from their mass shell to t&0 will make the denominator more negative. The same is true
for any p, ,

'& p,,'. Since the integrals over p, are convergent, we see that I' is analytic on the upper-half
M' plane as well as on M'&4p. , on the real axis. Then the Schwarz reflection principle can be used to see
that I' is analytic everywhere on the physical sheet M' ~ 4p.,' on the real axis. Note that these arguments
will be false if p, ' is complex, that is, if the residue function P(m, ', m2', t) has a singularity on the com-
plex m, ', ppg2' plane.
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Nts +j(t, )
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FIG. 12. Analyticity of I on the M plane and the path
of integration to obtain the finite-energy sum rule.

P (}0
acj

FIG. 13. The triple-Regge diagram.

V. SUM RULE

The theorem states that if there is any complex branch point, the source of such a branch point is in
the Regge-residue function of the ordinary two-to-two scattering amplitude. We are not prepared, here,
to make any statement about the Regge-residue function. We would rather take the point of view that if the
result of assuming no complex branch point on the M' plane does not agree with experiment, then we know
a possible source of the problem.

In this section, we assume that no other branch point except those coming from unitarity exists. The
singularity structure for I is shown in Fig. 12. (For those who skipped Sec. IV, I is the part of T which
contains all the leading singularities in the limit of large s.) The discontinuity across the cut, according
to Eq. (6), is proportional to the inclusive cross section. Therefore, if we know the M dependence of the
amplitude around the circle of radius M,', we can use the formula

(M )"fdM'=0 (29)

to obtain the relationship between experimentally measurable quantities. " The triple-Regge expansion
supplies the M' dependence around the circular contour. According to the triple-Regge expansion we have

a~(t)+ u~(t)
T ~ 'g rf+— (M'} i '

~2 „.~ ]~2 „4m,.)„'M
where

p„,.(0)g...(t)t,
sin7([ a, (0) —n, (t}—a, (t)]

(30)

-t ~0[.(t)
(t)

e ~ + ( -im[a ( )(-0a (t) —a),(t)]~1.
sin((a, .(t)

P~,.(t) is a Regge-residue function associated with particles a and b and the Regge-trajectory j coupling,
g„,(t) is the tripl. e-Regge residue function. They are normalized in the same way as in Ref. 15. These
notations are defined by Fig. 13. In particular, our g~~p(t) where P stands for the Pomeranchukon, cor-
responds to g~(t) in Ref. 15; a(0) and a, (t) are the Regge-trajectory functions. When n, (0) —a, (t) —n„(t).
=y =integer, the first term of Eq. (30) seems to have spurious poles. They are canceled by either (i) azero
in g;,„(t)or (ii} by F;.,, The spurious poles have been studied in Ref. 10 by computing a particular Feyn-
man diagram in (j)' theory. It was found that for y (0, F";,, =0 and g;, ,(t) has a zero; for y ) 1, F;"» is
present to cancel the poles. It is, therefore, quite reasonable to assume that E,",„=0for n (0. For n) 1,I';"„is a polynomial, and even if it is present,

&) F, (M ))"dM =0

and gives no contribution to Eq. (29). Using Eq. (6) and the argument about the left-hand cut presented in
Sec. II, we obtain

N 2
dv

J 2 dtdM'
„ i, „r J 2 dtdM'

(M')", dM' —(-1)" (M2)" — dM'

16m' M a, (0) —a, (t) —n, (t) + n+ I

(31)
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It is important to point out that for (dtJ/dtdM')„b, » the invaria, nt energy squared of b and c is

(pb + q)' = s+ tb' —M'+ t

and it is not fixed along the integration path. When the major contribution to the integral comes from low-
er end of the integral, however, the modification due to the energy shift should be small. Note also that
if a = c, Eq. (31) reduces to a trivial equation for even n.

