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Integral equations for coupled-particle and Reggeon partial-wave amplitudes are presented.
A construction of these equations proceeds from the unitarity relation using the notion of
two-Reggeon irreducibility. From these equations, which are appropriate matrix elements
of a Lippmann-Schwinger equation in two-dimensional nonrelativistic quantum mechanics,
we demonstrate that the discontinuity across the two-Reggeon cut in particle scattering is
equal to an integral over Reggeon-particle absorptive parts actually measurable in single-
particle inclusive reactions. This provides one with a handle on the magnitude of Regge
cuts. Finally we make a little model of coupled Reggeon and particle "states" and solve
for the allowed partial-wave amplitudes when a pole and a two-Reggeon cut are close by.
This has clear relevance for the physics of diffraction scattering near l = 1 and t = 0.

I. INTRODUCTION

It has been known for some years that multipar-
ticle production leads to the presence of branch
cuts in the l plane whenever moving poles in l
are present. ' Very little, however, is known
about constraints on such cuts and, more interest-
ing to phenomenological analyses, the magnitude
of the discontinuity across them. About the only
property we are certain of is that the discontinuity
at the tip of the cut must vanish and be nonanalytic
there. ' This result, shown by Bronzan and Jones

some time ago, is a nice consequence of the ori-
gin of the branch cuts in multiparticle states, for
the phase space in such states vanishes so rapidly
at thresholds that the discontinuity across inelas-
tic cuts vanishes there. Continuing those inelas-
tic cuts in l leads to the stated result.

In this paper I would like to present a decompo-
sition of the particle-wave amplitude for particle
scattering, call it F(l, f), which exhibits in a con-
venient manner the branch cut in l arising from
the presence of two moving poles in the t channel.
The procedure is to take the definition of F(l, t) in
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terms of s- and u-channel absorptive parts and
decompose them, in the spirit of the Bethe-Sal-
peter equation, into their two-Reggeon reducible
and irreducible pieces. ' When this is done and

F(l, i) is evaluated one finds for it a two-dimen-
sional equation which relates it to Reggeon-par-
ticle absorptive parts. There is an attractive
analogy with the Lippmann-Schwinger equation in
two-dimensional nonrelativistic quantum theory
which we will draw. In essence the angular mo-
mentum l plays the role of the energy, while the
free Green's function is governed by the Regge
trajectories. ' The "potential" gives rise to the
irreducible parts.

Using this construction we show that the dis-
continuity of F(l, t) across the two-Reggeon
branch cut is given in terms of an integral over
Reggeon-particle absorptive parts which, at t =0,
can be directly measured in inclusive reactions.
This gives one a handle on the magnitude of Regle
cuts of which heretofore we have been ignorant.

Pursuing the nonrelativistic analogy, we write
the T-matrix equations for Reggeon-particle and
Reggeon-Reggeon partial-wave equations. All of
them are appropriate matrix elements in a par-
ticle and Reggeon space of a familiar looking equa-
tion,

T = V+ VDOT,

where the operator T yields full partial-wave am-
plitudes, V yields two-Reggeon irreducible parts,
and Dp propagate s two Reggeons. Clearly, al-
though we do not do it in this paper, one can also
separate out the three or four, etc. Reggeon
states in the t channel and write a hierarchy of
more and more complicated equations identical
to what one has become accustomed to in many-
body nonrelativistic physic s.'

Finally we take the coupled Reggeon and particle
equations and make a number of approximations
on them so as to be able to solve them in what is
essentially an effective-range approximation.
The case of particular interest is that when a pole
and a two-Reggeon cut are nearby and the joint
effect on the dynamics is significant.

Just a bibliographical note before we launch
into our results: Many of the basic ideas here
are present in various manifestations of the multi-
peripheral model' or the Reggeon calculus. ' In a
sense this work serves to clarify many of the re-
sults of those models and then goes on to use the
dynamical framework of two-dimensional quantum
mechanics to suggest methods to attack coupled
l-plane poles and cuts.

The paper is organized so the basic construction
of nonrelativistic T-matrix equations for partial-

wave amplitudes is presented first. Next the con-
nection of the Reggeon-particle and Reggeon-Reg-
geon absorptive parts with inclusive reactions is
discussed, and at the end a little model of a pole
and a neighboring two-Reggeon cut is analyzed.
The latter may be relevant to the problem of un-
derstanding the l plane near /=1, that is, the
Pomeranchukon or diffraction scattering.

II. DISCONTINUITY ACROSS TWO-REGGEON CUTS

A. Spinless-Particle Scattering

It is a familiar property of partial-wave ampli-
tudes that when two or more Reggeons can occur
in the channel in which the partial wave is taken,
a branch cut in the / plane transpires. In this sec-
tion we wish to consider the partial-wave ampli-
tudes, F(l, i), in the i channel for the scattering
of spinless particles carrying zero isospin or
other internal quantum numbers. Our goal is to
give a decomposition of the contributions to
F(l, t), which is especially convenient for exhibit-
ing the branch cut coming from the presence of
two Reggeons in the t channel.

We begin by recalling the definition of the signa-
tured partial-wave amplitudes for the process
a+&-a'+b' at energy s =(p, +p,)' and momentum
transfer t = (p. —p,')':

F"(i, t) = ds Q, (y)[A, (s, t) +A„(s, t)],
S

in which s is some appropriate threshold, y is
the continued cosine of the crossed-channel scat-
tering angle, and A, and A„are the s and u ab-
sorptive parts, at fixed t, of the scattering ampli-
tude. We will normalize things so that when the
process a+b- a'+ b' is elastic and the masses of
a and b are m, and m„respectively, then the ab
total cross section is given at energy s by

A.(s, 0)
r( ) -~i~2( 2 2),

a & b

where

L(x, y, z) =(x+y —z) —4xy.

Concentrate now on the s -channel absorptive
part and consider the contribution to it coming
from the physical intermediate state of N parti-
cles with momentum P, to P„. This is given via
the unitarity relation as

A, (s, t) = Q A,'"'(s, t),
K=2

with
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(~) 1 dp, dp~ 44(s, t)=—
~ ~2 ~2 ~,

(2tr|it 0,+0, —gp~)T „(p,+p, -p, + p„)
j=l

x T* (p,'+p' p + ~ +p ),

and is shown in Fig. 1. Our basic assumption is
that when any of the subenergies, s, , = (P,. +P,.)2,

in the production matrix element T, „becomes
large, its behavior in s, , is governed by the ex-
change of a factorized I-plane pole at I = o.(t„).'
We can then write meaningfully all T, „as a
piece containing (s,,)"~'~~' for the dependence on
the subenergy s, , plus a piece which has other,
for example resonant, behavior in s, ,. Now we

may split all contributions to A " into those
which can be cut into two disjoint pieces by snip-
ping two and only two Regge exchanges and, of
course, those that cannot. (In carrying out this
construction it is important to extract out the s
behavior in every subenergy. ) We will call the
first class of contributions to A ' two-Reggeon
reducible, and the second class two-Reggeon
i rreduci Ale.

