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A calculational procedure is given for determining bound states in quantum field theory using
an approximation to the field determined from the equations of motion by the method of quasi-
secular perturbation theory. The method is illustrated using the Q4 model of quantum field
theory. Although the procedure is based on a perturbation theory, . it leads to binding energies
which are nonanalytic in the coupling constant. The bound state occurs for arbitrarily weak

coupling in the cases of one and two space dimensions, but not for three. Comparison is made
with the Bethe-Salpeter equation in the ladder approximation. The result agrees for one di-
mension, but differs for two and three.

&. INTRODUCTION

One of the more important problems in elemen-
tary particle physics is to develop perturbative
methods based on field-theoretic models for cal-
culating bound states, because of the large number
of observed elementary particles and resonances.
The binding of particles like the self-energies are
persistent effects arising from repeated interac-
tions over an infinite (or at least very long) time
scale. In contrast with the ease of ordinary col-
lisions which take place over a limited time, the
persistent effects modify the motion of arbitrary
wave packets at all times. ' In previous work' it
was shown that persistent effects arise from the
presence of secular and quasisecular terms in a
perturbative solution of the H'eisenberg field equa-
tions. Secular terms are not periodic, and blow

up for large times. These are the terms associated
with small energy denominators and after modifica-
tion to restore periodic behavior in time, they
lead to q-number frequency (mass) and amplitude
(wave-function) renormalization. The modified
perturbation theory was called quasisecular per-
turbation theory. The renormalized amplitude op-
erator was used to construct the Hilbert space con-
taining the physical states. ' For the Q' interaction
the physical Hilbert space was shown to be differ-
ent from the auxiliary Fock space (which is asso-
ciated with the field at time t=0) in the cases of
two and three space dimensions (i.e., strange rep-
resentations of the commutation relations occur)
In contrast to ordinary perturbative theory which
is formulated entirely within Pock space, the quasi-
secular perturbative method picked out the new Hil-
bert space.

In this paper it is shown that the renormalized
frequency operator can be used to find eigenstates
and eigenvalues in the physical Hilbert space. It
is shown to lowest order in the coupling constant
for the cases of one and two space dimensions that

a two-particle bound state occurs for the P' inter-
action if this term appears in the Hamiltonian with

a negative coefficient.
The P' coupling has been chosen because it has

nontrivial consequences in first order and allows
a treatment of the essential points with a minimum

of calculational complications.
'

The Heisenberg equation of motion for the real
scalar field Q(t, x) = p*(t, x} in the case of one di-
mension is

, +m ~/=X:P: —p:P:,
&I,

" ex' )

where A. &0 and p, &0 and the initial condition is
[P(0, x}, P(0, y)] =t5(x —y}. To ensure that the Ham-
iltonian is bounded from below, the term z p, p'
with p, & 0 has been added to the Hamiltonian. ' This
is the source of the additional term on the right-
hand side of Eq. (1.1). In what follows, tt is taken
to be proportional to X', and is thus of second or-
der in A., as is explained in Sec. II. The field is
studied on the interval --,'L ~ x ~+-,'L with periodic
boundary conditions, and we choose I= c =1.

Results are given for one, two, and three space
dimensions; however, we choose to express most
equations in one space dimension to simplify nota-
tion. The other cases are obtained by the appropri-
ate natural notational changes.

In Sec. II the general dynamical properties of the
model are discussed in terms of the Lagrangian.
The model has dynamical stability for p, & X'/4m',
and the states of the system correspond to oscilla-
tions of the field about a mean value of zero. %e
choose p, proportional to A.'. so that it will not affect
the first-order renormalized Heisenberg field and
states. The previously obtained results for these
quantities are recapitulated in Sec. III. It is shown
that the commutator of the renormalized amplitude
with the Hamiltonian involves the renormalized
frequency operator, and this relation is used to
derive eigenvalue equations for the one- and two-
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particle states. The one-particle states lie at the
unperturbed energy &u~ = (k'+m')"' to lowest order
in A, .

