6 STATIC LIMIT OF FIELD

*On leave of absence from the University of California,
Los Angeles, Calif.
1c. Fronsdal and R. W. Huff, preceding paper, Phys.
Rev. D 6, 2755 (1972), hereafter referred to as Paper
I.
It may be possible to account for some self-energy
effects by introducing finite nucleon size factors. Here
we have merely replaced the bare coupling constant g
by the renormalized coupling constant g.
3There is an ambiguity associated with the last term
in (11). The field operator ¢ ¢, commutes with the
current density operator «*7 0u; hence this term does
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not contribute to the expression for the time derivative
of the current operator. Nevertheless, if we retain this
(vanishing) term, and then introduce the approximation
of neglecting all but two-nucleon states in the operator
product, then a nonvanishing contribution to Eq. (13)
results. A more detailed investigation of the nature and
reliability of our approximations is indicated.

“Strictly speaking, H,, is defined by Eq. (13) up to a
multiple of the unit matrix only. This suggests a less
rigid test of (24) in which the singlet-isosinglet compo-
nent is treated phenomenologically.

PHYSICAL REVIEW D

VOLUME 6,

NUMBER 10 15 NOVEMBER 1972

Rigorous Bounds on Coupling Constants in Two-Dimensional Field Theories*

Michael Creutz
Center for Theovetical Physics, Depavtment of Physics and Astvonomy,
University of Maryland, College Pavk, Mavryland 20742
([Received 13 July 1972)

We show that renormalized three-particle coupling constants in a field theory with one
space and one time dimension are bounded. This bound depends on the particle spectrum and
assumes only analyticity, crossing, unitarity, and polynomial boundedness of the S matrix

at infinity.

The idea that coupling constants in a field theory
might be bounded has an intuitive appeal. Once the
spectrum of states is given, it may not be possible
to make any particular coupling constant too large
without introducing new “bound” states. Some time
ago Geshkenbein and Ioffe' gave such a restriction.
Recently Okubo?® rederived this condition on slight-
ly weaker assumptions. The problem with both
these derivations is the assumption of no zero
points in a particle propagator when continued into
its domain of analyticity. That this assumption is
hard to justify was discussed by Goebel and Sakita.?

We will show here that in a world with only one
space and one time dimension there are rigorous
bounds on renormalized coupling constants. Our
only assumptions are analyticity, crossing, uni-
tarity, and polynomial boundedness at infinite com-
plex energy for scattering amplitudes. Despite our
weaker assumptions, the bound we find is stronger
than that of Geshkenbein and Ioffe.

We can get such a strong result in two-dimen-
sional space because the constraint of unitarity on
crossing-symmetric amplitudes assumes a sim-
pler form than in four dimensions. This point has
been emphasized by Schlitt.? In four dimensions,
unitarity is simple when applied to partial waves,
but under crossing we know that a partial-wave
amplitude has complicated “left-hand cut” singu-
larities involving all other partial waves. In the

two-dimensional world all elastic scattering is ei-
ther forward or backward, giving only two possible
final states. Because of this, unitarity is simple
when applied directly to crossing-symmetric am-
plitudes.®

Ruderman® discussed the possibility of obtaining
bounds on coupling constants from unitarity in four
dimensions. He concluded that little can be said
without some knowledge of the left-hand cut of a
partial-wave amplitude. Using techniques due to
Martin,” Miiller® has derived a bound on the cou-
pling constant for three identical self-conjugate
scalar particles in four-dimensional space-time.
This bound is rather weak, and its derivation re-
lies heavily on full crossing symmetry. It does,
however, show that some rigorous bounds on cou-
pling constants do exist in four dimensions. We
find that by going to two dimensions, the left-hand
cut becomes known, and restrictions on coupling
constants are easy to find.

For simplicity we derive our result in a theory
containing a stable self-conjugate boson of mass m
and possessing a three-particle self-coupling. The
generalization to nonidentical particles will be ob-
vious. We assume that other than the boson itself
there are no states in the theory with mass less
than 2m possessing a coupling to two of our bosons.
Other than this, we make no assumption on the
spectrum of states in the theory.
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We consider the elastic scattering of two of these
bosons. Since the particles are identical, there is
only forward scattering. We define the function
s(v) by
(bsbal Drb2dia = (V) i {Psba|Pib)y, » (1)

out
where v=p, - p,. By standard reduction techniques,
s(v) can be continued as an analytic function of *
into the entire complex 1? plane except for a cut
from p,? to +~ and a pole at v, where y,=m? and
vy=-m?/2. The value of s(v) defined by Eq. (1) is
equal to the value of the continued s(v) just above
the cut. Crossing symmetry is embodied in the
fact that s(v) can be continued as a function of 2.
The pole at 1*=p,? is given in terms of the re-
normalized coupling constant g2 by

- g’vp
s(v) = 407 - VBZ)(VOZ _ VBZ)I/Z

+(regular at 1> =v,%).
(2)

To derive our restriction on g2, we observe from
Eq. (1) that for all v= y,

ls(w) <1. ®3)

This is a direct consequence of unitarity. We now
introduce the function

~ V= vg®
) =s) (52 = VBZ)I/Z +(1;02 — AP (4)

where here, and throughout this paper, we take the
branch of the square root function with positive
real part. Clearly f(v?) is analytic in the 1 plane
except for a cut from y,* to +. Furthermore,
f(1?) has the properties

2
f (VBz)=W , ®)
If )= [s()] <1 for 12> y,2. (6)

If we now assume that s(1?) is polynomially bounded
at infinity in the entire 12 plane, it immediately fol-
lows that everywhere in the »* plane

lF (@)l <1 (M

and thus we get our result

2 _ ., 2)3/2
g7 < B = VP o 3 ®)
[vsl

For comparison we give the result of Geshkenbein
and Ioffe for the situation discussed here:

g2 <48(3+2V3)m*. 9)

Note that this is weaker than our result even though
it was derived from stronger assumptions.