In the reducible contributions, it is further con-
venient to collect together all those contributions
to the left of the leftmost pair of Reggeon lines
that can be cut to split the unitarity graph into
two disjoint parts. This collection of contribu-
tions is, by definition, also two-Reggeon irreduc-
ible. It corresponds to particle a plus a Reggeon
going to a set of particles, say N„ then going
back to particle a' plus another Reggeon. It is
distinguished by the fact that none of the subener-
gies among the N, particles has the Regge-pole
asymptotic behavior s, , "'~' of the trajectory n(t)
which we are considering. (See Fig. 2.)

The collection of contributions to the right of
the special two-Reggeon state we have distin-
guished consists of a particle b plus a Reggeon to
go to particle b' plus another Reggeon proceeding
through an intermediate state of N- N, physical

b

N-I

N=l
I-

N)+ I

P ~ ~ ~ P ~ ~ ~
P

I ~=~NI ~ N

b

N=l
I

particles. It contains any number of pairs of Reg-
geons which can be cut to separate it into two dis-
joint parts. Clearly it is two-Reggeon reducible.

We will label the irreducible contribution to the
particle-particle absorptive part as I'"', the ir-
reducible contribution to the Reggeon-particle ab-
sorptive part as J "j', and the reducible contribu-
tion to the Reggeon-particle absorptive part

b'

b'

FIG. 1. The N-particle contribution to the s-channel
absorptive part coming from unitarity.

FIG. 2. The decomposition of A~ into its two-Reg-
geon irreducible part. The reducible contribution is
further split by separating off the two-Reggeon irreduc-
ible part of the Heggeon-particle absorptive part called
J@'&& . This object is distinguished by having all
Beggeon contributions removed from each subenergy
vrhich can be formed from the momenta p&, . . .,P z& . The
full Beggeon-particle absorptive part, B, appears also.
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FIG. 3. Contribution to the s-channel absorptive part
coming from the product of two u-channel discontinuities.

B'" "k). The N-particle contribution to A, (s, l)
now takes the symbolic form

N-1
g(s) 1(N) + ~ [g(N, )DB(k)-ddt) +g(dd) )DB(1(-k),)]S S s S 8 S

Nj =&

(6)

2t=Q

a'

p+ Q/

+Q/2

-Q/2 a

b'

+Q/2

-Q/2

+Q/2

-Q/2

where we have noted that two u-channel contribu-
tions to J and B can result in a piece of A, . (See
Fig. 3.) In (6) D is a two-Reggeon propagator to
be made explicit shortly.

If we now define

sp=(p p)
I 2 s =(p'+k)

FIG. 4. Kinematics used in carryirg out the integra-
tion of Eq. (1). An equation of this form holds for each
signature.

and

g(Wk)

Ny =&

P I(N)
N=I

g B())()
N-1

(6)

channel absorptive part to write

A„=I„+J„DB,+J,DB„. (10)

The combinations A, +A„=A" which we need to
evaluate F"(1,l) then satisfy

A() I() J( )DB( )

where

then from (4) we have

A, =I, +J,DB, +J„DB„.
We can carry out the same decomposition of the u-

I') =I, +I„, etc.

To give a more quantitative definition to Eq. (11)
we label momenta as in Fig. 4 and write (dropping
signature labels)

&((P'+Q/2) )+ &((o'-Ql2) )
d(k, Q, k}=l(k, g, k)+ Jdk'd(k, kkk')(, k(k', Q, k), (12)

where

s =(p+k)',

s()=(p -p')',
(13)

(14)

s ' = (p '+ k)'. (15)

One recognizes s/sy' as essentially the "crossed cosine" for the production "process" a+ -t}mas))s's,
+ mass v's ' . The other factors in a Reggeon propagator such as sin mn and complications due to signature
which are functions of (P'+ —,'Q)' only have been absorbed symmetrically into the functions J and B. With
the definitions given in (12), 8 and B are real functions.

Now we may carry out the integration indicated in Eq. (1) by using the detailed kinematic lore developed
in Ref. 10. The crossed cosine, y, is

[P —(P 'Q)Q/Q'] I& —(& 'Q)Q/Q']'=-'"'
=&[P —(P 'Q)Q/Q']'[& —(& Q)Q/Q']']'"

and by repeating the steps in Ref. 10 we arrive at the equation valid for l far enough to the right,

(16)
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F(l, t, u, z, v, f) =I(l, t, u, z, v, t)

dz' 00 CQ +~

~ 00 S ~00

x (e~ 1 ~ 2 ~~~ + s ~+~~1 ~+ +~&m~le}Q (coshB)

where we have defined the variables

z =P Q/(ut)'", z'=O' Q/(u't)'", g = k Q/(vt)'" (19)

and eoshB and coshB' are given by expressions like (16), with P and P' replacing P and k for Bo, and P'
and k replacing p and k for O'. Further we have found it convenient to call

t, = (~"-'Q)'

t. = (P'--,'Q)'.

The variable g is a y-boost angle which is related to the subenergy variables 6, B„and 8' by

coshB = eoshB, coshB'+ sinhB, sinhB'cosh/ .

(20)

This connection has allowed us to replace s/s, s ' in the propagator numerator by a combination of e~ and
e ~, which reflects the fact that the range of variation of g is -~ to +~. Such a replacement can be re-
garded as altering the definition of what we mean by Begge asymptotic behavior; that is, when s becomes
large, s/s, s '~ e~ to leading order in s, so we might just as well have taken the propagator numerator to
be eL '&'" '2'~~ from the very start. There is a small conceptual advantage in this replacement, for the
spin analysis of Ref. 10 tells us immediately that e&" '~ '"~'2'j~ indicates we are dealing with Reggeons of
helieity (analytically continued to be eigenvalues of y boosts) n(t, ) for the lower line with ma.ss t, and
-o.(t,) for the upper Reggeon. " The quantity R, therefore, is the Reggeon-particle b absorptive part of a
definite helicity amplitude in the bb' channel.