At the end of Sec. III the quasisecular eigenvalue
equation for the two-body amplitude is constructed.
In Sec. IV an approximate solution of the two-par-
ticle eigenvalue equation (accurate in the weak cou-
pling limit) is given and is used to obtain the bind-
ing energy of an S-wave bound state. The results
are compared in Sec. V with results obtained using
the ladder-approximation calculation (involving the
elementary four-particle vertex) in the Bethe-
Salpeter equation. ' '

In the case of one space dimension the result is
the same as that obtained from the Bethe-Salpeter
equation in the weak-coupling limit. This is not
entirely surprising since the ladder approximation
was originally justified by consideration of persis-
tent effects. ' It was argued that although the prob-
ability for the exchange of one quantum (across the
legs of the ladder) was small during a small time
interval (for weak coupling), nevertheless, during
the infinite time of existence of a bound state an
indefinitely large number of quanta could be ex-
changed successively. '

For two dimensions the bound-state energy ob-
tained from the quasisecular eigenvalue equation
differs from the result of the Bethe-Salpeter equa-
tion in that the binding obtained here is much
weaker for small coupling. In the case of three
space dimensions the Feynman integrals in the
Bethe-Salpeter equation are divergent and counter-
terms have to be introduced to obtain finite results.
Since the counterterms are usually fitted to the
assumed position of a bound state (or resonance},
the value of the Bethe-Salpeter equation is limited
to predicting the locations of other bound states
(or resonances) should they exist. In contrast the
quasisecular two-body equation still provides a
well-defined bound state for sufficiently strong cou-
pling. However the critical value for which binding
occurs is well above the values for which a pertur-
bative approximation should be valid.

In Appendix A the mathematical nature of the
spectrum of the quasisecular eigenvalue equation
is discussed. The accuracy of the approximate
binding energies found in Sec. IV is demonstrated
in Appendix 8 by calculating a lower bound on the
lowest eigenvalue.

II. THE MODEL AND DYNAMICAL STABILITY

V(P}=Ym'P' —~X(t'+ vg(t)', (2.2)

where:: is the normal-ordering symbol, m is the
mass of the bare particles, and A. and p, are cou-
pling con'stants. As a result of work on conditions
for dynamical stability in certain model field theo-
ries, ""it is usually assumed that the behavior of
a model is controlled by the polynomial V($), where
( is a real, variable. If the minimum value of V(g)
is taken on for a single value $ = $„ then the theory
is dynamically stable and has a unique vacuum
state If. the minimum value of V(g) occurs at sev-
eral distinct points $„.. . , g„, the theory is dynam-
ically unstable. There will be a pure theory for
each such value (, and the states corresponding to
oscillations around (t) = g, are all orthogonal for dif-
ferent values of j, in the limit of infinite volume. "
Since we find that A. &0 is necessary for the occur-
rence of a bound state, the P' term is needed in
Eq. (2.2) with p &0 in order that V(() shall even
have a minimum value. If the Q' term were ab-
sent, then V($) has no minimum and the resulting
quantum field theory is pathological. It can be
shown that in a box with periodic boundary condi-
tions the expectation values (0, Q(x„ t,) ~ P(x„,
t„)C ) in any reasonable state 4' go to infinity in a
finite time (i.e. , when any t; —t, becomes large
enough). "

Since the calculation is perturbative, it is based
on the assumption of continuity of the solution in
the coupling parameters starting from the values
A. =O and p, =0, which correspond in this case to
continuing from the free field of mass m. To en-
sure dynamical stability we choose p, sufficiently
large to keep the minimum unique and at ( =0. If
V(g) had minima away from ( = 0, the model would
be dynamically unstable and a perturbative method
beginning from the free field would not be sensible.
For g &-,'A. 'm ', the only stationary point of V($}
occurs at g =0 and corresponds to the minimum.
Therefore, we choose p, = vA. 'm 'with v& —,'. This
gives a (t)' term of second order in the (small) cou-
pling constant A., so this term will not enter into a
first-order calculation.

In summarizing this section, we note that the (t)'

term is needed for dynamical stability without
which the following calculation of a bound state is
meaningless, yet the bound-state energy is not de-
pendent in lowest (first) order on the magnitude of
this term. In second order, however, the term
will contribute to the dynamics.

The Lagrangian density of the model field theory
is given in terms of the real scalar field (t) by

III. THE FIRST-ORDER RENORMALIZED FIELD
AND STATES

(2.1) In a previous paper' the method of quasisecular
perturbation theory was ii.produced and applied. to
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the (())~ model of quantum field theory. The Heisen-
berg field can be written in the form a, (f) =(2)T) ' f(t)a, (t)dt

oo

P(t, x) = L "'g a, (t )e' '*, (3.1) (3.9)

withe denoting the momenta allowed by the periodic
boundary conditions. The amplitude a, (t) has a
first-order renormslized solution given by

a, (t)=U, e '""+e'" i'U-*, +W, (t). (3.2)