VI. EXTENSIONS

Equation (31) in general requires measurements
of two inclusive cross sections, a+b- c+X and
c+b- a+X. In this section we discuss sum rules
which stem from Eq. (31) but require less experi-
mental data. We see immediately that for a= c
and odd n we have

J 02

dtdM

ag {t)+ak(t)
(M b) at(t)+ n+ t

].6ms2 0
jjk 0

Pbbt (0)gt f,(t) (32)
nt(0) —n, (t) —n, (t) + n + I '

The contribution from the crossed channel c+ b- a+X in Eq. (31) comes from the fact that I con-
tains both right- and left-hand cuts. Suppose now
that we can make the separation I =I~+IR, where
I„(l~)is an analytic function of s, t, and M' which
contains only the right- (left-} hand cut on the M'
plane in the limit of large s and fixed t. Let us
further assume that they both have a triple-Regge
behavior with appropriate phase factors (i.e.t,t no
fixed poles). A sum rule can be written for both
Il and IR separately and we obtain, for all n,

d~
~

a I b~ c~x

Np

2 dtdM

fy.
&

(t)+ nk(t)~ 16tts' ~t~' M ' (M, ') t'""
jgk 0

Pbbigltk(
n, (0) —n, (t) —n, (t) + n + 1

'

Let us now discuss the content of this sum rule.
(a) Consider a reaction a+ b a+X. T-hen the lead-
ing Regge trajectory is i =j = k= Pomeranchuk. For
n =0, and small t, we can write

N

2 dtdM +t - x

1 PbbP I Pbc'P I'gPPP(t)
16tt 1 —nP(0) —2n't

(34)

where a' is the slope of the Pomeranchuk trajec-
tory. If nP(0) =1, g»P(t) must have a zero at t =0.
The presence of this zero is well known. (b) Note

that the left-hand side of the sum rule (33) contains
the integral over the low-missing-mass region
and thus it contains the integral over the reso-
nances. We might, therefore, expect the concept
of duality from the two-to-two scattering ampli-
tude to appear here in its generalized form. This
will be true if the sum rule holds for unusually low

Mp with only the leading Regge traj ectory in the
sum over i. Since the generalized form of duality
is widely accepted without any experimental basis,
this is a, good opportunity to check it. There is
also a related question concerning how the Pomer-
anchukon and the ordinary Regge contributions
should be related to the contributions from the
resonance and the background. If we take the anal-
ogy with the two-particle scattering, we associate
the contribution of the background in the M' chan-
nel with the Pomeranchukon contribution in i, and
the contribution of the resonance with the ordinary
Regge contribution in i. All these can be checked
when the data for various reactions become avail-
able. (c) For the time being, we associate the
background production with the Pomeranchukon
contribution to the right-hand side of Eq. (33).
Then we obtain

�

16ttr1 —nP(0) +2n't]
gPPP (t}

0'g Qg

g 2

dMb b (a+b- a+X) (35)

sohere the right side is to include only that back-
ground contribution zohich has s'~& ' behavior.
This equation is useful for obtaining the value for
the triple-Pomeranchukon vertex function. Note
that Eq. (35} is the most reliable way to obtain
g»P(t). The only other way known at present is
to measure the differential cross section in the
triple-Regge region. But the cross section is
bound to be small due to the zero in g»P(t) at t =0
discussed above, and away from t =0 the contri-
bution from cuts may play a role. Another advan-
tage of Eq. (35) is that if the background can be
properly separated from the resonance, the knowl-
edge of the low-energy cross section will put a
lower bound on gP»(t).

Furthermore, note that factorization implies
that the right-hand side of Eq. (35} is a universal
function of t for any a and b. A test of universality
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can be made in, for example,

p+ p- p+X, 7t'+He- He+X,

7T +P~ P+Xy

K'+P-P+X,
w'+P- w'+X,

K'+P-K'+X,
p+p- p+X, p+ p- p+X, etc.