Now using the addition theorem, Eq. (41) of Ref. 10, we may carry out the g integration involved in (1V)
with the result [setting h = n(t, )+ n(t, )]

4 d e"~+e "~, cosh9 =epI, cosh9p e'I, p cosh9

where e„'„(eoshB) is the second-kind function on the SO(1, 2) invariance group of Q. '0" The function we
want has the explicit form

e,'„(eoshB) =
2 2l 2

[sinh-,'6 cosh —',6] "[sinh —,'6] ' '[I'(l —h+ 1)I'(l+ h+ 1)]"2

E, l+1, l —8+1;2l+2; (23)

and what will be important for us is that e,'„/[I"(l —&+1)]'"is well behaved at l =h —1, h —2, . . . .
Now we define partial-wave amplitudes from the Reggeon-particle absorptive parts by

and

(25)

Then the equation for F(l, t) reads
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E(/, /, u, z, v, g)=/(/, /, u, z, e, &)

0 Z der
+

i
du' ~,i2 4(/, /, u, z, u', s')1'(/ —n(/)-n(t, )+1}G(/, t, u', z', v, g).1-z (26)

The /-plane cut arises from the integration over the I'(/ —n(t, ) —o.(/, )+1}. The leading cut in the /

plane comes from the neighborhood of /= o.(/, )+ n(/I) —1 with other two-Reggeon branch lines displaced a
whole umt in /. For the contributions in the 3 plane lying farthest to the right we may make the approxi-
mation

X'(/ —o.(t,) —e(/, )+1)= /-n/, —n/~+1 '

so that in the neighborhood of this leading two-Reggeon cut the equation for E(/, /) reads

(27)

(28)

A more transparent cast is given to the whole equation if we define the two-dimensional spacelike vec-
tors

q=(0, 4-/), (29)

p=4 -B {sing, cosg),

p'=v' -u' (sing', cosP'),

a=cosy, )pP=-u,

z ' = cosP', [ p'I2 = -I',
(3o)

(31)

k=v'-v(sing, cosy),

Then we find the equation takes the form

jkP=-v. (32)

E(/ P q k) /(/ P q k)+ d2ps ( &Ptq&p 7 Ap aqua )
/- a(t, ) —n(t, )+1 (33)

-~g =(p + aq) (34)

-/, = (p' ——,q}'. (35)

Equation (33) now exhibits the leading two-Reg-
geon branch cut possessed by E(/, /). The branch
point is at n, (/) = 2a{~/) —1, as usual, and with our
conventions the branch line runs to the left in l.
We define the physical value of E(/, /) to the left of
/= n(t) by replacing / by /+i», »& 0. This is the
right prescription for acquiring the physical par-
tial-wave amplitude when we look at our branch
line in the t plane.

The virtue of the form (33) of our equation for
E(/, /) is in its interpretation as a nonrelativistic
Lippmann-Sehwinger-hke equation in a two-di-
mensional space. %e have three types of parti-
cle" coupled together in this equation: spinless
objects of (mass} =(p 4 pQ) and (k + 2Q}, and ob-
jects of spin a(t), helicig +o.(/), and (mass)2 =t
Let us consider E(/, p, q, k) as the matrix element
of a transition operator T taking us from a state

D,(z)-'=z -z„ (38}

where the free Hamiltonian II, is

//. = [c'(-(p+ 2q)'} —1]+[o'{-(p —2q}'}—1].
(3V)

With this notation the basic equation (33) takes
the familiar form

(38}

where one takes the matrix element between par-

of particles with momentum p to a particle state
of momentum k, all in the presence of an "exter-
nal fieM" specified by the passive vector q. Also
we can think of I(/, p, q, k) as the same matrix ele-
ment of a potential V. Similarly, G(/, p, q, k} is
the matrix element of the transition operator T
between the Reggeon state with momentum p' and
the particles of momentum k, and also 4 is a par-
ticle-Reggeon matrix element of V. The analogy
of the free Green's function is of course [/- o.(t,)
—c.(/, )+1] ', and, indeed, if we call E =/-1 then
we are led to define
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T(E) = V(E)+ V(E)D(E)V(E),

with

(39)

ticles of momentum p and particles of momentum
k to recover (33). To evaluate the discontinuity
across the two-Reggeon branch cut we recall that
the solution of (38) is

=z -H, —v(z). (41)

(42)

We want to evaluate

T(E + i E ) —T(E —i e ) = V(E )[D(E + ie ) —D (E —g E )]V(E),

D(z)-' =D,(z)-'- v(z) (40)
remembering that V(E) does not contain the two-
Reggeon cut. Now we note'

D(E + gE) —D(E —gE) = -2$ED(z + XE)D(E —iE)

=-2ie[l+D(E +is)V(E)]D,(E+ is)D, (E —ie)[1+V(E)D(E —ie/]

= [I +D(E+ic)V(E)][DG(E+ic)-DG(z —ie)][1+V(E)D(E —ie)],
and then we are led to

T(E + is) —T(E —ic) = 27/i T(E—+ik)5(E —HG)T(E —ic),

(44)

(45)

(46)

which is a familiar result. Upon taking the matrix element of this unitarity relation between p and k we
arrive at

Imp�(E,

p, q, k) = -w f d 'p 'G (E, p, q p ')G (E, p ', q, k)

Xg g- ~ — '+2q - g — ~ —p- &q (47)

showing that the discontinuity across the leading two-Reggeon cut in particle scattering is given by a well-
defined integral over Reggeon-particle "scattering. " Since we will show below that the latter objects are
in fact measurable in inclusive reactions, the relation (47) has significant physical content.

Because of the 5 function in (47) we may write out the form of G a bit more explicitly by evaluating (25)
at I = n(t, )+ n((,,) -1:

B(e', p', q, k}
( ) p ) qp )IS=A [I (2E 4)]1/2 [ nhg ] (( G()p+km(tE) (48)

which we recognize as proportional to the residue of the fixed pole at l = n(t, )+ n(t, ) -1 in the t-channel
partial-wave amplitude for Reggeon of helicity o.(t, ) plus Reggeon of helicity -n(t2) -particle plus antipar-
ticle. So we may say that the residues of a certain fixed poles in Reggeon-particle scattering set the scale
for discontinuities across two-Reggeon cuts. In various models" this result has been known for some
time, although the form quoted is slightly incorrect since one is told that the cut contribution to F((), t) is
given as a two-dimensional integral over the product of fixed-pole residues. This, we now see, is only
true for the discontinuity and would involve immense double counting if taken to be correct for F(l, t) it-
self.

