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A number of astrophysical discoveries and laboratory developments have prompted the

need to consider synchrotron emission including effects of radiation reaction and quantum
corrections. In this article we first solved the Lorentz-Dirac equation to give the trajectory
and radiation spectrum of a relativistic electron at strong radiation damping. The results are
presented in forms which can be directly tested in experiments using megagauss magnetic
fields astargets for high energy electron beams. The quantum mechanical effects which often
intermingle with the classical radiation reaction effects are discussed. A quantum mechanical
calculation including the effects of energy damping and quantum fluctuations is presented. The
results obtained for a single electron are applied to an ensemble of electrons. The character-
istics of the emission spectra are summarized in the final section for various ranges of field

intensity and particle energy.

I. INTRODUCTION

A charged particle accelerated in an applied
field radiates energy. In return the radiation af-
fects the motion of the particle. Thus the dynam-
ics and radiation of an accelerated charge particle
can be summarized in Fig. 1. In Fig. 1 link 1 in-
dicates the effect of applied field on particle mo-
tion, link 2 specifies the field produced by the par-
ticle, and link 3 represents the feedback effect on
the motion of the particle by the resulting fields.
Accordingly, the mathematical theory of classical
electrodynamics should comprise two basic sets of
equations: One, which describes the resulting
fields, is represented by the Maxwell’s equations;
and the other, which includes the effect of both the
applied field and the radiative reactions, specifies
the motion of the particle. These general equations
of motion should be covariant and should lead to
the conservation of momentum of the field and
particle; they should also reduce to the Lorentz
force equations when radiation can be neglected.

A partial differential equation which satisfies
all three conditions was derived by Abraham,
Lorentz, and Dirac,®

_ v =1/ s v,
Uy =w,, u’+w, <u”— 5 Uy U u,,), (1)

o

where w,=3mc%/2¢*>=1.8x 10?® sec™ is the funda-
mental frequency of a free electron, %, is the
four-velocity, #,= du,/dt denotes the derivative
with respect to proper time, and w,, is the electro-
magnetic field tensor, converted to frequency units
for convenience:

k=2

w0 = e -, 0 H, y
ome | @ o—g, 0 E,
-E, -E, —E, 0

Equation (1) is the Lorentz-Dirac equation. It is
one of the most controversial equations in the his-
tory of physics. Although all reasonable approach-
es seem to converge to the same expression, it
does lead to many difficulties. The appearance of
the third time derivative sets the equation apart
from all other dynamical equations which com-
pletely specify the trajectory of a particle once the
initial conditions of position and velocity are given.
A natural solution of the Lorentz-Dirac equation
leads to “run-away” acceleration which can be
eliminated by imposing asymptotic conditions, but
then the solution gives preacceleration which vio-
lates causality.

All those shortcomings have been studied exten-
sively in the literature. Excellent reviews can be
found in Rohrlich® and Erber.? It is fair to say
that within the realm of classical electrodynamics
the Lorentz-Dirac equation is “perhaps” the exact
equation of motion for a point charge.® We say
“perhaps” because the arguments leading to this
equation are not without ad hoc flavor, and, more
important, the Lorentz-Dirac equation has yet to
be tested experimentally.

The purpose of this paper is not to present any
further theoretical argument, pro or con, for Eq.
(1) but rather to treat it as the basic cornerstone
of classical electrodynamics and proceed to derive
observable results for possible experimental tests.
For this purpose we have chosen to analyze the
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FIG. 1. Schematic diagram of the action and reaction
on a classical point charge in an external field.

special case of a relativistic electron moving in a
uniform, static magnetic field. The motivation
behind such a choice is twofold. First, synchro-
tron radiation plays an extremely important role
in astrophysical applications, and in many cases
of current interest, such as pulsar radiation, etc.
the circumstantial parameters are such that the
radiative reaction forces, represented by link 3,
are actually stronger than the applied Lorentz
forces. Thus for a consistent treatment, one
needs to have a theory including strong radiation
reactions. Secondly, recent developments on the
technique of flux compressions make possible the
generation of transient magnetic fields up to 10 MG
in the laboratory,*~® and electron beams of energy
up to a few hundred GeV should be available soon
at the National Accelerator Laboratory. As shown
in Sec. III these laboratory conditions provide ex-
cellent opportunities to test experimentally the
Lorentz-Dirac equation under sévong radiative
damping. A detailed calculation on high-energy
magnetic bremsstrahlung is therefore timely from
an experimental point of view.

We shall outline here the basic approach used
in the present calculation and points of departure
compared with previous treatments. It can be
easily seen that the order of magnitude of the
three terms on the right side of Eq. (1) is given
by the ratio 1: w;/w,: Y?Fw;/w, where
B=v/c and y=(1 —B?)"Y2, Thus for a highly rel-
ativistic particle the ratio of the radiation reaction
force to the applied Lorentz force is given by the
parameter R, = y?w;,/w, which also indicates the
fractional energy loss per revolution. In the case
of weak radiation damping, Eq. (1) can be expanded
in powers of R,. To the zeroth order we have

d“=wuuu". (2)

The more familiar space-time forms of Eq. (2) are
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—_— = 2
ar e|E + p , (2a)
aw ., =

7t— =ev E. (Zb)

Including the first-order terms we have

1,2“=wn,, yu'Vu, . (3)

The spacelike component of Eq. (3) is
ap;

%=e E; +

v -1,=-2
u’ - w," e (w,

v;H, _ VU H;

C c

e?
~ e Wo 1’)’2[(Ej —H,P+ (Ek+Hj)2] y
(3a)
which includes the leading term of the damping
force. The timelike component,
aw

W=€E‘V

- oty [ BxE+ B - BV,

(3b)

represents the work done by the field minus the
leading terms in radiation loss. The higher-order
terms in R, can be added to Eq. (3) by successive
iteration. This perturbation treatment has been
utilized in the past for solving electrodynamical
problems involving weak radiative damping. Plass
has derived solutions to the first order in R, for
the synchrotron emissions.”

In Secs. II and III of the present work Eq. (1) is
solved in powers of R,/y (and 1/y) instead of R,.
This is made possible by the transformation of Eq.
(1) into the rest frame of the particle. When the
applied field is solely magnetic, the ratio of the
radiation-reaction term to the Lorentz-force term
in the particle’s rest frame is R /y instead of R..
By making this transformation we have achieved
three purposes: (a) when the particle is highly
relativistic, this power expansion covers cases of
strong radiative damping, i.e., Fp>F;; (b) the
solutions obtained can be considered “exact” with-
in the realm of classical electrodynamics, pro-
vided y > 137. This statement can be explained as
follows: There are two conditions restricting the
applicability of classical electrodynamics. First
of all, the de Broglie wavelength of the electron
must be small in comparison with the minimum of
the characteristic lengths. In a uniform magnetic
field this length is represented by the Larmor
radius WB/eH. Thus in order to treat the elec-
tron as a point charge moving in a well-defined
orbit without wave interference we need

Y232 >>fieH/m?c?
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or
Y*B2>R,,

where R, =3 yH/H,, H,=m?c*/eli=4.4x10" G.
Secondly, the discrete nature of photon emission
must be insignificant. In other words, the emis-
sion process should be adequately described by
the classical radiation theory. A quantum mechan-
ical treatment of synchrotron emission has been
given by Klepikov and Sokolov® and Schwinger?;
their results indicate that the differences between
the classical and quantum mechanical calculations
are characterized by the parameter R,. Thus the
classical radiation theory is an adequate approxi-
mation of the quantum radiation theory only when

R,x1.