VII. CONCLUSION

The analyticity of a scattering amplitude has
been proven to be a powerful tool in understanding
two-to-two reactions. The possibility of using
such a tool in the case of three-to-three ampli-

The Regge behavior for the unsignatured amplitudes

IR and I~ was assumed in order to obtain the above re-
sults. The verification of this assumption is, in it-
self, extremely interesting. We will illustrate the
possibilitythat the fixedpole may exist by a heuris-
tic argument. Consider a (Reggeon+ particle)
—(Reggeon+ particle) scattering where the initial
Regge trajectory has spin o., and the final Regge
trajectory has spin n~. The particle is taken to
be spinless. Let the square of the direct-channel
energy be M'. Then at large M', the maximum
spin-flip amplitude behaves as (M') & & ' where
n; is the Regge trajectory exchanged in the t chan-
nel. For example, if n,. =a, =1, the kinematics is
same as that of Compton scattering and cy,. is a
Pomeranchukon. In fact, at a, = a~ = n, = 1, the
spin-flip amplitude chooses wrong-signature non-
sense. In Compton scattering one needs a fixed
pole at this point in order to prevent the Pomer-
anchukon from decoupling. The triple-Pomeran-
chukon contribution resembles this possibility.
Since the triple Pomeranchukon decouples at t =0,
it may be an indication that the fixed pole corre-
sponding to the Pomeranchukon in Compton scat-
tering is absent. But it is quite possible that a
fixed pole associated with other trajectories may
exist.

tudes becomes exceedingly complicated. We have
demonstrated that in the region

~

s/M'
~

» 1 there
is a good chance that the analyticity of the three-
to-three amplitude on the M' plane becomes very
simple.

Using this analyticity, we have written a sum
rule, Eq. (31). This sum rule enables us to evalu-
ate the triple-Regge residue function from low-
missing-mass inclusive cross-section data. Such
information will be very useful for future experi-
ments at NAL.

The successes of the sum rules written here,
when they are compared with experiment, will be
quite significant. It means that we can apply the
techniques used in two-particle scattering to the
analysis of inclusive reactions. If the idea of
duality in the generalized form is verified through
these sum rules, we should gain confidence in
the significance of dual models.

Note added in proof. We have examined pp -p+x
[Ref. 7 and J. V. Allaby et al. , CERN Report No.
CERN 70-16, 1970 (unpublished)], and v +p -p +x
[CERN-IHEP collaboration (unpublished)]. The
following conclusions were reached: (a) The
cross sections are consistent with two-term
triple-Regge expansion

m' s ~M ~-f
(16')2s 2

M2 n (0)

Q ppf and Gffp are products of g, p, q; see S. D.
Ellis and A. I. Sanda, Phys. Rev. D (to be pub-
lished). (b) The finite-energy sum rule for in-
clusive reaction Eq. (32) is indeed satisfied. See
S. D. Ellis and A. I. Sanda, NAL Report No. NAL-
THY-47 (unpublished).
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The baryon form factor g~ of the vector current is investigated. We demonstrate that the
d-type contribution to gl, is proportional to the matrix element of a decuplet operator between
baryon states. Hence, if a dynamical mechanism exists which suppresses such matrix ele-
ments, the neutron charge form factor will be small even for nonzero q . This provides an
explanation for the observed vanishing of the neutron charge radius.

Quite accurate experimental data have existed for some time on the slope at q'=0 of the charge form
factor of the neutron, obtained from scattering thermal neutrons off atomic electrons. ' It is found to be
very close to zero. ' Elastic electron scattering experiments confirm this result. '

In many respects this lack of structure is puzzling. For instance, a perturbation-theoretical calculation
with bare nucleons and pions leads to proton and neutron charge radii of the same order of magnitude. It
can easily be checked that including the full SU(S) octets of mesons and baryons does not alter this result.

From nonrelativistic considerations, it is apparent why a model of the neutron as "dressed*' by a pion
cloud will not agree with experiment in this respect. Taking the convention

Opv vd'* e"' ( I
J'„' '(*)I )= (p ') F,(q')v„+ '5', (q')

2 ) () ),

one has

I', (q }=1 ——,'q'(r') + ~ ~

where (r2) is the charge radius, i.e.,

(")=f",(-.)~;.
Clearly, the vanishing of (r') can be accomplished by having the charge density, p(r), identically zero.
However if the neutron is sometimes a heavy positive particle (proton) and light negative particle (v ),
positive charge would be concentrated at small r so that (r2) would be negative and characterized by the
size of the neutron.

We wish to present here another way of viewing the problem which makes it reasonable that the neutron
charge form factor should have zero slope. We proceed by considering matrix elements of the octet of vec-
tor currents between octet baryon states. The most general form, allowing for nonconservation of the
strangeness-changing vector current, is