B. Reggeon-Particle "Scattering"

If we apply our arguments about two-Reggeon irreducibility to the Reggeon-particle absorptive part
B(s, p, q, k) then we may decompose B into its irreducible part J plus an integral over the Reggeon-Reg-
geon two-Reggeon irreducible part, call it K, and B itself. In our symbolic notation of Eqs. (6)-(11)we
find

B ~=J '~+K ' DB".
(See Fig. 5.) Again we may carry out the integration indicated in Eq. (25) to learn

G I ' k
G((, p q, k)=d(l p q k)+ f d'p'E(( p, q, p')

(49)

(50)

employing the approximation I'(x) = I/x once more. In (50) the partial-wave amplitude K(l, p, q, p'} of the
Reggeon-Reggeon two-Reggeon irreducible part is given by
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oo eln(t, )+n(g,'), n(g& )+ n(g2) (coshB, )

J; ' [I'(l —n(t, ) —n(t.')+1)I'(l —n(t, ) —n(t )+1)]'" (51)

where we have set -t, =(p+-,'q)' and -t.'=(p--,'q)'.
If we call the full Reggeon-Reggeon absorptive part C(s, p, q, k) for the t-channel helicity transition

Reggeon[n(t, )]+Reggeon[- a(t,')]-Reggeon [-n (t,)]+Reggeon[a(t, ')],

where -t, = (k+ —',q)' and -t„'= (k ——,'q)', then we are led to define the full partial-wave amplitude as

e «,&+„~,,] „«, +]„],&&( cosh6)C(s, p, q, k)

[I"( l —n(t, ) —a(t,') + 1)I'( l —n(t, ) —n(t ') +1)]'" ' (5Z)

Repeating the arguments we used to find the discontinuity across the two-Reggeon cut in F(l, t), we now
can evaluate the discontinuity across the same cut in G(l, t):

)tttG (Z, p, q, k) = -tt f d'P 'll(Z, p, q, p')G "(E,p', q, k)

x 5 « —[n(-(p'+-'q)') —1]- [n(-(p'- -'q)') —1]) .

Using the 5 function once more we find that the value of H(E) "on shell" is

(53)

C(s, p, q, k)
HÃ p q, k)l)= ~&,]. „,, z---,'[r(~+~)r(2&)] ds (, )„,(, )~„

S
(54)

where n = n(t, )+ n(t,') and m = n(t, ) + n(t,'), and we note that this is the residue of a fixed pole in the t-chan-
nel partial-wave amplitude for the Reggeon-Reggeon process.

C. Reggeon-Reggeon "Scattering"

Finally we turn to the decomposition of C(s, p, q, k) into its irreducible and reducible parts. Essentially
no further argument leads one to

C') =Z')+Z')DC') (55)

(see Fig. 6), and doing the integral in (52) in the standard fashion yields

H(l p q, k) =K(t p, q k)+ f d P'K(l p t) p') (56)

The discontinuity across the two-Reggeon cut in H also follows from our previous arguments:

ltttH(E, P, q, k) -~ f d O'H(Z, P, tl, P')H'(Z, P', tl, k)tt( Z-(~(t )-(]-l~(t )-(]); (5V)

FIG. 5. The equation for the Reggeon-particle absorp-
tive part B. B is decomposed into its two-Reggeon ir-
reducible piece, J, and its reducible piece. The latter
is composed of the two-Reggeon irreducible piece of the
Reggeon-Reggeon absorptive part, called K, and B again.

FIG. 6. The equation for the full Reggeon-Reggeon
absorptive part.
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we will indicate in the next section how one may
actually measure the function C(s, p, q, %) in inclu-
sive processes so that (67) will find its relation
to physics.

In this long section (Sec. II) we have established
a coupled set of integral equations for the transi-
tion amplitudes of particles and Reggeons. Each
of our equations is the appropriate matrix element
of the operator equation

d cr(a+5 c+X )
dip
2Ec 4,S' fixed

C
Q2

m~ss~ng mass
N

in the two-dimensional space where the particle
and Reggeon "states" of two-momentum p are de-
fined. The various discontinuity equations are
also just matrix elements of the basic formula
(46). The value of these equations is that they
emphasize the dynamical role played by the two-
Reggeon cut while lumping the rest of the physics
into the potential operator V. In a situation where
that cut may be expected to be important these
equations will be a useful framework in which to
cast the dynamics. In the last section we will
work out an approximate solution to this set of
equations when the l-plane physics is primarily
dictated by a pole and a close-by two-Reggeon cut.
One can easily contemplate Shat his knowledge and
intuition about nonrelativistic quantum mechanics
will be valuable in suggesting approximation tech-
niques for the cut dynamics. Our next task, how-
ever, will be to show how one may, via inclusive
reactions, get a direct handle on quantities such
as our Reggeon-particle absorptive part B.

III. CONNECTION VfITH INCLUSIVE REACTIONS

We want to examine now the manner in which we

may extract information from experiments on the
functions B and C. By referring to the definition
of B via the nonforward unitarity relation Eq. (12)
we see that in principle detailed knowledge of the
T, „matrix elements would allow us to construct
B. In particular we could take all events in which
J consists of a single particle c of mass m, so
that

FIG. 7. The single-particle inclusive reaction a + 5
c+ anything (called X) when s ~; 42 and 8"2 are

held fixed. This exposes the Reggeon-particle foneard
absorptive part.

u'=6
y V =SZg (59)

where the particle-a-particle-c-Reggeon cou-
pling is determined from two-body physics. Such
contributions to T, „are those at large s where
one particle called c moves along the direction of
particle a with its longitudinal momentum a sig-
nificant fraction of a's momentum. Clearly the
subenergy between c and any other produced par-
ticle is large in this class of events. Were one
able to have in detail T, „for such processes, he
could now find B knowing P„((P'a —,'Q} ).

It is much more feasible, however, to contem-
plate evaluating the function B at Q= 0, since then
it is proportional to the differential cross section
for a+ b —c+anything else in the region where c
is in the fragmentation region of a.

Let us label momenta as in Fig. V for the con-
tribution to the inclusive cross section a+&- c+X
coming from the exchange of a trajectory n(n2),
In our previous notation we would have

s =s, s'=W2=(missing mass}, so=m, .

(66) (60)

The irreducible part J is

n 1/2(~ 2 n2 ~ 2) 2a(+ )
(61)

The reduced residue functions are normalized so that if the trajectory o.(b,2} is exchanged in the process
a+ a- c+ c at momentum transfer b, the differential cross section for that reaction coming from that ex-
change is
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C

Q2

C

= a

der (a+b—c+d+X)

Pc ~ Pct

2 Ec 2Ed

S, Sj, Sp

g2 g2 g(2f)~e
h, ,a(h,

fAISSIAQ mOSS
N

FIG. 8. The two-particle inclusive process a+5 c+ @+X when s, s~, s2 ~ while 6&, A2, and S" are held
fixed. This reveals the Reggeon-Reggeon foneard absorptive part.

a(LPs'do(a+a-c+c) 1
( 2)s 2„(d2)~ e '" (~ )+vP

(62)

with r = +1 the signature of the trajectory c/(b, '). Note that P„(/) ') is real for b.' spacelike.
The inclusive cross section is now read off from E{l. (12) and E{l. (17) to be

do(a+ b - c+ anything)s'/2(s, m, 2, m,2)
gl/2(g2 ~2 m 2$ 20f(lP )

P (g2)2 2 n(LP ) i r r e / B(g2 iir2)
s~~ 4 end 2r fixed - 2( + )

The triangle function is just a relative momentum factor in the 6' channel which comes from our using e~
instead of s for arithmetic convenience.