From the above criteria we observe that, for a
relativistic electron, even though the particle it~
self may be awell-localized point charge, the va-
lidity of classical calculation is limited by R, <« 1.
Since R,=4R (ya)™', where a=¢*/ic~1/131, it is
justified to say that although expansion techniques
are used in solving the Lorentz-Dirac equation, the
solutions obtained by neglecting higher-order
terms of R,/y are “exact” within the realm of
classical electrodynamics. (c) The terms in the
solution grouped in powers of R,/y provide physi-
cal insight into the effect of radiation reactions. The
modifications due to energy damping are propor-
tional to R, while those due to radiative “correc-
tions” are of the order of (R,/y)?. This is consis-
tent with the results of quantum electrodynamics.®

The rest of this article consists of four sections.
In Sec. II we solve the Lorentz-Dirac equation to
give the trajectory and the radiation spectrum of
a relativistic electron at strong radiation damping.
A part of the results of this section has been re-
ported in a previoﬁs short communication to Phys-
ical Review Letters.’® In Sec. II the mathematical
results obtained in Sec. II are used to derive the
deflection angle of an electron passing through a
uniform magnetic field. This deflection can be
measured in the experiments using megagauss

field pulses as targets for NAL electron beams.
|
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In Sec. IV we compare the quantum theory of radi-
ation reaction with that of the classical radiation
reaction. A quantum mechanical calculation of
the deflection angle for an electron passing through
a strong magnetic field including the effects of ra-
diation damping and quantum fluctuations is pre-
sented. In Sec. V the domains of validity of the
four levels of electrodynamics, exact relativistic
quantum electrodynamics, relativistic quantum
electrodynamics with first-order perturbation,
classical electrodynamics including radiation re-
action, and classical electrodynamics without
radiation reaction are discussed in terms of the
field strength and the particle energy. The syn-
chrotron radiation formulas applicable to each
domain are summarized and applied to an ensem-
ble of electrons with power-law energy distribu-
tion.

II. MATHEMATICAL ANALYSIS

Let us consider the case of a relativistic charged
particle moving in a uniform static magnetic field
directed along the z axis. In the Lorentz-Dirac
equation the four-acceleration is given by

Uy =wy, u”+w,™ <'z2u—clz— uud”d,,> . (1)
The tensor
0 w,0 O
w,, -w, 0 0 O ,
0 0 0 O
0 0 0 O

where wy=eH/mc. The main effect of radiation re-
action is contained in the third term, —w,™ ¢ %% ,u
which dominates the Lorentz force when R > 1.
Since i"#, is a four-scalar, it must be equal to iV,
in the instantaneous rest frame of the particle. In
the rest frame, where the particles sees an elec-
tric field of the order yH, the ratio (|Fy|/|F, | )
is reduced by a factor of y and equal to R, /v.

Thus one can treat R, as finite and evaluate %",
in the rest frame in powers of y~!. To the lowest
order we have

u?

where u}, and w',, are the four-velocity and the electromagnetic tensor in the rest frame. The dot denotes

derivatives with respect to proper time.

Since 4, =0 in the rest frame of the particle we find

(7'2”1’.‘11 )lab = (dl’du )lcst

:yzcz<.ul2l:1+(Rc /v)? < 1+_23£u_05 ——fég> +O((Rc/7’)4)] , (4)

YWy YWy
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where w, =w,sing, and ¢ is the angle between the velocity v and the field H. Substituting Eq. (4) into Eq.
(1), we find that «, is decoupled from the spacelike component to give the instantaneous radiation rate

dy _ .
2 ="

2 2 2,2 w2 ) 2 2 \4
et L [l—ywzl <4+ e s1n2<p+0<y 5 .
w, W, Yiw W

Integration of Eq. (5) gives
Ryw,t

y(t)=v0§1+

‘}/0[1 - 4(R0/79)2(1 +R0—2)/(1 +Rowlt/70)]

(6)

where y, and R, refer to initial values of y and R,sing. Equation (5) and Eq. (6) differ from the standard
formula which neglects radiation effects by terms of the order (R, /y)?. Thus the radiative reactions mod-
ify the radiation rate only slightly. After one cycle the energy of the particle is reduced to ~(1+4wR,)~".
(Since the orbit is no longer closed, “cycle” here means the particle returning to its original direction.)

Substituting Egs. (5) and (8) into Eq. (1) gives

v, =ve " cosf(#) sin ¢, (7a)

v, = Upe " ® sinf(£) sin ¢, (Tb)

Vy=10,C08¢,, (Te)
where ¢, is the angle between the velocity ¥ and the field Hatt=0,

h(t) = &%ﬂ—tb Bl O((Ro/?’o)z)] (8)

Yo 2y,
2 -2
()= Wyl ( <1 LB t>_<1_30> [6 + ZRO_Z L Rowyt _ 4y, In(1 +R0w,,t/yo):] } 9)
Yo ] 2v, Yo 1+R, Yo Rywyt(1+R,—2)
. —_— RC: Rq:o
In Egs. (5), (7), (8), and (9) we have retained ———— Rq=0,R.:0.3

terms proportional to (R, /y)? in order to compare Rq=1s5,R.=0.3

them with the radiation corrections resulting from
quantum mechanical calculations.

Equations (6) and (7) describe the trajectory and
the energy variation of a particle under conditions
of strong radiation. The trajectory is a shrinking
helix (Fig. 2) with the radius of curvature p(t)
=v?/(dv/dt) decreasing as (1+y, 'Rw, £)"!. After
completing the first cycle both p and the particle
energy are reduced by a factor of (1 +47R,)™"/2,
Two interesting points may be brought to attention:

(a) The radiative reactions modify the instanta-
neous energy loss rate only slightly [to the order of
(Ry/vol]- This results from the fact that forces
exerted by radiative damping are mostly along the
direction of v while the force exerted by the mag-
netic field is perpendicular to the velocity. For
comparable parallel and perpendicular forces the
total radiation due to the parallel component is of
the order 1/y? smaller than that from the perpen-
dicular component. Thus within the range of va-
lidity of classical electrodynamics radiative re-
action forces cannot change the instantaneous emis-
sion rate significantly, although alterations of the
orbit of the particle could be large, hence the ef-
fect on the frequency distribution of the total rad-

FIG. 2. Orbit of a radiating electron. Classically, the
shrinking of the radius is continuous. Quantum mechani-
cally the trajectory is composed of segments of circular
arcs with successively smaller radii of curvature. The
numbers 1 to 4 alongside the solid line denote the instants
that a photon is being emitted.
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iation may be significant.

(b) The decay rate of the angle between the veloc-
ity vector V and the field H is much slower (by a
factor y~2)than the decay rate of the particle’s ener-
gy. The variation of the particle’s pitch angle with
radiation can be best explained by Eq. (7c) which
shows that the longitudinal velocity of a radiating
particle is an invariant in a constant magnetic
field. From Eq. (7) we have

d, d dv

_deL :.DL(d—;/J"" dtl/vl>’ (10a)

apy _, dy

dt =Py dt ') (10pb)
and

A _ s ﬂ/z

dt =Y UL dt c 3 (11)

where p, =ym(v,>+v,%)"? and p, =ymv,. Combina-
tion of Eq. (10) and Eq. (11) gives

dpy [dp. _ by VB (12)
at/ dt p, 1+v82°

Hence in the nonrelativistic case radiation draws
all of its energy from the transverse component
of motion, and the particle’s pitch angle decreases
with the reduction of its energy. A nonrelativistic
particle injected randomly into the field would lose
about  of its initial energy, then stream along
the field line with no further radiation losses. But
this is not true for a relativistic particle. For
y> 1 the ratio of the longitudinal energy loss to
the transverse energy loss is equal to the ratio of
the initial values of the two respective components.
Although the particle’s radius of gyration and its
energy decrease quickly at strong radiative damp-
ing, the pitch angle remains practically constant.*

Derivation of the results of this section and
those that follow involve Lorentz transformations
between the instantaneous rest frame and the lab-
oratory frame. Since the particle at strong radia-
tive damping is under enormous acceleration, one
might question the validity of such transforma-
tions.!'? However, the instantaneous rest frame
considered here is not a frame attached to the par-
ticle. It is a frame which moves with a (uniform)
velocity equal, in magnitude and direction, to the
velocity of the particle at the instant of considera-
tion. The particle, although motionless (or nearly
motionless if an infinitesimal time apart from
the instant), is under acceleration in this instanta-
neous rest frame. This is by definition an inertial
frame irrespective of the magnitude of the acceler-
ation, and the Lorentz transformations used here
are strictly valid. Such a choice of coordinates is

effective only when the consideration is limited to
the motion of the particle as a whole. If the par-
ticle possesses internal structure (spin, for ex-
ample) and one wants to study the effect of external
field on these internal properties, then the equa-
tion of motion describing the change of these prop-
erties must be expressed in a frame attached to
the particle. This frame, which rotates with re-
spect to the instantaneous rest frame by an angu-
lar velocity