The operator 8', plays no role in what follows be-
cause its Fourier transform vanishes in intervals
of width 2~X~m ' centered at ae„where &u,

'=m'
+E . The renormalized wave-function operator U,
and the renormalized frequency operator 0, can be
expressed as'

U, =(2(u, ) "'e"'u, e ~+(2(o,) 'V„ (3.3)

nr =~i- Us ~s
-1

= (d)i —(24&i) oii*(oii oii + 1) Vi . (3 4)

V, =3x(2(u,Q 'QD, ~,„(8(u,(o,(u„) "'n*,o,,o .
Pqr

(3.5)

The D function takes the value I if both l =P+ q+~
and

J cu, + co~ —cu, —cu„/ &
/

X
f
m ',

and it vanishes otherwise. The last inequality de-
fines the quasisecular region. '

The gaps in the Fourier transform of 8', make it
possible to extract the time dependence of the first
term of Eq. (3.2),

U (t ) ei Hi U
iHt-

U ~-i Agt (3.8)

from which we obtain

[» Ui] = —Ui~i ~ (3.7)

To demonstrate this assertion in detail we re-
turn to the first-order solution for the field before
frequency renormalization' with the secular term
displayed:

a, (t) =(U, +itV, )e 'i'-
+ e' i'(U*, —itv*, ) + W, (t ) . (3.8)

Here o.*, and n, are the boson creation and destruc-
tion operators, 8 is an anti-Hermitian operator,
and

where f(&u) denotes the Fourier transform of f.
From the equation [K, a, (t)] =-ia, (t), we obtain

[H, a, (f)]=[H, U,]f(&o,) —[H, V,]f'(&u, )

= (2@i) ' f f(t)d, ())dt

= ( (u,—U, + V()f((u, ) +(u, V fi'(cu, ) . (3.10)

Choosing f(u&, ) = 1 and f'(&u, ) = 0 gives Eq. (3.7) since
U, possesses a right inverse. '

The physical vacuum 4p is taken to be the unique
state' which is annihilated by all of the U, . This
state is an eigenstate of II because

U,H40=[U„H]40= U, D,,40= —Vpo=0. (3.11)

The last term vanishes because, to lowest order
in A, we can replace o.„ in Eq. (3.5) by (2 (d))'"U„.
Thus H4p is annihilated by all of the U, and is
therefore a multiple of 4p It follows that 4p is an
eigenvector of H. Ne take the associated energy
eigenvalue to be zero, H4 p=0. This may involve
a displacement of the energy scale.

The Hilbert space of physical states is generated
by applying polynomials in the U,*, for various val-
ues of l, to the state 4p. ' In the following, the en-
ergies of one- and two-particle states are evaluated
on the chosen energy scale.

The Hermitian conjugate of Eq. (3.7) implies that

HU, 4 p
= Q*, U*, 4p

= ((diiUi~ Vi*)40

= co, U,*e p. (3.12)

This follows because n ~ in V,* in Eq. (3.5) can be
replaced by (2~~)'~'U ~. The states U*, C 0 are eigen-
states of energy co, and momentum E. These are
the one-particle states. To lowest order in A. there
is no shift in the one-particle energy, because the
first self-energy contribution is of order A,'.

The subspace of two-particle states is generated
by the vectors Uf U,*C, The con. jugate of Eq. (3.7)
implies that

HU,*U)*,40= UfHU)*, 40+ ((, (,*)U—V,*)Uf4 0

= (Cui + (d), ) U(*U, 4 o

By smearing a, (t) with a test function f(t) such that
the support of its Fourier transform lies within an
interval of width z

~
A. ~m

' centered at (d)„we ob-
tain

(3.13)

which is valid again to lowest order in A.. This
equation is considered in Sec. IV.
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IV. BOUND-STATE ENERGY CALCULATION

%e look for eigenstates 4 of total momentum
zero in the two-particle subspace having the form

O' =Q f, U,*U*,40,

Letting

gives

Z ~~ gr= X'
tr) &X

where s ranges over the allowed momenta. %e
take f,=f, since U,*U*,C, = U*, U,*C „and assume
A. & 0. The quasisecular eigenvalue equation be-
comes from Eq. (3.13)

Ef,= g 2(u„5„,— (u, '8(Xm ' —2~(u„- (u, ~) f„,

(4.1)

where E is the energy eigenvalue and 8(x) = 1 when
x~ 0 and vanishes otherwise. Note that the matrix
elements appearing on the right-hand side of Eq.
(4.1) are not those of a Hermitian matrix because,
although the states U,*U*,4, are orthogonal for dif-
ferent values of s, their norm is (2&@,)

' as can be
seen from Eq. (3.3). This suggests the modified
expansion

g, = (2(o, —E) '(SX/4(u, }X,

which leads to the eigenvalue condition

L ' Q (m 's'+E ) '=4m'/SX,
yl/3

(4.5)

where E~= 2m —E is the binding energy. The equa-
tion only has a solution if A. &0 which corresponds
to a negative sign for the P term in the Hamilto-
nian, as can be seen from Eq. (2.2).