So we see that in a single-particle inclusive experiment one may evaluate the function B(P, 0, k), which
is the particle-Reggeon forward absorptive part, '4 and that, in principle, one may extract B(P, Q, k) from
the unitarity equation using only physical amplitudes T, „. The former is surely feasible while the latter,
since it requires detailed phase information on T, ~, may be nigh on intractable.

To find the function C from experiment it is necessary to do a two-particle inclusive reaction a+ b - c
+@+anything in the region where c is at the edge of the fragmentation region of a, and d at the edge of the
fragmentation region of b. Then we can have the double-Regge exchange shown in Fig. 8. The resulting
two-particle inclusive cross section is for large s

gi/2( 2 2) ( y g) ~ P (g 2)2P (g 2)2( )2ee{41 )( )2&i(/12 )

2 2 2
fixed

2 2
1/(/2 [( ~ 2)1/2 ( ~ 2)1/2 -[ol(/ii )+ ee(52 )]

4(g 2/) 2)l/2

X C(~,2 g22 ~2).

Again, one is measuring here only the for///ard Reggeon-Reggeon absorptive part. We would have to work
enormously harder to extract C for Q ee 0; in principle, it could be done.
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IV. A MODEL CALCULATION

In this section we want to build a little model
involving an l-plane pole and the associated two-
Beggeon cut based on the unitarity relations given
before. We will imagine that these two singular-
ities represent the only important structure in
some neighborhood of the l plane. In particular
we have in mind here the Pomeranchukon pole at
I = I +n't and the two-Pomeranchukon cut at o.', (t)
= 1+-,' n't generated by it. We will write down dis-
persion relations in the energy (=l —1) plane for
our functions I", G, andII which reflect this sim-
ple analytic structure, and using the elastic uni-
tarity relation (46) to give the discontinuity across
the branch lines we will solve the resulting inte-
gral equations by quite standard methods.

We shall ignore, for reasons of obvious sim-
plicity, three-, four-, etc. Reggeon cuts. One
can make a plausibility argument that they are
not as important as two-Reggeon cuts, at least
in the vicinity of the tips of the cuts, because
their discontinuities are known to vanish more
rapidly there"; that is, multi-Reggeon phase
space is vanishingly small near threshold. For
the moment, however, I have no real way to as-
sess the importance of multi-Reggeon cuts and
will frankly ignore them. One may include their
effect in a systematic fashion by writing T-matrix
equations to take into account two- and three-
Reggeon states and then 2, 3, and 4, etc. This
little exercise we leave to the reader.

We shall proceed by imagining that there is an
interesting region of E, t space (or l, t if you like)
where a pole at E,(t) =o.(t) —1 and a two-Heggeon
branch point at E,(t) =o.,(t) —1 = 2E0(—,

' t) arising
from two Heggeons (ot) are nearby. (Again, the
problem of colliding Pomeranchukons and the as-
sociated branch cut is what we have in mind. )
Using standard dispersion-theory lore, we write

E,(t)
~ ~ &

Ec(t) = ZE.(try)

FIG. 9. The E= l —1 plane. This shows the pole at
Ep(t} = e(t) —1 and the two-H, eggeon branch cut, all for
I; ) 0. This analytic structure is put together with
"elastic unitarity" in the integral equations for I", 6,
and II. .

a dispersion relation for E(E, p, j, k) in E for fixed
p, q, k exhibiting the pole and branch cut (see Fig.
9)

F(z - -
k) g(p, 4)a(k, i)= z-z, (t)

f

(65)

where we intend to evaluate the discontinuity
across the cut by employing Eq. (47). The resi-
due at the pole has been written in factorized
form and each factor g is a two-particle Reggeon
vertex.

This dispersion relation is not enormously use-
ful unless we make some simplification. The
complication comes from the presence of the vec-
tor q, which provides a fixed direction in the scat-
tering and, in a sense, acts like an "external po-
tential. " our modification of (65) will be to ne-
glect all dependence on angles with respect to Q.
This is like taking only s waves in conventional
quantum mechanics. With this accepted, F is a
function only of E, P=((pP)'~', k =()kj')"', hnd

q=(~ j~')"'. This is also true for G and H, and
we may carry out the angular integration in (47)
to write

ImE(E, p, q, k) = -m' dP'2G(E, P, q, P')G*(E, P', q, k)5(E —2EO( P'2 —
~ q2))— (66)

= p(z, t)G(E, P, q, P.)G*(z, P., q, k),

where P, is the solution to

z = 2E,(-p,' — q'),

(67)

(68)

2
p '(E, t) = =, „zo(-p"——,

' q')
po

(69)

In the same approximation of neglecting angles with respect to q we find for ImG and ImII

ImG(Z, p, q, k) = p(z, t)G(E, p, q, p, )H*(E,p„q, k),

= p(E& t)H (E& P& q& Po)G (E& Po& q& k)

(70)

(71)
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ImH (E, p, q, k) = p (E, t)H(E, p, q, p, )H *(E,p„q, k) . (72)

Since one s experience is that E,(t) &E,(t) for t&0, it is convenient for calculation to simply continue by
hand all our formulas to t = -q'&0, solve there, and then evaluate anywhere we like. Let us do that and
write for F(E, P, q, k), then,

E(E, p, t, k = ' ' + —i, p(E', t)G(E', p, t, p, )G(E', P„ t, k).g(p, t)g(k, t) 1 f
~' dE'

0 ~OO
(73)

This equation and the similar ones for G and H are, in conventional potential-scattering language, off-
shell equations. By examining the form of the discontinuities we see that to reconstruct F(E, P, t, k) we
need the half-on-shell matrix elements G(E, p, t, p, ) and G(E, p„ t, k). To evaluate those matrix elements it
is sufficient to know H completely "on shell"; that is, H(E, p„ t, p, ). So we write for our coupled set of
equations (73), together with

G(z', P, t, P.)= z 'z, +-, I, z p(z', t)G(E', P, t, P.)H*(z', P., t, P.),g(p, t)g(t) 1 f c&'& dE'

0 oo
(74)

E, E p(z', t)H(z', P., t, p.)G*(z', P., t, k),g(t)g(k, t) 1 " '" dz'
0 OO

(75)

g(t)2 1 t
Eg(t)

+ ' E E P(z', t)IH(z', P., t, P.)l' (76)

In these equations we have designated the three-Reggeon coupling g and noted it is a function of t only.
This set of equations can be solved by standard techniques. " We will proceed by solving (76) by the usual

N/D method Nex.t (74) and (75) can be solved by the Omnes-Muskhelishvili method, writing H = (I/p)e'~
&&sing. At the end E is constructed by quadratures over GG*. What we are doing, in more standard lan-
guage, is taking a coupled-channel situation where only the elastic unitarity cut of one channel (here the
Reggeons) is significant and solving the problem of making the Born (or pole) terms consistent with elastic
unitarity. (If one likes analogies, he may think of the problem of neutron-proton scattering near threshold
in the partial wave containing the deuteron. )

To solve (76) we write

g(t)'
[E —E (t)]f(E, t) ' (77)

where we have abbreviated H(E, p„ t, p, ) in an obvious fashion. The function f(E, t) shares the branch point
at E =E,(t) and is equal to unity E =Eo(t). We may write a dispersion relation for it:

Z-z, (t) t
'" dZ' Imf(Z', t)

E' —E E' —Eo(t) '

and from (76) we learn

f(z / t) g(t) p(z, t)
E'-z, (t) '

and thus

g(t)'[E —z,(t)] " '" dz' p(E', t)
E'-E [E' —E (t)]

(78)

(79)

(80)

Of course, there is the canonical ambiguity in solving equations like (76) having to do with CDD (Castillejo-
Dalitz-Dyson) poles. " We have presented the solution assuming there are none. More general solutions
may be exhibited but probably without illuminating consequences.