>t

Wp=(y- 1)<\7x%—)v'z,
is of course not an inertial frame. This effect
leads to the famous example of Thomas precession.
For the synchrotron problem the computations be-
come unnecessarily complicated if one wants to
carry them out in the particle’s frame. Still, it
can be easily shown that

( v > _( d\7>
dt particle’s frame at instantaneous inertial frame

x[1+0(1/¥)]; (13)

E(t)

21 Y/ wy—

v
27r/7§wH

Ro#0

{[1+4mnRy) 2= [1+47(1-NR1"?} Yo/ Rowy

+
2m(1+47nRy) /Y 8wy

t———

FIG. 3. Schematic drawing of the radiation field im-
pinging on a distant observer for electrons moving in a
magnetic field. (a) represents the field without radiation
damping; (b) represents the field with radiation damping,
where the intensity and the time interval between suc-
cessive pulses decrease but the duration of each pulse in-
creases.
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thus no practical difference results from the in-
termediate steps.

The spectrum of synchrotron radiation of a par-
ticle at strong radiation damping can be derived
from Egs. (5) and (7). It is well known that radia-
tion emitted by a relativistic particle is ‘concen-
trated in the forward direction of motion.!3+ ¢
Since the trajectory of a charged particle in a
homogeneous magnetic field is a spiral along the
direction of ﬁ, a distant recording device (the ob-
server) will receive successive pulses of radia~
tion at those moments when the particle is moving
toward him. In ordinary synchrotron emission,
where the effect of radiation reaction on the par-
ticle is neglected, the bursts will be repeated at
a constant time interval AT = ywy™. The charac-
teristics of each burst, which have a duration of
the order of Af=(y2wy)™, are identical; thus the
observer will record a field shown schematically
by the curve in Fig. 3(a). The Fourier spectrum
of the field is discrete, consisting of harmonics
of the fundamental frequency (AT)™ = w,/y.

Since AT/At=y3>1, the characteristics of the
“instantaneous spectrum,” representing the spec-
trum of a single burst, are given by

e2w?

= 53
inst 477 c

dIl(w)

aQ

AT/2 . 2
f 'ﬁx(ﬁx?)e"“‘"“"“)dt .
~AT/2

(14)

The observed radiation consists of many bursts,

dl(w)| _ S dli(w)

a a

(15)
obs n=1
However, the case is different at strong radia-
tive damping. The orbit of the particle is no long-

er periodic. The time intervals between succes-
sive pulses, as well as the character of each pulse,
are not the same. This is shown schematically in
Fig. 3(b). The “instantaneous spectrum,” which
represents a particular pulse, and the “cumulative
spectrum,” which represents the Fourier trans-
form of a number of successive bursts, are not the
same. In most astrophysical cases where the ob-
servation time is much longer than the repetition
interval AT, the cumulative spectrum is what one
would see. On the other hand, in certain labora-
tory experiments, such as the one we shall discuss
in the next section, the recording device will re-

w=nwyl/y

dllw) 20| (0 o oy 2
d(Q =7472Ff AX (A xV)etv =0 1/e) gy
2 2 (th+tp+1)/2 2
e*w T -
b j nx(nxv)e""(t"""/")dt‘
me (tn=1+tn)/2

n=0

ceive only one burst when the searchlight beam
emitted by the deflected electron sweeps across
the observer. We shall discuss the two spectra
separately. (a) Instantaneous Spectvum. We shall
assume that both the observation time and the
time for which the acceleration differs from zero
are much longer than the duration of the pulse.
Then the radiation spectrum is related to its tra-
jectory by'®
dl(w)  ew® 2
dQ ~4ric®

f B (ﬁxv)eiwu—ﬁ-'r’/c) di

(16)

We note that the integration is to be performed
in the particle’s own time, where the duration of
the pulse is ~w,™'. Thus ¥ and ¥, given by Eq. (7),
can be expanded in powers of 1/y,, R,/y,, and
wyt/v, in the integrand of Eq. (16), and the inte-
gration can be carried out to express the radia-
tion spectrum in terms of parabolic cylindrical
functions. Intensity, polarization, and shape of
the spectrum are all modified slightly, to the or-
der of (R,/y,), as compared with the synchrotron
spectrum neglecting radiative damping. This is
consistent with the result obtained in the previous
section that the radiation rate itself is modified
only slightly by radiation. A more detailed dis-
cussion and derivation of the spectrum are given
in Appendix A. (O Cumulative Spectvum. For
most cases the observation time is much longer
than the period of revolution of the charged par-
ticle; then the recording device will receive suc-
cessive pulses at those moments when the par-
ticle is moving toward it. Let us consider an ob-
server located on the x axis and the particle mov-
ing in the x-y plane. From Eq. (6) we see that he
receives bursts of radiation when v,(¢) =0, or at

1/2 _
t:t":[—-—(1+4m§°) 1];7& (17)
0 H

while the energy of the emitting particle is y(¢,)
=y,=vo(1+4mmR,) "%, The observer records a
series of closely bunched pulses. The time inter-
val between successive pulses decreases while the
duration of each pulse increases. The total radia-
tion from the particle is the superposition of all
pulses. Therefore the radiation spectrum may be
expressed as

(18)
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The lower limit of the summation corresponds to the time the particle is injected into the emission region,
which is taken to be £=0. The upper limit of the summation corresponds to the observation period T (or
the time the emitting particle stayed in the observation region, if it is shorter than 7). From Eq. (17)

N= w,,T<1+

RowHT
2Ty, :

2y,

(19)

The nth term in the summation represents the Fourier transform of the amplitude of the nth pulse. Since
the radiation of each pulse is concentrated within a time interval (y,%wy)™" around #, where the duration
between successive pulses is y,w,™, the limits of integration for each term in the summation can be re-
placed by +« after a suitable transformation of variables. With this approximation, Eq. (6) can be eval-
uated following the usual procedure of computing the radiation spectrum from an ultrarelativistic particle,

dI(w) e2w?

as = 3ncy 2“’112 [A|;2(W)+Al2(w)] .
0

(20)

A *(w) and A,%*(w) correspond to the two polarization components,

o Fnc ) (i ons)}

n
N
Z @n (9)b -17/02021{1/3 <—ui> ’
- wn
n=0
where
a,(0)=1+y 260+ 4mnR,,
b,=1+4mnR,

W, 3,}/0 wH 1/2 [d 02/,}/02 ] -3/2,

(21p)

(22)

and 0 is the colatitude angle the observer makes with the orbiting plane. K, and K, ; are modified Bessel
functions. In Eq. (21) the differences between the spectrum of an individual pulse and the classical expres-
sion for radiation emitted by a relativistic particle of energy y, and radius of curvature p, are of the order
of (R,/v,)? a result consistent with that obtained in the Appendix.

All information about the radiation is contained in Eq. (7). Of particular interest for astrophysical ap-
plications are the polarization and frequency distribution of radiation. The frequency distribution of the

total energy emitted by a particle of initial energy y, is

(7, @)= f dI w)

N ©

2¢%w R, \?
ke vy f
V3 CYoWy nz " 20p N2w/3y%wy 5/3(x)dx " O((')’o) ) (23)

=0

I(y,, w) is plotted in Fig. 4 for R,=1072 and 10.

In the high-frequency range £ = w/y 2w, > (1 +47R,)™
the spectrum varies as £1/2¢~28/3_ In the inter-
mediate range

L+ Ryw,T/yy) 2 <& <(1+47R,)™*

the spectrum varies as £7%/2; in the very low-fre-
quency range & <(1+RywyT/v,)™% the spectrum
varies as £3. The polarization of the radiation
is given by

A (w) -AA(w)
l{w)= A,:z(w)+AJ_2(w) : (24)

The values of II(w) are plotted in Fig. 5 for the
same sets of parameters as I(w). In the fre-

—

quency range of (1+47R))™/2>»&>&,, II(w) had
the common value of 0.695 for all values of R. At
§«&;, Il drops to 0.5.

