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Electron-positron annihilation leading to the production of a muon pair and a system of
hadrons is investigated in the Bjorken-Johnson-Low asymptotic limit. The equal-time com-
mutators are calculated from light-cone expansions and expressions for differential cross
sections obtained. Comparison with the work of Gross and Treiman is made.

e+p e+p, +p, +X, (1.2)

where the hadron system is denoted by X for short.
The process (1.1) involves iwo timelike photons
while in (1.2) the incident photon is spacelike and
the outgoing one is timelike. We shall limit our-
selves here to a discussion of processes (1.1).

To lowest order in electromagnetism, two types
of Feynman diagrams are relevant and these are
shown in Figs. 1 and 2. Figure 1 describes had-
ron production in states that are even under
charge conjugation while Fig. 2 corresponds to the
production of states that are odd under charge con-
jugation. There is no interference between the
contributions arising from these two sets to the
inclusive cross section and following Gross and
Treiman we restrict our attention to processes of
the type shown in Fig. 1.

The Bjorken-Johnson-Low' (BJL) asymptotic
limit for the process (1.1) is accessible physically
and in fact one is probing a new kinematical re-
gion for these types of processes. For the egual-
time commutators (ETC) that arise in the BJL
expansion Gross and Treiman' use the quark-gluon

In a recent article Gross and Treiman' proposed
new experiments that probe further the properties
of products and commutators of electromagnetic
(e.m. ) currents near the light cone. Specifically
they consider the process

e'+e - p.'+p. +X,+X,+ ~ ~ ~

where (Xj is any system of hadrons, and the pro-
cess

model. On the other hand, operator-product ex-
pansions for short' or lightlike distances have
been offered on rather general grounds. These
expansions of course determine the ETC's. ' In
this note we treat the process (1.1) with the ETC's
calculated from the general framework provided
by light-cone expansions. The latter have proved
valuable in understanding scaling behavior, and
since the ETC's that involve time derivatives of
current components or that involve space compo-
nents are necessarily model-dependent, it seemed
to us desirable to extract the properties of these
objects, in particular the Schwinger terms, from
the light-cone expansions. In this way direct con-
tact between ETC's and the bilocal operators that
characterize light-cone expansions is made.

Let l„ l be the momenta of the incident elec-
tron and positron pair, k, k be those of the out-
going p.

' and p. , respectively, and let P be the
momentum of the hadron system. Define

l =l, + l, k=k, +k

Q = —,'(l+ k),

and note that P = E —k. The graph of Fig. 1 in-
volves the amplitude

M» =i d'xe'@ " X T* Jp &x J„-—,'x 0

(1.4)

with J „being the e.m. current. The BJL limit is
Qo-~ with Q and all hadron momenta held fixed.
In the c.m. frame of the incident electron-posi-
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FIG. 1. The process (1.1) with final states even under
charge conjugation.

tron pair we have

l, =(z, f), I =(z, -f),
and we write P=(P„p). As Q, =2E —,'P, in th—is

frame, the BJL limit is achieved by E- ~ with

FIG. 2. The process (1.1) with final states odd under
charge conjugation.

Q = --,'p fixed.
Following Brandt and Preparata4 we write the

following expression for the commutator of two
e.m. currents at unequal times:

[J„(x),J„(0)]=" (B„s, g~„—) V (x)RO(x, 0)+(g„„s„sq —g„„888„g„„-s88„+~g„„gq„Cl) V (x)R", 8(x, 0)

+ e &„„88 V, (x)R,(x, 0) .

The symbol =" denotes equality in the vicinity of
the light cone. The singular functions Vo(x), V,(x),
and V, (x) are given by

V,(x) = V, (x) = 2wie(x, )5(x'),

V,(x) =2wic(x, )8(x') .