To carry out the integral in (80) it is necessary to know p(E, t), and thus we must now say something
about the input trajectory or, in the present language, the energy-momentum relation of the free Beggeons.
For want of a reason to make life more complicated we will take a linear trajectory o. (t) = I+ 't. oChoosing
o.'(0) =1 really does tie us to the Pomeranchukon, but dropping the cloak of generality we now concentrate
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on that problem. Kith this choice,

E.( P'-'—q'-) = ~-'(P'+ 'q-'),

p(E, t) = -v'/2n'.

Then we may integrate to find for E &E,(t) = 2n't—

&a(~)' 1 1
I

E E,—(&)

2n ' E,(t) —E,(t) E —E,(t) E,(t) —E,(t)

(81)

(82)

(83)

It is convenient before continuing to note the meaning of g(t). It is the three-Reggeon vertex with one leg
at (mass)'=t=-~q~', while the other legs are "on shell. " That is, each one has (mass)'=-P'- —,

' q', but
since we are dealing with the on-shell function H(E, t},

E ——,
' n't

P Pp -2Q

for the linear trajectory. Further, since g is the residue of a pole at E=E,(t) =n f, we have P,'= ;t, s-o-

that the (mass)' of the legs of the triple-Reggeon vertex are f, 2i, and —.'. t. This—isshown in Fig. 10.
The Reggeon-Reggeon on-shell amplitude which results from our solution of (76) is, for t&0, E&E,(t),

g(t)'
1

&g(t)' 1 1 E —E,(t)
E —E,(t) 2n ' E,(t) —E,(t) E —Eo(t) E,(t) —E,(t)

From the unitarity relation

ImH (E, f) = p IH (E, f}I'e(Ec(f) -E)

we know we can write H(E, t) in the form

H(E, t)=e' sing/p

1

p cot/ —ip

for E, &E Indeed w. e find for the phase shift Q(E, t)

(84)

(85)

(86)

(87)

2n ' ' g(t)' 2~ ' E,(&) —E,(t) Eo(t) —E (f)
(88)

One should view the solution (84} as the func-
tional form for H(E, t) which is recluired by "elas-
tic unitarity" in the t channel. By construction it
has a simple pole at E =E,(t) with residue g(t)' and

a branch cut running left from E,(t) to -~. It is the
generalization of the form of the Beggeon-Reggeon
partial-wave amplitude given by Qribov et al. in
Ref. 1 to the case where both a pole and a cut are

{mass) = t/&
2

g{t),{mass) = t

{mass) =t/&
2

FIG. 10. The "on-shell" triple-Reggeon vertex g {t)
vrhich enters the dispersion relation Eq. (76) as the
factorized residue of the pole at E = e(t) —1. For a
linear trajectory on the on-shell condition constrains
the external legs to have (mass) = —,

' t .

present. Those authors considered the structure
of H(E, t) when only a cut was present and isolated
the important In[E, (t) —E] factor which arises
because the dynamical space is two-dimensional.

A very amusing consequence of the linearity of
o. (t) and the choice c.(0) = 1 comes when we con-
sider H(E, f) as given by (84) near t = 0 for fixed E.
Because of the E,(t) —E,(t) = --,' o'. 't appearing in
the denominator we find that H(E, 0) seems to van-
ish at t=0. In fact if we arrange g(t) also to van-
ish so as to cancel the t ' behavior in the denomi-
nator, its presence in the numerator causes
H(E, 0) to vanish nevertheless. So in the model
we have constructed the on-shel/ Reggeon-Aeg-
geon Partial -nave amPlitude vanishes identically
at t=0.

The general form (80} for the denominator of
H(E, f) is also employed by Bronzan" in an inter-
esting program which seeks a."self-consistent"
pole trajectory E,(t). He recognizes, as we have
ignored in our little model, that E,(t) cannot strict-
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ly be n't and maintain the real analyticity of H.
In detail his program is much the same as our
model here, but he seeks the trajectory as an
output, and by requiring it to be the same as the
input trajectory entering discH(E, t) he deter-
mines the parameters of possible CDD ambiguities
His trajectories are complex for t&0 and, as
pointed out by Bronzan, ' thus avoid spurious
fixed-t cuts. Because of the ln[E, (t) —E,(t)] pres
ent, say in (84), our solution has this disease.
For our purposes here, the important feature we
wish to emphasize is the rule played by g(f) in
setting the scale of the two-Reggeon cut even in
particle scattering. It should be straightforward
to repair this defect of fixed-t cuts in a more com-
plicated model. The role of g(t) will clearly be
the same.

If we look at the denominator of (84) to make
quite sure that we have no poles beyond the one at
E =E,(t) which we built in, we find a condition on

g(t). Rewrite (84) as

G(E, p, t, p9) which satisfies the integral equation

(91)

which is the unsubtracted dispersion relation (74),
noting H = e'9 sing/p.

The solution of .this equation is known to involve
the phase function

so we ought to enumerate some of the properties
of P. From the standard arguments which go into
Levinson's theorem for potential-scattering phase
shifts we learn

inn+[ [a "t/vg(t)9] —I) (& —I) '

where A. =[E—E(t)] /[ E(t) —E,(t)] and we have
used E9(t) —E,(t) =-,' n 't. The condition that the
denominator of (89) vanish only for &=1, that is,
E =E,(t), is that the coefficient of &- 1 be positive.
This requires

(90)

Thus, the requirement that indeed we have a Pom-
eranchukon pole leads to the vanishing of the triple-
Pomeranchukon vertex at t = 0. For a trajectory
analytic at t=0, this is a known requirement of
g(f) 19

We are now prepared to evaluate the half-on-
shell Heggeon-particle partial-wave amplitude

since there is only one bound state at E =E,(t).
Specifying Q(-~) =0, we find that P(E, ) = -&. One
may do even better by examining the form of Q(E)
near E, from (88} to see

$(E) ~ —v+ v
~-Ec(~)

(94)

In a real sense the value of @(E)at E = -~ is out-
side the realm of validity of our equations since
we have restricted ourselves to the neighborhood
of E,(t) or E,(t), and for t not too large this means
E=0. However, mathematics forces us to make
some announcement about Q(-~}, so we set it
equal to zero. (See Fig. 11.)