The results obtained above are easily generalized
to cover the case that the particle’s longitudinal
velocity v,#0. One need only replace H by H sing,
in all computations. In addition I(vy,, w) should be
divided by sin®¢, to take care of the Doppler ef-
fecton £,, the interval between pulses.'®

Equation (19) and Eq. (24) are obtained by for-
mal derivation and give exact expressions for the
spectrum and the polarization of radiation (within
the prescribed conditions R./y <1 and y "'« 1).
These complex results can be better understood
through a qualitative explanation: Within the ob-
servation time 7T the observer records N pulses.
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FIG. 4. The frequency spectrum of synchrotron radiation. The dashed curves are the instantaneous radiation spectra,
which deviate very little from the conventional synchrotron spectrum. The solid curves are the cumulative spectrum

‘with obvious radiation damping effect. The first maximum, which is due to the cutoff of the observation time, occurs at
wo/w, T?, while the second maximum which appears when R, 2 1 occurs at ~Yowy.

Since to the lowest order of R./y radiation reac-
tions do not alter the instantaneous emission
spectrum, the spectrum of each pulse is practi-
cally identical to the classical expression given
by a particle of energy y,. Superposition of these
N spectra yields the described result. For ex-

ample, the frequency distribution of the instan-

taneous radiation emitted by an extremely rela-
tivistic particle of energy y increases as w'/® for
w < y?wy; it reaches a maximum at ~0.3y%w, and
for w> y?w, the intensity drops as w'/2e~(2¢/3v%¢y)
The first pulse, therefore, gives a broad, slowly
increasing spectrum cut off at ~y,2w,. The second
pulse, which is emitted by the particle at energy

0.2

0.8

0.6}

0.5
1077

1078

10-5

FIG. 5. Polarization of synchrotron radiation from a single electron.
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vo/(1+47R,)*?, shows a similar spectrum but
with less intensity and cut off at ~y,*w,/(1+47R,).
By the same reasoning, the third and later pulses
cut off at w = y,2wy/(1 +4mnR,). Similarly the Nth
pulse, whose intensity has been reduced vastly by
a factor of

(1+47NR,) " = (1 + Rywy,T/v,) 2,

has a cutoff frequency at ~y 2wy(1+R,wy,T/v,) 2.
Therefore, in the frequency range w > yozw,,/
(1+47R,) only the first pulse contributes signifi-
cantly to the superimposed spectrum, and its
shape retains the classical form. At frequencies
below y,2w,/(1+47R,) the subsequent pulses join
forces, one by one, and the intensity, instead of
decreasing, increases toward smaller w. If the
radiation damping is strong enough, i.e., R;>1,
so that the first two w_,’s are well apart, the
spectrum will show a dip at around y 2w/ (1 +47R,)
At the lower end of the frequency spectrum, be-
cause the observation period is finite, pulses
emitted later than 7" will not be received, and the
spectral shape at

w< Y 2wyl + Rywy T/y,)

will again retain its classical form and vary as
w'3, The angular distribution and polarization of
the radiation can all be described similarly.

1II. EXPERIMENTAL TEST

The strength of magnetic fields in electron syn-
chrotrons is of the order of 10* gauss where the
maximum energy of the particle attained is ~10
GeV. The damping parameter R, is less than 1073,
hence it would be very hard to study the effect of
radiation damping in the existing accelerators.
However, recent developments in the technique
of flux compression have generated transient mag-
netic fields up to 10 megagauss in the laboratory
with a lifetime of the order of 1 psec.*"® Also
secondary electron beams of energy up to a few
hundred GeV should be available soon from NAL.
One can readily see that these parameters yield
R,z 100. For the first time, then, it appears
that the classical Lorentz-Dirac equation can be
subjected to experimental test by the combination
of high-energy accelerators and megagauss tar-
gets.'® A series of such experiments, using
megagauss pulses as targets for high-energy
electron beams (abbreviated as MPEB hereafter),
have already been carried out by Erber, Herlach,
Murray and Heckman at SLAC.* 17

The schematic of the setup of that experiment
is shown in Fig. 6. The radiation and the deflec-
tion of the electron beam are measured by x -ray

film and nuclear emulsions located downstream
of the MG target. Of the radiative reaction ef-
fects discussed above, the one most likely to be
detected is the additional deflection caused by the
radiation damping. From Eq. (7) we observe that
the deflection of the electron after traversing a
distance L in a magnetic field is

_ _ Rywy L\ wyL
6= f(T)= <1+——~2yoc>—yoc . (25)

That is, in addition to the normal deflection
(without radiation)

wyL eHL
0 = HZ _
o y,c E ’ (26)

there is a radiation-reaction-induced deflection

_ R (wyL\? _€H3L?
00 =7% <yoc> T 3mic® (27)

This additional shift corresponds to the shrinking

of the orbit of the particle. A useful parameter

which indicates the chance of being measurable is
66, R, , 1 e'H?’LE

6, 2 %73 i - (28)

0

6, and 66,/6, are given in Table I in units of ra-
dian for three sets of experimental parameters.
The first set, which corresponds to the SLAC ex~
periment already carried out by the IIT group,*
predicts a 66,/6, which, in view of the experi-
mental uncertainties, is too small to be signifi-
cant. The next two sets, which correspond to the
energy of the NAL beams predict fractional shifts
larger than 10%. They should be measurable.

An interesting feature of the deflection angle is
that the magnitude of the radiation reaction in-
duced 66, is inversely proportional to the 4th
power of the mass of the particle, where the nor-
mal deflection is a function of energy only. Thus

MEGAGAUSS
PULSE

DETECTOR

FIG. 6. Schematic diagram of the magnetic-pulse-elec-
tron-beam experiment designed by the IIT group. 6, is
the “normal” deflection of the electron beam neglecting
radiation reaction and quantum effects. 66 is the incre-
ment due to radiation reaction, A8 is the quantum spread
caused by the cascade emissions.
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TABLE I. Numerical estimation on the radiation-reaction corrections. The first three col-
umns represent experimental conditions. (E;) is the average outgoing energy of the electrons.
(6) is the average deflection angle. 66, and A6 are, respectively, the shift due to classical
radiation damping and the width due to quantum fluctuations, respectively.

E (GeV) H (MG) L (cm) R, R, (Ep) (GeV) (0) (rad) 66,/(0)  A6/{6)
19 1.9 0.5 0.29 2.4x1073 18.9 1.5x107% 2.2x 1073 3.2x107°
500 1 0.5 107 3.4x 1072 485 3 x107 1.6x107% 3.2x1072
400 5 0.5 304 1.3x 107! 369 1.9x1073 2.2x1071 8.8x 1072

a beam of =, say, sent through the magnetic
pulse simultaneously with an electron beam of
similar energy can serve the purpose of calibra-
tion. In that case one need not know the accurate
value of the field strength H and the path length L,
so long as one can insure adequate space-time
synchronization of the two beams with the mega-
gauss pulse. The separation between the two
spots which represents the deflected p.~ beam and
e~ beam, respectively, on the recording film
placed downstream from the megagauss target
directly gives the radiative-reaction-induced de-
flections. To achieve this purpose, however, the
energy variation of the incoming beam must be
small enough so that the angular dispersion willbe
smaller than the radiation-induced deflection.

In addition to the deflections, one can also mea-
sure the energy and the radiation spectrum of the
emerging electrons. The energies of the emerg-
ing electrons are given by Eq. (6), with ¢ re-
placed by L/C. They are listed in column 6 of
Table I. The instantaneous radiation spectrum
is not affected by the radiative damping, therefore
the photon detector mounted downstream from the
megagauss target would record a classical syn-
chrotron spectrum with critical frequency w,
= y,?wy, where y, is the instantaneous energy of
the electron at the time of emission.

IV. QUANTUM MECHANICAL RADIATION
REACTION AND ITS ANALOGY WITH

CLASSICAL RADIATION REACTION

In analogy to the classical electrodynamics the
quantum theory of radiation can be summarized
by the diagram in Fig. 7.