Passing to the limit of infinite volume in the
case of one space dimension

I. ' Q (o, '(2ur, —E) '(SX/4&v, ) =1. (4.4)
Ist& x»2

Since &u, =m+(2m) 's' in the nonrelativistic approx-
imation, which is clearly valid in the restricted
region, the equation simplifies to

4 =Qg, (2u&,) U,*U*,C o;
) 1/2

f ds(s'+mEs) '=4wm/SX,
0

(4 8)

so that g, = (2~,} 'f, and

The matrix is now Hermitian.
It is shown in Appendix A that in the limit of in-

finite spatial volume the integral operator corre-
sponding to the matrix of Eq. (4.2) has a continuous
spectrum (the scattering continuum) extending from
2m to ~. The Rayleigh-Ritz variational principle,
which gives an upper bound on the lowest eigenval-
ue, can be used to prove the occurrence of a bound
state below the scattering continuum.

For weak coupling the amplitude g, for a bound
state may be expected to be large only when w, -m
& -,'Xm ' or ~w

~

& X'", For further discussion see
Appendix B. This suggests choosing a variational
trial function which vanishes for ~s~ &A.'~'. The
best such trial function (which gives the lowest vari-
ational energy) is the eigenvector g, corresponding
to the lowest eigenvalue of the reduced matrix
2~ 5, ,—SX/4I, ~,~
The variational energy (of the complete matrix) ob-
tained using the eigenvector g, is then the lowest
eigenvalue of the reduced matrix.

The eigenvalue equation for the reduced matrix is

Eg, = 2',g, —(3X/4I. (u,.) g ~„'g„,
Ir) &x~/2

(4 3)

Egs= g 2(d„5„~—— —8(Xm —2
~
(d„—fd~j ) g„.3A.

4LQP hl„

(4.2)

which leads to the transcendental equation

(mE )
' 'tan '(X/mE )"'=4wm/SX. (4 'f)

As A. -O the right-hand side becomes very large so
that Es-0 as X' and tan '(X/mEs)'"--', w. For
weak coupling the asymptotic solution of Eq. (4.7)
ls

E =(SX/8m')'m. (4.8}

sds(s'+mEs) '=8wm/SX, (4 g)

which has the asymptotic solution (mEs«X'}
-16flnt/3 X (4.10)

Here A. '=mA. for dimensional reasons because, for
the case of two space dimensions, X has the same
units as m and Xm ' is the dimensionless coupling
constant. This follows from the dimension of the
field which is related to the commutation relations
of the field and the dimensional units carried by
the Dirae 5 function. The nonanalytic nature of the
bound state is again explicit in Eq. (4.10).

The binding energy is not an analytic function of
the coupling constant because Eq. (4.7) is transcen-
dental and Eq. (4.8} is an asymptotic approximation
which is accurate for the dimensionless parameter
A. m ' close to zero. The next term in the asymp-
totic expansion is O(X"').

In the case of two space dimensions and in the
limit of infinite volume, the analog of Eq. (4.6) is

f~, 1/2



QUASISECULAR METHOD FOR CALCULATING BOUND STATES. . .

For three space dimensions the analog of Eq.
(4.6) is

J
pi 1/2

s'ds(s'+mEs) '=8m'm/3z,
0

which leads to the condition

mX'" —(mE )'"tan '(xm/E )=8m'm/3&,

(4.11)

(4.12}

since A.
' = A. m', where A. is now the dimensionless

coupling constant. Again, for weak coupling, E~
«mX and tan '(A. m/Es)- —,'m, so that the equation
does not have a solution. The bound state appears
(at zero energy) when the coupling constant reaches
the critical value x, = (vBm')"'= 8.5. This value is
well beyond the range where a perturbative method
can be expected to be valid.

V. DISCUSSION

(m/Es)"' tan '(m/Es) '"= 4mm'/3A. , (5.2)

where Es = 2m —Ws is the binding energy. This
pole condition differs from the quasiseeular eigen-
value condition in Eq. (4.7), nevertheless, for weak
coupling the asymptotic solution of Eq. (5.2) is &s
= (3X/8m')'m, identical to Eq. (4.8).