Since Q(E, ) x 0 there is a ln(E, E) behavio-r in
4 near E, which we must account for in the solu-
tion of (91). We now write that solution in the form

g(P, t)g(t) [E E,(f)] [E,(t) -E-] o~@ t
'~') dE' e ~ ) sing(E')

E-E (f) & J E'-E [E (t)-E'][E'-E9(t)] (95)

)
g(p, t)g(t);9(s) E) [E E,(t)](E, E) -9(~)p

" —'' E' e ~ ) sing(E')
E-E (&) v ~ (E' —E) [E,(t)-E'][E'-E,(t}]

(96)

for E &E,(t).
In these formulas ere have written the principal-

yart phase function

(97)

and in (96) we have explicitly noted that the phase
of 6 is that of H, a fact which is known in poten-
tial scattering" and follows directly from the lin-
ear nature of the unitarity relation for the half-on-
sheQ amplxtude.

If we are to be consistent with the original un-
subtracted dispersion relation it is necessary
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E

FIG. 11. The Reggeon-Reggeon phase shift Q as a
function of E. It has been assumed that Q(- ~) = 0,
and then it follows that P (E, ) = —~ by Levinson's
theorem. Further, it has been assumed that Q has no
further zeros.

that the constraint

dE ' e sing(E')
[E~(t) E ] [E Eo(t)]

(98)

hold. This may be of some value in nuclear phys-
ics applications, "but here, because of our dis-
claimer about real knowledge of the partial-wave
amplitudes as

~
E ~- ~, it has no particular con-

tent.
The significant feature of (95) is that at E =E,(t),

G vanishes. When E =E, and we have a linear tra-
jectory, then the external legs are at —,

' t, and
since G(E, ) is proportional to a, certain fixed-pole
residue, as noted in Eq. (48), we learn that that
fixed-pole residue vanishes when two legs are at
—,
' t and one is at (mass)' = t. As noted in the last
paper of Ref. 14, this result, taken to t =0 by con-
tinuity, implies in its turn that g(0) = 0. It is
pleasing to see all these features appear in this
little model calculation. Furthermore, because
we know g(t = 0) = 0 from before and given our as-
sumption that this zero is linear, we can see from
(95) that G(E, P, 0, P, ) also vanishes. So G is zero
at I;=0 in whatever manner one approaches that
point. The rate of going to zero may change if
one sets E = 0 first, but the vanishing still obtains.

Having the half-on-shell G in hand one can go
on to construct E(l, t). Nothing immediately strik-
ing comes forth from putting Eq. (95) or Eq. (96)
into the dispersion relation (73) for F There are.
some features one can readily deduce, however.
First, because G is proportional to the triple-
Reggeon coupling g(t), the contribution of the cut
to E(t, t) vanishes at t=0. This is somewhat sur-
prising and is likely due to the rather simplified
model we have constructed. If it is true, then the
total cross section arising from E(l, 0) would not

show secondary logarithmic contributions. Away
from t =0 the elastic differential cross section
would show such lns factors but considerably weak-
ened because g(t) is small for small t.

The next feature is the sign of the cut contribu-
tion relative to the pole term. One can easily see
that they are relatively positive in their contribu-
tion to A(s, t), but because of our construction,
proceeding as it does from the unitarity relation,
one should not be terribly surprised by this. "

Finally we note that at l = l, (t) [or E =E,(t)] the
cut contribution to E(l, t) vanishes as [ln(E, (t)
-E)] ' since each of the G's entering it behaves
that way. This is completely consistent with the
behavior found by Gribov et al. ' But what is per-
haps surprising is that since the cut and pole
enter the dispersion relation for F(l, t) in an ad-
ditive fashion, the pole term survives at E =E,(t)
and ls

Fl(E (t) t) g(PP «)g(kP t)
E,(t) —E,(t) ' (99)

x H +(E, p, t, k)B(E,(t) —E),
(100)

which involves the half-on-shell G given by Eq.
(95) or (96) and the half-on-shell H. We can com-
pute the latter by noting that its discontinuity
across the two-Reggeon cut is

ImH(E, P„ t, k) = p(E, t)H(E„P„ t, P,)

xH*(E, po, t, k)B(E (t) —E).
(101)

This involves H(E, P„ t, P, ) =H(E, t), which we
know to be e'~ sing/p, so we need once again to
solve an Omnes equation. Namely, if we designate
the triple-Pomeranchukon coupling with legs of
(mass)'=t, -(k'+ q'), and -(k'+ q') by g(t, k),
we will write

As a further use of the dispersion relations we

have constructed, one may evaluate G andII off
shell in a straightforward manner. The value of G

off shell is of particular interest since at t =0 it
is the object directly reconstructed through Eq.
(25) from inclusive experiments. If we wish

G(E, P, t, k) with no "on-shell" restriction on the
momenta P or k we need the imaginary part in E

ImG(E, P, t, k) = p(E, t)G(E, P, t, P,)

g(t)g(t, k) 1 '~'~ dE';g(s ) (102)

This is just (91) with a new inhomogeneous term. The solution is
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, , g(t)g(t, ~), [E-E.(t)][E,(t)-E] .&.,
"'" « .-'"'sing(E )

E —Eo(t) m „ E ' —E [E ' —Eo(t)][E,(t) —E ']

From this function the Reggeon-particle partial-wave amplitude of interest is given as

G(E,P, f, a) = ', ' +-, p(E', t)G(E', P, t, P,)H.*(E',P„ t, u).g(P} t)g(k, t) 1 s~~'i dE'
E-E t g

(103)

(104)

One could use this at t =0 to estimate the Regge-cut corrections to the leading triple-Regge behavior"
coming from the pole term. By the same procedure one may construct H(E, P, f, k) from

H(E, P, f, /p) = ' ' +—,p(E', t)H(E', P, t, P,)H*(E',Po, t, k).g(p, t)g(k, t) 1 ~c"i dE '

0 00

(105)

and use it to evaluate the cut corrections to the missing-mass behavior of the two-particle inclusive pro-
cess described in Sec. III.

V. DISCUSSION

The greater portion of this paper has been devoted to discussing the general structure of the discontinu-
ity in particle-particle scattering partial-wave amplitudes across the branch cuts in the / plane generated
by two moving l-plane poles. Also, the connection between the functions which set the scale of those dis-
continuities and Reggeon-particle absorptive parts directly measurable in inclusive reactions was empha-
sized. These give one a rather clean handle, presumably significant from a phenomenological viewpoint,
on the size of Regge-cut contributions to scattering amplitudes. Hopefully such a handle will give us also
a firmer understanding of the role Regge cuts must play as secondary corrections to simple power behav-
ior ins.