The present quantum theory of synchrotron
emission was developed following the general
perturbation method.'®* The interaction of the
electron with its own virtual-photon field pro-
vides the mechanism for spontaneous emissions,
but the interaction Hamiltonian H; is treated as
a small perturbation in the Dirac wave equation

i Y= (H,+H)Y, (29)

where Hy=H 4 +H, consists of Hamiltonians rep-
resenting the radiation field and an electron in the
stationary magnetic field. First one solves

., 0O

in Y3 Y=Hy
to find the unperturbed wave function for the elec-
tron and the radiation field. The eigenstates of

H, are degenerate, the energy depends only on the
total quantum number z,

E,=mc?[1+(Py/mc) +2nH/H, "% . (30)

The transition probability between two unperturbed
energy levels, after summing over the degenerate
states, is

_awy (mc?)?

Aij= V37 E.2E. VAGOR (31)

where

fly)= J Ky 5(x)d x +R,2y%(1 + R Y) K, (),
y
y=(E; —E;)/R4E; ,

and
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FIG. 7. Quantum mechanical description of the action
and reaction on a charge in an external field.
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The transition rate A;; varies as y 7% for y «1

and drops off exponentially for y>1. The radia-
tion spectrum of an electron at energy E; is given
by

E_ﬁwij)‘ij »
J

W3, 2< e? >2 z?
I (w)dw = 4n cvill mc*) (1+R,z)°

dw
X —————————————
f(Z) w(l—ﬁ&»‘/yimcz)’ (32)
where z =7iw/R ;(E; —=hiw).
Integration of /;(w) over w gives the radiation
rate

ay\ __7viwy’
<dt>;“ ol F(R), (33)
where

_WE T ),

FRI=% ) drrap @
1 2
=1-3.9R,+21.3R,*, R, «1 (34)
“1.2R,3, R,>1.

Equations (31) and (33) are the instantaneous
radiation spectrum and the instantaneous radiation
rate in quantum electrodynamics. Since in this
first-order theory the wave function of the elec-
tron is derived without interference by the inter-
action Hamiltonian, the radiation reaction in-
dicated by the feedback line (3) of Fig. 7 is not
included. In this sense the first-order theory is
the quantum mechanical analogy of the classical
“reaction-less” radiation theory. The modifica-
tions characterized by R, are due to the use of
quantum mechanical calculation in processes rep-
resented by links (1) and (2).

A self-consistent treatment including the feed-
back loop (3) would be to solve Eq. (29) without
approximations. As is well known, no exact solu-
tion has ever been found for the Dirac equation in-
cluding radiations. To estimate the effect of radi-
ation reaction one can separate the reaction ef-
fect into two parts. One part includes the modifi-
cation of the total Hamiltonian due to the inter-
actions, which we shall call “radiative correc-
tions” (which, for example, is the cause of the
well-known Lamb shift). The other part includes
the damping effect due to the emission of photons.
The radiative corrections are usually estimated
from the higher-order terms in the expansion of
H,. For relativistic electrons in an intense mag-
netic field, the leading terms of the various sec-
ondary effects are proportional to aR, for R, >1.
Thus we may conclude that the validity of the first-

o

order theory is limited to R, «1.1°

Although the calculation of radiative “correc-
tions” involves great mathematical complication,
the second part of radiation reaction, the energy
damping effect due to the emission of photons,
can be derived exactly in a cascade calculation.
This point can be best explained by comparing the
physical meaning of radiation reaction in the
quantum mechanical calculation and that in the
classical calculation. In classical electrodynam-
ics an accelerated particle losses energy con-
tinuously, thus both the damping of the particle’s
energy and the modification of the radiation pro-
cess due to the radiation reaction are contained
in the feedback loop (3) of Fig. 1. Neglecting the
reaction force

w, ™! (u -ty u,.) (35)

in the Lorentz-Dirac equation would make the
radiating electron moving with constant energy,
violating the energy conservation law. In the
quantum mechanical treatment, the radiation con-
sists of discrete steps. A particle stays in a
state for a finite time before making a transition
to a lower state. Since the lifetime in a given
energy state is very short [ 7~ (aw,)™], a par-
ticle usually makes a number of transitions dur-
ing the time of observation. If one follows the
transitions step by step, i.e., after the first
emission, the emitted photon energy is subtracted
from the initial electron energy, and the reduced
energy is used in the calculation of the second
emission process, and so on, then the final re-
sults will automatically include the damping ef-
fect. Such a cascade calculation has been carried
out by Shen and White, and the results were pre-
sented in an earlier article.?® In addition to the
inclusion of the effect of radiation damping, a
statistical phenomenon due to the discrete nature
of quantum transitions appears. Under certain
conditions the broadening in energy states due to
statistical fluctuations may reach a magnitude
comparable to the shift caused by the radiation
damping. We shall estimate its effect here.

Let p(E, ¢) be the number of electrons in the
states within the energy range E and E+dE. We
have

p(E, t) 1

R LR RN A

(36)

Equation (36) was solved together with Eq. (31) by
a straightforward numerical method in Ref. (20).
The solution p(E,?) describes the energy distribu-



6 MAGNETIC BREMSSTRAHLUNG IN AN INTENSE MAGNETIC FIELD 2747

tion of the particles at time ¢ with initial distribu-
tion p(E, 0). Observables such as the expected
instantaneous radiation spectrum can be readily
calculated from p(E,?) by

I(w, t)= Jp(E, (w, E)dE.

In Fig. 8 we have plotted p(E) for a monochro-
matic incident beam after traversing various dis-
tances in H. The spread in energy states is anal-
ogous to the energy straggling which occurs when
a fast particle travels through a thickness of mat-
ter. The only difference is that in ordinary
bremsstrahlung the emission of a hard quantum
which carries away energy comparable to that of
the electron is almost equally probable as the
emission of soft photons, hence the spread is in-

07, . -

T T T L T T
0.33 E,=400 GeV
06— H=5 MG —
Rq=0.133
5.0
05 |
04 _
3 0.66
N ° 2.5
“ o3 -
02}~ —
ol _
(a)
| iy | | |
| 90 .80 70 60 .50 40 30 .20 .10 0
—E/E,
-07, T T T T T T T T LI—
E6=1000 GeV
o6l H =10 MG ]
Rq=0.665
40
] %0 .80 .70 .60 .50 .40 .30 .20 O 0
~E/E,

FIG. 8. Energy spectrum of a beam of monoenergetic
electrons after passing through the magnetic field. The
numbers affixed to the curves are the magnetopath length
LH in units of cm MG. The classical energy [given by
Eq. (6)] and the expected quantum mechanical energy
(obtained by averaging over the distribution) are, re-
spectively, v, /v,=0.92, 0.86, 0.61, and 0.44 and (y,)/y,
=0.95, 0.90, 0.68, and 0.50 for the four curves in (a) and
Yo /¥9=0.55, 0.41, 0.31, and 0.16 and x (v, )/v(=0.77,
0.65, 0.51, and 0.25 for the four curves in (b). (This
figure is adopted from Shen and White, Ref. 20.)

sensitive to the energy of electron. In synchro-
tron emission the maximum fractional energy
carried away by an individual quantum is charac-
terized by R,(1+R,)™ [see Eq. (31)]; thus the
straggling effect is appreciable only when R, is
not negligibly small.