(1 8)

(1.7)

The bilocal operators appearing in Eq. (1.5) have
the general form

R,(x, 0) = P x"1 "x" R, „.. . „(0),
n=0

(1.8)

R", '(x, 0) = g x "~ " x "~R . . . . „(0), (1.&)
n=0

R,(x, 0) = g x"| x"~R, ~. . . ~ (0) .
n=0

(1.10)

Here R, . . . „(0), R", „.. . „(0), R, „.. . „(0)
are higher-rank local tensor operators. For the
case p, = i (i = 1, 2, 3}and v = 0 the expansions (l.5)
and (1.8)—(1.10) determine the ETC as follows':

rent. Given the structure of ETC's a general pro-
cedure for this construction was given by Gross
and Jackiw. ' With the notation T*(J„(x)J„(0)}
=—T~»(x, 0), etc. one writes

T„*„(x,0) = T„„(x,0; n) + C „„(x,0; n), (1.12)

The T*product so constructed satisfies the gauge-
invariance condition

where n is a unit timelike vector. The appearance
of n in the T product T„„(x,0;n) is indicative of its
noncovariance or frame dependence. C&„(x,0; n)
is the so-called seagull term which depends on n
in such a manner that when summed with the n-
dependent T product yields a covariant (n-inde-
pendent) T* product. In the case at hand the
Schwinger term appears solely in the ETC (1.11)
and one finds the following expression for the sea-
gull term:

C„„(x,0; n) =4m'iRO(0)(n„n„-g»)5'(x) . (1.13)

[J,(x, 0), J,(0)]= 4s'iRO(0) s,.5'(x) . 8 "T„*„(x,0) =0. (1.14)

Thus the Schwinger term is proportional to the
local scalar operator R,(0}of lowest dimension
that occurs in the expansion of the bilocal oper-
ator R,(x, 0) given in Eq. (1.8).

We now turn to the construction of the covariant
or T* product of two components of the e.m. cur-

In particular with a specific choice for the unit
vector n one can write

T*(J~(x)J.(0))= T(J„(x)J,(0))

+ 4m'i(g„og„o g„„)RO(0)5'(x). -
(1.15)
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Having determined the 7*product we can now

envisage the limit Qo-~, with Q and all hadron
momenta held fixed, of the covariant amplitude

MPV ~

The limiting behavior is given by the BJL expan-
sion as

M„„=4m'(g&„-g& g, )(XlR (0) j 0) —— d xe 'O' "(Xj[J&(2x),J„(-2x)]j0&,
0

+, d'xe ' ' "(xl{[soJq(—,'x), J„(-—,'x)] —[J„(2x),soJ, (-~x)]] lo), =0+
0

0 P ~ P V 2 P ~ 1 0 V ~ X0—0 (1.16)

(x(P)jR,(x, o)lo&=y (x P)+o(x'),

we then see that

M„4n'g, -, yx(0) .

(1.18)

(1.19)

The differential cross section do in the limit s- has the following form:

e' p'
do ~ 16, l Qx(0)j'(1+cos'8) —dpdQ, (1.20)16 0

where 6 is the angle between p and the momentum
vector of the positron. A measurement of this
cross section then entails a measurement of the
off-diagonal matrix element of Ro(x, 0), albeit only
at zero argument, between one scalar particle
state and the vacuum.

Next we consider the case when X=n . Here the
matrix element (voj Rol 0& vanishes and the ampli-
tude M&& is determined by the second term in the
BJL expansion (1.16) which involves the ETC
[J,(x, 0), J&(0)]. Defining now

(r'(P) l R, (x, 0) l 0 &
=P y (x P) + 0(x ), (1.21)

we readily compute the ETC from Eqs. (1.5) and
(1.8)-(1.10) as'

(~o(P) j [J,.(x, 0),J,(O)]j0&=-4v'ge), qP X(0)5 (x).

(1.22)

The function y(0) is proportional to the matrix el-
ement of the first operator, Rs(0), in the expan-

The first term in the expansion, which arises
from the seagull term, if nonvanishing then con-
trols the asymptotic behavior.