Let us repeat the basic formula. We found, on the assumption that in the production matrix element
T, N there is factorized Regge behavior in subenergies, that through the unitarity relation one could de-
compose the contributions to the signatured f-channel partial-wave amplitude F(t, p, q, k) into a piece con-
taining the two-Reggeon cut (the two-Reggeon reducible piece) and a piece without that cut (the two-Reg-
geon irreducible piece). The discontinuity across the two-Reggeon cut was then given by

disc}'(l, p, t}, k}=-2wi J d'} ' G(i, p, t},p'}G*(l, j', t}, k}i!(}—a(-(p'+-,'1}}'}—a(-(p' —';q)'}+1} (106)

where, at q =0, G is given by a definite integral
[Eq. (25)] over a function measurable in inclusive
reactions. The latter demonstration was given in
Sec. III.

This last formula is in its essence given in the
paper by Gribov et al. ' by approximating the four-
particle contribution to unitarity. Basically they
build the two Reggeons n(f, ) and a(t, ) out of pairs
of particles. Our derivation is a generalization,
albeit a minor one, of their result in the sense
that the Regge poles exchanged in the T, ~ rela-
tion used in the s-channel unitarity relation are
built out of two, three, . .. particles since they
are the physical Reggeons. No doubt if one were
to approximate the six-particle unitarity relation
by having two clumps of three particles give the
moving poles, the form (106) would follow.

It is clear from the manner in which we argued
that one can progressively separate out and iso-
late the discontinuity across the three-, four-, etc.
Reggeon cut and can relate such discontinuities to
quantities measurable (with unspeakable difficulty)
in single-particle inclusive processes. A more

profitable approach to understanding such multi-
Reggeon cuts is probably to take the route fol-
lowed by Gribov and collaborators. " They effec-
tively take the Lippmann-Schwinger equation and
second-quantize it. Then they examine solutions
to the resulting field theory by looking in detail
at the Dyson equations for that theory.

With discontinuity formulas like (106) we then
constructed a little model of a coupled (by analy-
ticity) l-plane pole and associated two-Reggeon
cut. By solving the resulting elastic unitarity
equations we were able to extract detailed forms
for the Reggeon-Reggeon and particle-Reggeon
amplitudes in the case where the trajectory func-
tions o}(t) were taken to be linear. Even though
one should be reluctant to take seriously the solu-
tions for the various particle and Reggeon matrix
elements in all their aspects, certain general fea-
tures are probably correct. For example, the
necessity of the vanishing of the triple-Pomeran-
chukon vertex at t =-0 is surely independent of the
model. " Also, the [ln(E„—E)] ' which keeps ap-
pearing in the denominator of the parti@. l.-wave am-
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plitudes is generally true. ' It is, after aII, just
the reflection of the manner in which two-dimen-
sional phase space vanishes near threshold. A
bolder statement is that the pervasive zero asso-
ciated with the triple Pomeranchukon vertex g(t)
persists to cut down or even eliminate the contri-
bution of two-Reggeon cuts for vanishing momen-
tum transfers. Less bold, and less interesting,
is the phase relation between the Reggeon-particle
and Reggeon-Reggeon partial-wave amplitudes ex-
hibited in Eq. (96) and more generally in Eq. (53).

¹tesAdded

It may be useful to emphasize here that the
method of construction of the two-Reggeon reduc-
ible and irreducible parts, which plays a key role
in the derivation of the Lippmann-Schwinger-like
equations (38), is perhaps open to some question.
The construction given is certainly suggested by
one's experience with multiperipheral models'
and is at variance with what might be expected
from the examination of selected sets of Feynman
graphs. ' The discussion herein has not tri.ed to
resolve the now ancient debate between these
views of Regge cuts. Our results may turn out to
be only a general property that all multiperipher-
al-like models must satisfy, rather than a proper-
ty all models must satisfy. That it is a model of
the two-Reggeon cut is, of course, true. The gen-
erality of the present construction has been dis-

cussed in a recent ~per by Chem. ~4

Since this paper was written bvo significant ref-
erences which have been omitted have come to my
attention. First, Kaidalov has recognized the
connection of our function B, Eq. (63), with single-
particle inclusive reactions and also with 8-plane
cuts. The important poi:nt that it is only the dis-
continuity across the cut which is set by B [or G,
Eq. (25)] is not, however, brought out. l wish to
thank M. B. Einhorn for bringing this work to my
attention.

Second, White~ has reconsMered the work of
Gribov et a/. ,' with very careful attention paid to
questi;ons of signature and sign. He finds our Eq.
(47) for the two-Reggeon cut discontinuity; how-
ever, he finds the opposite sign. That sign agrees
with Mandelstam' and Gribov' and disagrees with
Amati eS al. ' As Chew has emphasized in the re-
port just referred to„this sign has physicaI con-
tent, and the reconcH. iation of %hite's work wi. th
the present paper would seem to be a useful task.
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Single- and double-spectral forms for three-yoint functions are studied, in a detailed manner,
within the framework of source theory. The methods developed, which are applicable beyond
the present problem, are based on causal considerations and appear to provide some simpli-
fieations and advances over the conventional analytic methods. The spectral variables are any
one or two of the momentum scalar products {p„,p&, p ) on which the three-point function
depends, p„and p„-p&2, to be specific. After studying the lowest-order nontrivial contri-
botions, a source-theoretic calculational scheme for contributions of arbitrary order is quali-
tatively developed, and it is used in establishing the spectral forms for general order. In
lowest order the spectral weight functions are explicitly given, while in general order the main
concern is the existence of the spectral forms. The spectral forms considered here are only
ones with normal thresholds, and the methods give regions of those variables not in spectral
form (p8 -p& and p82) for which such spectral forms of general order occur, with all par-
ticles being allowed different masses. For the single-spectral studies the region is in agree-
ment with that obtained conventionally. The region for the double-spectral form is all space-
1ike values of p 8~,- double-spectral forms for three-point functions of general order do not
appear to have been investigated previously.

I. INIODUCTION

Vforking mainly within the context of electro-
dynamics, Schwinger' ' has illustrated the fun-
damental and natural way in which spectral forms
arise in source theory. In this yresent work the
establishxnent of spectral forms for three-source
eouplings (or three-point functions) is restudied

from a more general and more systematic stand-
point. 4 Generality means two things here: First,
owing to the importance of kinematics in this
vrork, all particles are allowed to have different
masses. And second, considerations for contri-
butions of any order are presented, whereas
Schwinger, being mindful of the importance of
quantitative predictions in electrodynamics, has