Our bound in inequality (8) is in some sense the
best possible. This is because the function

(Voz — A2y (V02 - UBZ)I/Z
(V02 - V2)1/2 - (Voz - Vsz)”z

(10)

satisfies our assumptions on s(v) while it gives a
g? that saturates our bound.

The presence of an additional stable particle pole
in s(v) will allow the coupling constant to exceed
our bound. Indeed, a pole in s(v) at v,.? permits
g2 to be larger than the bound in Eq. (8) by the
factor

|(V02 - VBIZ)II2 + (Voz - VBZ)IIZ > 1 (11)
I(V02 _ VB'Z)UZ - (V02 - V82)1/2 .

This raising of the bound when additional particles
are around is consistent with the idea that a large
coupling will create “bound states.”

If we know more about s(v) we can further re-

strict g2. For instance if we know
Is(v)] sn(v) <1 for v>y,, (12)

then we can reduce our bound of inequality (8) by
the factor

(VOZ - VBZ)I/Z % dv/Z 11'11'](1/’)
exP[ p f , wZ = VEZ)(VIZ _ V02)1/2] <1
0

v

a3)

If we know that s(v) has a zero at some complex
value »*=p?, then the bound is reduced further by
the factor

(2 = sz)l/z — (12 = v )2
W2 = v, + (v, - VBz)l/z

<1. (14)

The factors in expressions (11), (13), and (14) are
all independent and may occur simultaneously.

If there is a finite range of v* > y,® along which
the two-identical-boson state is the only allowed
final state in the boson-boson scattering, then in
this range |s(v)|=1 and we can analytically contin-
ue s(v) through this portion of the cut onto another
sheet. On this sheet the only singularities of s(v)
in the variable 1? apart from the right-hand cut
will be poles at the positions of zeros of s(v) on the
original sheet. If such a pole is near the cut, it is
a resonance. Thus resonances correspond to zeros
in s(v) on the first sheet and lower our bound by
factors like expression (14). In fact there are two
such factors for each resonance since a zero at v,
must be accompanied by another at v}* whenever
v} is not real. Note the sharp contrast between
the effect of resonances and stable particles on our
bound. A stable bound state allows g? to be larger
while a resonance forces it to be smaller.

Because unitarity assumes a particularly simple
form in two dimensions, we have been able to dem-
onstrate rigorous upper bounds on renormalized
coupling constants in two-dimensional field theo-
ries. These constraints depend on the dynamics
of the theory only through the physical mass spec-
trum. Such rigorous bounds are unlikely to be
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unique to two dimensions; however, due to the
complexity of combining unitarity and crossing,
only weak constraints in special situations have
yet been found in higher dimensions.

Note added. The main result of this paper [Eq.
(8)] and the method of deriving it are contained in
a remark in a paper of some time ago by K. Syman-
zik [in Lectures on Field Theory and the Many-
Body Problem, edited by E. R. Caianiello (Academ-
ic, New York, 1961), p. 92]. The discussion of

this result in the present paper is more extensive.
I thank Professor Symanzik for bringing his inter-
esting paper to my attention.
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Recently, DeTar and Weis studied the analytic structure of the triple-Regge vertex in the
Veneziano model, We extend their conclusions to a wider class of dual resonance models by
deriving the triple-Regge vertex in the Baker-Coon theory, which allows both linear and loga-
rithmic trajectories. In particular, we find that for unit trajectory intercepts, the triple-
Regge coupling vanishes at zero momentum transfer.

I. INTRODUCTION

The properties of the triple-Regge vertex"? are
of interest because the vertex is directly useful in
the study of single-particle inclusive reactions.?
Recently, DeTar and Weis' examined the analytic
structure of the triple-Regge vertex in the Vene-
ziano model. Here we generalize their results to
a wider class of dual resonance models by deriving
the triple-Regge vertex in the Baker-Coon model,
which is believed to be the most general possible
dual model satisfying the requirements of mero-
morphy, crossing symmetry, polynomial residues,
and no ancestors.*® The model contains three pa-
rameters a, b,q (0 <g <1), and in particular, when
g—1, it reduces to the conventional Veneziano

model.® The Regge trajectories are logarithmic
and are given by

a(S)=-%:—Z , (1)

where 0=1+(1-g)(as+b). The trajectories become
linear when g- 1.

The Baker-Coon N-point function B is a multi-
ple sum, which converges only when its arguments
0, lie between 0 and 1.* Therefore, in its original
form, B, is unsuitable for going to any Regge lim-
its. We make the desired analytic continuation to
large o;; with the help of contour integrals in the
complex plane around rectangular strip contours.
This is described in detail in Sec. II, in which the
double-Regge-particle vertex is derived from B;.