To illustrate the relative magnitude of the fluc-
tuation effect and the damping effect, we present
a quantum mechanical calculation on the deflec-
tion angle of an electron traversing through a
strong magnetic field. The rate of change of di-
rection for a particle in the eigenstate (N;, S;)
(; is the principal quantum number, which deter-
mines the energy and the radius of curvature,.
and S; is the radial quantum number, which
characterizes the position of the center of the
trajectory) is

do; v
dat ~ (N, S;)’ 37
where
¥(N, S;) = z/)1\,'1.,si| 7| ‘PNi.si)
= N7 [1+(S; + 34N ], (38)

and 7, =(2H,/H)'/*1i/mc is the “Bohr radius” of an
electron in a magnetic field. The total deflection of
the electron after traversing a distance L in a
magnetic field H is

— 9 (ti"'ti-l)v
0=> (NS (39)

where #; is the instant the particle makes the
transition from state (%, S;) to state (N;.,,, S;4y),
t, is the time the particle enters the field, and ¢,
= L/c is the time the particle leaves the field. The
duration (#; —¢,_,), which is the length of time the
particle stays in the ¢th state, and the probability
that it will decay to the Z+1 state are both gov-
erned by the transition probability Ay, s, v, ,, Siey’
To evaluate 0 let us first consider the factor
(S;+%)/4N; in Eq. (38). As had been shown by
Sokolov and Ternov!® and Urban and Wittmann?!
the quantum member S; is an increasing function
of time

AS;
Z_tz = f %}(S, -—S,-)ANi, s;.Nj-deNj

- en e, o)
" Because the radiation process does not involve
the change of the radial quantum number, S in-
creases linearly with time irrespective of the
level transitions. (This effect is the cause of
betatron oscillations in accelerators.) After tra-
versing a distance L;,
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S(L;) _S(0) 55 L L H
aN, 4N, T a1evs e W m,
S(0 -
~ 45\]') +10HE* L, (41)

3

with # in MG, E in GeV, and L, in cm. (We shall
use these units of magnetic field, energy, and
length for all equations in the remainder of this
section.

If we choose the coordinates such that the center
of the orbit coincides with the origin when the
electron enters the field, and the S-dependent
fluctuation correction

-5 p2L A
ST216v3 ¢ XH,

is small compared to unity, the total deflection
may be expressed by

6=0,(1-56g), (42)
where
oot -t )
0= Z ————————A;im;; . (43)

i=1

6,, can be calculated by the Monte Carlo method.??
The distribution of the deflection angles for a
beam of monochromatic energy electrons after
traversing a distance in H is shown in Fig. 9. For
R,«1, an adequate formula for (#), the average
quantum mechanical deflection angle is

The angular spread of the particles due to quan-
tum fluctuation may be estimated by the mean de-
viation A60=[(6?) —{#)?]/2. Since Eq. (43) contains
two sets of restrained random variables, an ap-
proximate formula for the spread is

Aezi<1—%§'—)>(0>

3
- 3x10-5H5/2L3/2 (45)
T 1+1.3x107*H?LE, ’
where
¢= S5aLH
2V3 M,

is the average number of photons emitted within
L (i.e., the number of steps taken in the random
cascade). Equation (45) checks well with the nu-
merical result obtained from Monte Carlo calcu-
lations.

The total deflection may be written as

eHL . e®H3L?
E, 3mic®

(6)= (1-4R,+21R2)(1 ~6g)

(46)

with a “width” given by Eq. (45).
The shift in 6 due to classical radiation damping
is [cf. Eq. (27)]

R.eH eHL _eH*L?
(g)u[1+——2"E—0£ (1—4Rq+21Rq2)] =) 06,= 5, o7 -
| | | T I
Eo=100 Bev Eo=500 BeV
A e
§=12.37 ?9:>5=8r21
0>/ =1.18 (89/8,-1,03
90% particle width 11.8mrad ¢
5 5
a
| | | K 1 1
10 Tl 2 I3 5 0 5 1
8lmrad) 6 (mrad)

FIG. 9. Deflection of electrons by the magnetic field. 6,=0,+66, is the classical deflection angle including radiation
damping [cf. Eq. (26) and Eq. 27)]. @) is the expected quantum mechanical deflection angle (obtained by averaging over
the distribution). The ratio (8)/8. indicates the magnitude of the quantum corrections other than the spread.
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The modification of the shift due to the quantum
corrections to the energy loss rate is

66,= - (4 R,~21R2)66,
=-2.Tx10™HE(1 - &R )56, . (47)

The modification due to the fluctuation of the
center of orbit (the betatron effect) is

55
Afg=~— I1673 aRA(L/%*)(H/H,)56,

= -8Xx107*°H3E?Lb0, . (48)

The angular spread due to downward cascade
transitions between states of different principal
quantum numbers is given by Eq. (46)

A= 3.3[ a(L/x)H/H,)]™?

x [1 + %9’ ¥ (H/Hq)z(L/-k)] V50,

=1.5(LH)™?(1+1.3x10™*H2LXE) ™56, .
(49)

It is important to distinguish the straggling ef-
fect due to cascade transitions from the fluctua-
tion due to betatron oscillations. The betatron
oscillation corresponds to a progressive smearing
of the particle projectory because of vadiationless
transitions between levels with different values of
S. (Thus the betatron oscillation results in no
spread in energy space.) On the other hand, the
angular spread due to cascade transitions is
caused by the fluctuation of radiation energy
losses. The betatron oscillation becomes appre-
ciable at the comparatively low energy E = mc?
(H/H,)™'* where the straggling becomes signifi-
cant when the effects of radiation on particle en~
ergy are non-negligible, i.e., when E - mc?
(H/H)™2.

Equations (47)—(49) are the most useful for-
mulas for the magnetic-pulse-electron-beam ex-
periments. Comparison of these three equations
shows that the cascade spread dominates other
quantum effects and is of the same order of mag-
nitude as the classical radiation reaction deflec-
tion in the experiments mentioned above.

We have presented here a detailed calculation
of the angular deflection because it is easiest to
determine the deflection of electron beams in the
megagauss experiments. For astrophysical ob-
servations, the change of other observables, such
as the energy distribution and the radiation spec-
trum of the particles, is of more interest. It is
obvious that the fluctuation effect tends to retain
a portion of electrons in an energy range well

above that predicted by Eq. (33); a quantitative
calculation, however, is beyond the scope of this
paper and will be considered elsewhere.

V. SUMMARY, DISCUSSION, AND APPLICATIONS

In Secs. II, III, and IV we have presented a de-
tailed calculation of strong radiative damping and
certain quantum mechanical effects. In this sec-
tion we shall summarize the formulas, indicate
their domains of validity, and consider their appli~
cations to an ensemble of electrons.

The complete theory of electrodynamics con-
sists of a hierarchy of theories: exact relativis-
tic quantum electrodynamics, relativistic quan-
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FIG. 10. The range of validity of different levels of

synchrotron radiation theory. The basic assumptions and
the applicable formulas of each level theory [(1) to (5)!
are discussed in Sec. V of the text. This diagram is
intended as a crude guide to the applicability of the five
levels of electrodynamics theory. One must be aware,
however, that sometimes the higher-level effects can be
appreciable in the lower-level domain. a, b, ¢, d, and e
represent several astrophysical and experimental situa-
tions: (a) Cosmic-ray electrons in the galaxy. (b) Rela-
tivistic electrons in Crab nebula (where the radiation
spectrum covers a broad range from radio wave to soft
y rays). (c) The existing electron synchrotron. (d) The
megagauss experiment using SLAC electron beams.
(See Ref. 4.) (e) The megagauss experiment using NAL
electron beams. The shadow region represents pulsar
electrodynamics which covers all levels of synchrotron
theory.
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tum electrodynamics with first-order perturba-
tion, classical electrodynamics including radia-
tion reaction, and classical electrodynamics with-
out radiation reaction. The higher-level theory
is of course the more general one, but the lower-
level theories are usually easier to deal with.
Particle energy and field strength are the two pa-
rameters determining the applicability of each
level of theory. We have therefore constructed a
field-strength—particle-energy diagram (Fig. 10)
which indicates the validity domains of each level
of theory. Several astrophysical as well as lab-
oratory situations are labeled (a, b, ¢, d, and €)
on the diagram.

(I) Region (1): v*H/H, <1

(E2H<1.5%10° GeVZ MQG).

Classical electvodynamics valid, radiation re-
action negligible. This is the region where the
conventional theory of synchrotron radiation ap-
plies. The electron is treated as a classical par-
ticle whose trajectory is unaffected by radiation
loss. The radiation rate is given by

dy _ Ywg .,
Qi ————”—wo sin¢ . (50)

The trajectory is a spiral with both the radius of
gyration and the pitch angle ¢ invariant. The com-
ponents of velocity are

v,(#)=v, cos(c—oﬂt) sing,,
Yo
. Wy .
v,(t) =v, sin - t) sing,, (51)
0

v4(¢) =v,cos9, .
The radiation spectrum is given by

dl e?w?