For the ease of two space dimensions the scatter-
ing amplitude is

((6A.)
' —(8m) 's '"ln[(2m+s"')(2m —s"') ']) '

(5.3)
which has a pole at

E =4me-" '"
8 (5.4)

FIG. 1. The diagrams summed in the Bethe-Salpeter
scattering amplitude,

It is interesting to compare. the results of See. IV
with the results of the Bethe-Salpeter equation in
the simp1est ladder approximation. The scattering
amplitude is obtained by summing the "chain of
bubbles" corresponding to the Feynman diagrams
shown in Fig. 1.

In one space dimension the scattering amplitude
is proportional to

I(6x) ' —(2w) 's '"(4m' —s) '"tan '[s(4m' —s) ']] ',
(5.1)

where s' ' is the center-of-mass energy of the in-
coming particles. Note that the scattering is en-
tirely S wave. For weak coupling it follows that
the scattering amplitude has a pole determined by
the condition

for weak coupling. This is similar to the expres-
sion (4.10) in form but differs significantly by a
factor of 2 in the exponent and by the coefficient in
front of the exponential. This expression for the
binding energy is much larger for weak coupling
than the quasisecular expression Eq. (4.10). Since
the latter is only an upper-bound value the question
arises whether the difference in the two expres-
sions is due to a poor variational estimate. That
this is not the ease is shown in Appendix B where
a lower bound to the energy of the bound state is
computed. This implies an upper bound on E~
which is e times the value given by Eq. (4.10}
(which is a lower bound on Es}.

For three space dimensions the scattering ampli-
tude calculated from the Feynman diagrams di-
verges, and a comparison cannot be made. We
note that no divergence occurs in the quasiseeular
scheme where a bound state occurs for strong
enough coupling.

It is interesting that the two calculation schemes
agree in one space dimension, but not for two or
three. It is quite possible that this is related to
the fact that the Hilbert space of physical states
coincides with the (bare particle) Fock space in
one space dimension but not in two or three. ' The
Bethe-Salpeter equation is formulated in terms of
Feynman diagrams' which are based on the Fock
representation. " In the cases of two and three
space dimensions the physical Hilbert space is
completely distinct from Fock space' and carries
a so-called strange representation of the commuta-
tion relations. " The connection between the bare
particles and the physical particles is given by a
dressing transformation' which substantially alters
the form of the Hamiltonian as expressed in terms
of the physical particle operators. This is. evident
in Eq. (3.13) which involves the quasisecularity
condition. The interaction between the dressed
particles, which is quite different from the inter-
action of the bare particles, is the basis for the
quasisecular scheme of calculation.

We conclude this section with an additional quali-
tative comparison of the two calculational proce-
dures. In the Bethe-Salpeter approach the diagrams
are first renormalized to include self-energy parts.
The scattering amplitude is then computed. This
is often justified by the assertion that self-energy
effects occur for all times (i.e., persistent effect
on the infinite time scale) whereas scattering oc-
curs on a time scale of the order of m '. The re-
sulting scattering amplitude is then used to locate
poles which are associated with bound states.
We note however that the binding of particles also
occurs on the long time scale (and not on the scat-
tering time scale). Although an approximation to
the scattering amplitude may be appropriate for
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phenomena occurring on the scattering time scale
it may be quite inaccurate for persistent phenom-
ena such as binding. The quasisecu1ar method
treats all persistent effects (self-energy, binding)
on the same footing. No distinction is made be-
tween virtual quanta which form the cloud around a
dressed particle and those which are exchanged to
account for binding. Two comoving particles form
a collective cloud of quanta in which the above dis-
tinction is not physically meaningful. The nonlin-
earity of the field equations in terms of P destroys
the additivity of the two effects of the virtual quanta.
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For the eigenvalue of Eq. (Al) a lower bound is
obtained by splitting the integral operator into
three parts. In the nonrelativistic limit (e —2m

«m) we write

The authors would like to acknowledge several
helpful comments by Professor A. S. Wightman
concerning the matter of dynamical stability.

