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Front-back asymmetries of multiplicity distributions are shown to discriminate among

pictures of multiparticle reactions.

Considerable emphasis has been placed of late
on the study of multiplicity fluctuations in high-en-
ergy collisions.! Particular stress has been laid
on the fact that the energy dependence of moments
of multiplicity distributions can provide a means
of discriminating between the so-called “indepen-
dent emission” and “fragmentation” pictures. In
this note we call attention to a mode of data pre-
sentation which permits one to distinguish the al-
ternatives in a single experiment at one energy, in
which momenta of secondaries need not be mea-
sured if the experiment is performed with collid-
ing beams of equal energy.

The experiment we envisage consists of a mea-
surement of the cross section for production of ng
particles in the right hemisphere (forward in the
c.m. system) and #n, particles in the left hemi-

sphere (backward in the c.m. system), which cross

section we denote by 3 (n,,ng). For fixed total
multiplicity n =n; +ng, plot

P(nyng)=3 (ng,n—ng)/ Y (3n, 3n) (1)

as a function of #»;. In proton-proton collisions
this distribution is necessarily symmetric about

the point 7, = 37 since we may write
P(n;ny)=o(my)on—ng)/[o(zn)]? . (2)

Its behavior near the symmetry point is a sensitive
indicator of the shape of the multiplicity cross
sections o(n;) within each hemisphere.

In a fragmentation picture, with the possibility
of large multiplicity fluctuations within each hemi-
sphere, it is usual to assume o(n;)x< (n.)"? for
large n;. This leads to a distribution

Pfragmentation (n; nL) = (%n)‘l(nL)-z(n - nL)_2 (3)

which is minimal for #,=4n, as shown in Fig. 1.
Thus in a fragmentation picture, asymmetric
events, with unequal numbers of particles pro-
duced in the right and left hemispheres, are the
rule.

In a simple multiperipheral (or independent-
emission) model, the multiplicity cross sections
follow a Poisson distribution in the variable (37;),
i.e.,

o(ny) = (5(n))"L/2"V/(4n, - 1)1 .

This in turn leads to a distribution
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FIG. 1. The relative cross section P(z;n;) given by
Eq. (3) for a simple fragmentation model, for 20-parti-
cle events; asymmetric events are favored.

N [Gr =11
Pmultiperiphera.l (n’nL)— (%nL - 1) '[%(ﬂ _nL) - 1] 1’

(4)
illustrated in Fig. 2, which is maximal for ny=%n.
Hence in a multipevipheral model, symmetric
events arve favoved.

From definition (2) it is easy to show that if
o(n;) decreases faster (slower) than an exponential
for ny=3n the distribution P(r;n.) is maximal
(minimal) at the symmetry point. It is unfortunate-
1y true that present thinking along fragmentation
or multiperipheral® lines does not lead to precise
predictions for the shapes of the multiplicity dis-
tributions o(n;). The procedure we suggest should
therefore be more informative than the usual ex-
ercise of fitting data to specific but ill-motivated
formulas.

It is not impossible that nature allows particle
production both by independent-emission mecha-
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FIG. 2. The relative cross section P(n; n;) given by
Eq. (4) for a simple multiperipheral model, for 20-parti-
cle events; symmetric events are favored.

nisms and by fragmentation'processes. In this
eventuality, fitting o(r;) to particular expressions
may be even less enlightening than in the simple
situations for which we gave examples. The shape
of P(n;n;) will still reveal whether events of given
total multiplicity » are dominantly produced by one
mechanism or the other.?

We have suggested a technique for inferring the
character of multiple production processes from
the front-back asymmetry of multiplicity distribu-
tions. Data of the required kind are particularly
accessible at storage-ring facilities where right
and left hemispheres can be defined without re-
course to momentum measurements. In addition
to their implications for the fragmentation vs in-
dependent-emission issue, such data will test
directly the symmetry assumption underlying the
Castagnoli method* and thereby shed light on the
credibility of cosmic-ray results.
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