“ ___ ew 2 2
a0 31{20720)”2 SinquO [An (w)+A, (w)], (52)

A2 =(1+/0%°VK,,s (w/wg) (52a)
A2 =(1+'y2®2)702®2K1/3(w/we) s (52b)
wg =3(1+7%0%)73% 2w, sing,, (52¢)

where © is the colatitude angle between the ob-
serval and the instantaneous orbiting plane.
Polarization of the radiation is
K.
= Kanlw/er) (53)

’

fl:;% K, ,5(x)dx

where

3w, .
. =—2—” sing, .

Equation (52) and Eq. (53) are shown as the dashed
curves in Fig. 4 and Fig. 3, respectively. The ra-
diation from a system of particles N,(y) is given
by [N, (y)I(y, w)dy. If, as in most astrophysical
cases, the energy spectrum of the electrons can
be approximated over a limited energy range by a
power law,

Nc('}’) =Ne7’—ay Y < Vmax »

then the radiation spectrum is approximately

I(w)~w_(o‘_1)/2’ w<< ymaxzw[{

~ 2
07 w>>7’max wH

for @>3. And

I(w) ~ [1 _ (w/ymaxzwy)u/s—a)/z]wl/a ,
w<x ')’maxzwﬂ

(54)

- 2
0) w>> ¥ max wH

for a<3.

Equations (48)-(54) have been used exten-
sively in the literature.' However, one must be
aware that in deriving these formulas the elec-
tron’s energy was assumed constant. Itis entire-
ly possible that within the observation time the
electron’s energy has been reduced significantly
even though the energy loss within one revolution
is negligible (i.e., y’H/H,<1). Thus for practical
applications the conventional formulas for radia-
tion spectra are further limited by the condition
T/l‘l/z «< 1,101 gp

EH?T<3x107" GeVMG®sec, (55)

where T is the period of observation and ¢, , = w,/
yw,?® is the radiation half-life of the electron

For example, in a field H~1 MG (pulsar’s light
cone), the observation period must be shorter
than 10-° sec in order for Eq. (50) and Eq. (52) to
be applicable. The relevant formulas when T,/
¢,/ = 1 will be discussed below.

(T1) Region (2): v*H/H_> 1 and vH/H < 1.
(E®H>1.5%10°GeV?> MG and EH< 2.2X10* GeV MG).

Classical electrodynamics valid, stvong vadia-
tive damping. In this region the radiation reac-
tion force is stronger than the Lorentz force, and
the electron loses a major portion of its energy
within one revolution. The trajectory is a fast
shrinking spiral [Eq. (7)]. The radiation rate
[Eq. (5)] and the instantaneous radiation spectrum
[Eq. (A9)] deviate only slightly [to the order of
(yH/H,)?] from the conventional formulas. How-
ever, because of the rapid loss of energy, the ob-
served spectrum I, [Eq. (23)] differs significantly
from the conventional one whenever 7/t ,,2 1.
For y*H/H <1 (weak radiative damping), we have
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2
w
Iobs(w)Nwl/gy w<—'§0§1—2' =6XT™°H ~° MHz
Wy
-1/2 Wy Az 13
~w ™2, 3°T2<w<7 w,=Tx10"E?H MHz
Wy
~wl2e729B 02y YPwu<w (56)

with 7 in sec, H in MG, and E in GeV; i.e., over
a large range of frequency the spectrum varies as
w™2, For y’H/H,>1 (strong radiative damping),
the spectrum becomes
I (@)~ w3 w<wl/w, T?
~ 12 ,
w2/ w T2< w< wy/4m=1.5X10' MHz

1/3

~w3 ) w /A< w<YPwy

2 -2w/3y2 2
~ @l 22U 0R 020 < w (57)

i.e., a minimum appears at ~10'® MHz due to the
damping effect (Fig. 4).

The observed polarization also differs from the
conventional value due to the evolutionary effect
(Fig. 5).

H(w)=0.5, w<w?/w,T?
20.695, w/w, ] T?< w<4nw,
~0.5, 41w,<w<ylw,
"1’ 72('011<<w' (58)

In astrophysical applications one usually deals
with an ensemble of particles. Now that the emit-
ting electrons lose a substantial fraction of their
energy within a few revolutions, it is only mean-
ingful to consider radiation from a given injection
spectrum @(y, t) of particles instead of from an
equilibrium spectrum. The power emitted from a
region where electrons were injected isotropically
is given by

J(, 1) = f Qy, 1Ny, wdy , (59)

where ¢’ is the retarded time. We can classify the
time dependence of @ into two extreme cases, one
in which the electrons are injected in a burst, and
one where the injection rate is constant. The for-
mer represents situations where the duration of
injection is much shorter than the observation
time, and the latter represents a situation where
the injection rate hardly varies within the observa-
tion time. Let us consider a few representative
cases:

(a) Injection of a burst of monoenergetic elec-
trons @(y, t) =Q,5(y —¥,)5(¢ —¢,). The radiation
spectrum would be exactly that of the cumulative

spectrum [Eq. (23)] of a single electron with ener-
gY Yo-

(b) Injection of a burst of power-law distribu-
tion electrons

QUy, 1)=Quy ™0t =13), Y<Vmax- (60)

If, as is often the case in strong radiative damp-
ing, the electrons lose most of their energy dur-
ing observation, the single-particle spectrum may
be approximately expressed by

-1
I(y, w)~yw™?, w<yPw,

~0, w>rPw,. (61)
The total observed spectrum J(w) can be easily
evaluated from Eq. (59). For a>2
J)~w 2wy, fo,
~0, Wy Zw,. (62)
For a<2

J(w) ~ [1 - (w/'}’maxzwy)(z_a)/z]w-l/z y WK ')/maxzwy

~0, w»y,lw,. (63)

(c) Continuous injection of monogenergetic elec-
trons which stay in the emitting region for a finite
time 7,. In this case 7, must be introduced in
order to keep the total number of electrons in the
region finite. If T, is large compared with both
the observation time and the radiative life time of
the emitting electrons, the observed spectrum J(w)
is time-independent,

I(w) = f QUL (y, wdy

= [ N, Wy, (64)

where N(y) is the equilibrium distribution satis-
fying

L v | A2 - (65)

For Q(y)=Q,0(y —v,), the steady-state energy
spectrum of electrons is

W@y -
Ni)=—13ty Zexp(~wo/Yw S TL), Y<¥o
H

=0, y>v, (66)

and the total radiation spectrum varies as J(w)
~ w2 within the frequency range w,’/w T < w
<vy,’w,. Outside this range there is little radia-
tion.

(d) Continuous power-law injection @ =@,y ™.
In this case the steady-state spectrum for a>1
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N =TQy ™%,  ¥<wy/w/T

- ngg ~(o+1)
(a=1w,? , V> wy/w,iT (67)

and the radiation spectrum

J()~w @2 o< w?/w, T,

~wTalz, w>»> wl/w, T2, (68)
i.e., the spectrum steepens by a half power at w,
=6x10°T, 2H~* MHz.?**** For a< 1 we have

NOG)=TQy™", v<wy/w,T

. -
:zﬁ%ﬁ Y max (1—06)[1 -— ('Y/ymax)(l_d)]')/ 2 ,

wO/szTL < V< Y max (69)
and the radiation

J(w)~w (2 < w?/w, T,
(70)

~ ~1/2 2 3 2 2
J(@)~ 0™ 0l/w T <wo<yplo,

i.e., a break of more than a half power at w,.

In the above discussions we have neglected the
quantum corrections, which become significant
when Rq:yH/Hq—— 1. However, the fractional ener-
gy carried away by the synchrotron photon is ~R q/
(L+R)), if R /(1+R ) is not negligibly small. Then
the statistical fluctuations which are inherent in
the quantum transitions could be appreciable even
when the inequality yH/H <1 is fullfilled. We shall
discuss this effect in the next paragraph.