Eg(E) = K(f~ E )g(f )A

K(e, e') = e5(e —e') —(3X/16 mr) 8(e, e'), (B2)

X+e

Eg(~) = fg(e) —(3X/8m~) g(~')de',
t.'X-&. 2m]

(Al)

where the lower limit is the greater of A. —e and
2m. Here the energy scale for e runs from 2m to
~ and a bound state corresponds to a value for E
slightly below 2m. If the integral operator is cut
off at some (arbitrarily high) energy, it has a fi-
nite Hilbert-Schmidt norm and therefore is a com-
pact (or completely continuous) operator. " The
remaining part of the integral operator converges
to zero in the norm because of the factor e ' be-
fore the last term of Eq. (AI). Thus increasing the
cutoff defines a sequence of compact operators con-
verging in norm to the full integral operator of Eq.
(Al). This latter operator is therefore compact. "
By a theorem of Weyl" the limit points of the spec-
trum remain invariant under such a compact per-
turbation. Therefore the continuous spectrum re-
mains as the scattering continuum, which extends
from 2m to ~.

It follows from Acyl's theorem that any parts of
the spectrum which lie below 2m belong to the dis-
crete spectrum and correspond to bound states.

Since the integral operator has a bound of b =3k.'/
adam it follows that the spectrum lies above 2m —6
and bound states (if they exist) lie in the interval
(2m —b, 2m). The variational calculation of Sec.
IV shows that an eigenvalue (i.e., a member of the

APPENDIX A

We consider the mathematical properties of the
spectrum of the quasisecular operator of Eq. (4.2).
It is convenient to consider the case of two space
dimensions in the limit of infinite volume, because
the density of states as a function of energy is a
constant. The other cases can be treated in a
similar way. The integral equation corresponding
to Eq. (4.2) becomes (for A. &0)

where 8 is the characteristic function of the region
~
c —e'

~
& A, taking the value 1 inside the region and

0 outside. It is convenient to redefine the scale of
energies choosing 2m as the new zero, as in Eq.
(Bl).

Let K = L, +M + N be a Hermitian partitioning of
the integral operator into three regions; for I. the
region of support is a&A., e'&X, for M the region
of support is e&X, e'&X, and e&X, e'&A., and for
%the region of support is e&A, e'&A. . Since Nis a
displaced copy of K with the diagonal shifted by A, ,
it is greater than the operator (A. —Es)t, where E's
is the binding energy of the lowest discrete state of
K and Z is a projection operator J= 8(e —A)5(e —e').
Then ¹ X —Es, hence K~ L+M+(A, —Es)Z, where
~ denotes the usual ordering" of self-adjoint oper-
ators in terms of the expectation values

I
i.e., A ~ B

means (4, A4) ~ (0, BC ) for all reasonable 4].
Then the lowest eigenvalue of K lies above the low-
est eigenvalue of L+M+ (X —Es)J=P.

The eigenvalue equation of I' is written as
X+e

ef(~}— f(e') de' = Ef(e),
16mm

0&m&a, (B3)

(X —Es}f(e}— f(c')de'= Ef(e),16gm
X& &&2'. (B4)

Solving Eq. (B4) for f(e) in the interval X & e &2X

and substituting into Eq. (B3) gives

Ef(f)— 3A, , t 3A,

I6gm '
& 16m m

f(e')d~', (~+E —E,)-'

X ~t Q(Eq t }f(E )IR = Ef(E) ~

4p
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where Q(c, e') = min(e, e') is a Hermitian kernel.
Note that this equation involves only f(e) in the in-
terval 0& &&A.. In the last term on the left-hand
side of Eq. (B5) we may neglect E and Es which
are very small compared to A. for weak coupling.
If the kernel Q(e, e') which is positive definite is
replaced by its maximum value A. the eigenvalue
of Eq. (B5) is lowered, preserving the lower bound
character. The modified equation is

ef(e) — f(e')de'= Ef(e), 0& e & X, (B6)
3A,

16m m

where X=A. +(3X'/16m'). This is the integral equa-
tion of the truncated matrix of Sec. IV with A. re-
placed by X, so, by Eq. (4.10), the solution is

E g -16 /3~ (B7)

Since Am ' is very small, it is useful to expand
Eq. (B7) to second order, giving

E=-eXe " "~' [1+0(X')]. (B8)

Thus the binding energy of the quasisecular equa-
tion for two space dimensions lies between the val-
ue of Eq. (4.10) and e times that value.

The same splitting scheme works to give an ac-
curate lower bound on the spectrum in the case of
one space dimension. Details differ since the den-
sity of states is proportional to c '". The result
is a lower bound of the form E =-(3A/8m')'m
—o.(A. m ')'"m, where n is a positive constant.
The binding energy as given by Eq. (4.8) is there-
fore accurate to order (X/m')'.
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