(III) Region (3): yH/H > 1 but ayH/H <1

(EH>2.2%10* GeVMG but EH<3Xx10° GeV MG).

In this region the energy carried away by the
synchrotron photons becomes comparable to the
energy of the emitting electron. Thus although the
electron itself is still a well-localized classical
particle, the radiation process must be calculated
quantum mechanically. Because ayH/H, <1, the
radiative corrections are small and the first-or-
der pertubation theory is valid in this region.

The radiation rate is given by Eq. (33), it is
smaller than the corresponding classical radia-
tion rate. The instantaneous radiation spectrum
is similar to the classical one at low frequency,
but cut off in the high frequency limit at w=2w,/
(1+R,). The inward spiraling of the particle orbit
is slower than that predicted by the classical for-
mula because the radiation rate is less. Here,
however, one must take the quantum fluctuation
into consideration. Instead of a smoothly shrinking
spiral, the electron moves like a Brownian particle
with successively smaller radius of curvature. As
for the radiation spectrum, if during observation
the electron makes a number of successive down-

ward transitions, the observed spectrum includes
photons emitted from all transitions. Because of
the inherent statistical nature of quantum transi-
tions, one cannot predetermine the subsequent
states of an electron undergoing cascade transi-
tions. Therefore in the calculation of the cumula-
tive spectrum, the effect of quantum broadening
must be included. A few examples have been
worked out numerically. (See Ref. 20.) For T,
>t ,,, the quantum mechanical cumulative spec-
trum has the same characteristics as the classi-
cal one except that (i) the quantum mechanical
spectrum breaks off at the frequency v, w,/(1+R,),
and (ii) the dip at v?w,/(1 +47R,) is flattened some-
what, because it is now possible that the first

few quantum transitions would only emit (relative-
ly) soft photons to leave the electron in an energy
level near the initial state, where classically the
electrons energy must be reduced to v,/(1 +4nR,)
after one revolution. Therefore, the over-all ra-
diation spectrum of a stream of mono-energetic
electrons injected into an emission region would be
~w'? with a cutoff aty’w,/(1+R,). In cases where
an equilibrium spectrum of electrons N(y) exists
and yH/Hq> 1 over the energy range of interest,
the radiation spectrum of N(y) is simply J(w)

= [1w/me2 N(y)dy, for now the instantaneous spec-
trum for a single electron is roughly constant up
to a maximum frequency w=ymc®/%. For a pow-
er law distribution N(y)~y~% one has

J(w)OC w-—o(+1’

where for a Maxwellian N(y)~e~Yme*/*T
J(w)oc e—hw/kT.

These spectra are similar to the ordinary brems-
strahlung spectra.

(IV) Region (4): ayH/H > 1

(EH>3x%10° GeV MG).

In this region the external field measured in the
electron’s rest frame becomes larger than the in-
trinsic self-field e?/7 2 (r,=¢?/mc?). The electro-
dynamic interaction becomes “strong” and the e?
expansion used in the first-order pertubation theo-
ry of quantum electrodynamics breaks down. Al-
though at present this region belongs to the never-
never land in laboratory physics, in certain astro-
physical cases (such as the pulsar magnetosphere),
the parameters are such that the effect of strong
radiation corrections must be considered. In or-
der to have a crude guide in astrophysical appli-
cation, a calculation aimed at an order of magni-
tude estimation on the various high-order terms
is now under way by White.2® It is of interest to
mention that the modification to the classical in-
stantaneous radiation rate is proportional to (RO/
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v¥ (Eq. 5). Since the effect of energy damping can-
not reflect on the instantaneous quantities, this
deviation must be due to the modification of the
radiation process caused by reaction forces, i.e.,
due to the “correction” part of the radiation reac-
tions. Note that since R,/y = ¢ aR,, the classical
results are consistent with the quantum electro-
dynamical results at least to the lowest order of
radiative corrections.

(V) Region (5): H/v*H,~1

(HE -2 ~1.8x10™ MGGeV™?).

Here the de Broglie wavelengths of the electron
become comparable to the Larmor radius, and the
energy levels (Landau level) characterizing the
perpendicular motion of the electron become dis-
tinctly discrete. The level spacing between two
levels is

mc®[(1+2NH/H )" = (1+2N,H/H )'/*].

If the energy of the particle is y< (1+2H/H )3,
then the particle will stay in the ground state and
stream along the field line emitting no synchro-
tron radiation. If the energy of the particle is
y>(1+2H/H )"?, then transitions between two
Landau levels give discrete spectral lines. Chiu
and Canuto had published a series of articles dis-
cussing the radiation mechanisms in this region.?®
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APPENDIX

The radiation emitted by an accelerated relativ-
istic charge is beamed into a narrow cone in the
direction of the velocity vector. A distant observ-
er located in the orbiting plane sees a short pulse
of radiation as the searchlight beam sweeps
across the observation point. The intensity distri-
bution of this pulse is related to the motion of the
particle at the instant of emission.

dl(w) e2?
aQ T 4rc?

oo > - 2
f AX @xF)eiet=n Toq | (A1)
The integration is over the retarded time of the
radiating particle.

For an electron deflected by a magnetic field,
the duration of the pulse at emission is ~w,™* [it
shortens to(y’w,)™" at observation due to the re-
tardation effect]. Thus we can expand v,, v,, and
7, from Eq. (7) in powers of 1/y,, Ry/v,, and

wut/veT

R
_E—YJ‘;—,S wH3t3> y

(A2)

R 1
1)1‘-‘1)0(1-;/—55 wﬂt——z-)? wft?

_, | wat  Ro 2 <_1__>:|
vz-vo[ 7 +2702 (wyt)*+0 o , (A3)

R 1 R
= -— e 2,2 70 343
7, vot<1 -42)/03 wyt 677 wy't 87, Wyt )
(A4)
Substituting into (A1), we have

. 3
Wt =B F/c) e 2 (x+3x° + @ +ax?),  (A5)
2 Wg
-> > > 1 -> . -
nx(nxﬁ)mz(eLvlsme—e” Vg)

caz | @nt &(wb,[)z}_»
~0Qe, |:Yo 3 - e, , (A8)

where x=w, (1 +7°0%)"%, wg=3(1+170%) "y w,,
© is the colatitude angle, &, and &, denote the two
polarization vectors, and a,x® and a,x* are the
two terms introduced by the radiation damping

R

0 =2 (L) (A7)
Yo

0 =1 (14757672 . (48)
4y,

The radiation spectrum becomes

it =ZQ;T“’:§ (4,7 +4,%) (A9)
where
Ay =Aj+AA,, (A10)
o 1+7°07
il WH“/

o

x[ xexp[ zg—w— (x+éx3+a1xz+a2x4)]dx,

Wo
(A11)
202)3/2
ad, =Ro L2707
2y YWy
® 2 . 3w 1,3 2 4
xf x exp[z—(x+§x +o,x +a2x)]dx,
o 2wg
(A12)
®(1+ @2 1/2
4,24 7O) 7
H

X [ exp[ z‘%‘—:—e(x+%x3+alx2+a2x“)] dx.

(A13)
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% and A, deviate from the unperturbed synchro-

tron spectrum by the terms @,x* and a,x* in the ex-

ponent. The term a,x* becomes comparable to
other terms in the exponent when x~ a, 3, but
then the argument x +3x3+a,x2 + a,x* ~y,® and the
integrand oscillates rapidly unless w < w,/y, which
is beyond the range of validity of the present anal-
ysis. Therefore a,x* can be neglected in the ex-
ponent. The term «,x% may be transformed away
by changing wgto wg /(1 - @,%)*?. To estimate the
contribution from AA;, we observed that the inte-
gral

« 3w
x? exp[ i— (x+%x3)} dx
f_m 2we

_zf x cos[—e(x+sx )]

(A14)

Thus, the over-all modification of the instanta-
neous spectrum by the radiation reaction effect is
to increase the critical frequency by a factor of
(1 = a®)~%? and to increase slightly the radiation in-
tensity polarized in the plane of the orbit. All
these corrections are of the order of R,/y,< 1.
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