We now turn to a discussion of specific final-
state products of the reaction (1.1). First con-
sider the production of a single scalar particle
[e.g. , e(750)]. Working in the c.m. frame of the
incident lepton pair we find the leading behavior

M„-4n'g, ~(X j Ro(0) j 0),
where only p. =i and v=j enter since the e.m. cur-
rent is conserved. If we write for the matrix el-
ement of the bilocal operator Ro(x, 0) between the
scalar particle state X and the vacuum the follow-
ing form,

E~ E2
(1.24)

We thus see that the differential cross section for
the 2n channel behaves like s ' as s- ~ in con-
trast to the behavior of s ' found by Gross and
Treiman.

We now discuss the situation when the leading
light-cone singularity is absent. Namely, suppose
that the singularity that appears before the covar-
iant (s„s„-g„, ) in Eg. (1.5) is absent. Then the
Schwinger term will also be absent and the asymp-
totic behavior of M„„as Qo-~ is governed(solely
by equal-time commutators. To discuss this case
assuming canonical dimensionality' it follows that

sion of R,(x, 0). The differential cross section is
then given by an equation like (1.20) with l Qx(0) l'
replaced by j y(0) l' and s ' by s '. The vertex
F -y-y has been considered earlier in Refs. 8 and
9. The authors of Ref. 9 propose to identify the
operator R, (0) with the third component of the iso-
topic axial-vector current. This identification is
suggested by the gluon model which provides the
starting point for Qross and Treiman. ' If one is
willing to make this identification then our con-
siderations for this case will coincide with those
of Ref. i.. However, it is clear from our discus-
sion that a measurement of the differential cross
section for e'+e -p.'+p. +m' entails a measure-
ment of the matrix element of the bilocal operator
R,(x, 0), at zero argument, between the one-pion
state and the vacuum.

We now turn our attention to the case of two-
pion production. Here the leading contribution
comes from the first term in the BJL expansion.
Defining

(~(P,), v(P, ) j R,(x, o) l o)
= y„(x P„x.P„P ')+O(x2), (1.28)

where we have made explicit the dependence of
the matrix element on the invariant mass P' of the
dipion, we readily obtain for the cross section
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the next-to-leading singularity in the light-cone
expansion is proportional to ln(-x'+ icxo) so that
it manifests itself in the unequal-time commuta-
tor (1.5) as the additional term

(1.30)

e4
do-,( (A ~

'(1+cos'8) —(AB*+BA*)p'

B=16m'ig, (0) .
The differential cross section now reads

(s „s„-g„„)V, (x)H(x, 0), (1.25)

+ O(x'),

we obtain for the relevant ETC

(1.27)

(X(P) ~ [B,Z,.(x, 0), J&(0)]~ 0) = (Ag„+BP,.P&)5'(x),

(1.28)

with

where V,(x) is given by Eq. (1.7). This term
arises both from the nonleading contributions of
the original operator satisfying dimR„, . . . „=n+2
and from leading contributions of an additional op-
erator satisfying dimR „.. . = n+ 4. We have
denoted the sum of these operators by H(x, 0).

Let us work out the cross sections in this case.
Firstly when X is a single scalar hadron the first
nonvanishing contribution comes from the third
term in the BJL expansion which involves one time
derivative of the e.m. current. Defining the func-
tion h(x ~ P) by

(X(P) iH(x, 0)i 0) =h(x P)+O(x'), (1.26)

and the functions g, (x ~ P) and g, (x ~ P) by

(X(P)~R", s'(x, 0)~0) =g"~g,(x P)+P"P g, (x ~ P)

+ (B)'(1-cos'e)'p') P'dPdQ

(1.31)

(n(P, ), w(P, ) iR", '(x, 0) i 0)

=f,(x P„x P„P')g"8+f,(x P»x P„P')p"Ps

+f,(x P„x P„P')S"~'

+f,(x P„x P„P')(P"& +A"P )+O(x'),
(1.32)

where 4 =P, -P,. We also define the function

a, (x p„x p„p'):
(m(p, ), w(p, ) ~H(x, 0) ~0}=k, (x P„x P„P')

+ O(x') . (1.33)

i.e., it behaves like s as s-~. For the single-
pion channel the second term in Eg. (1.16) con-
tinues to provide the leading contribution and der

is the same as before. Finally we come to the 2z
channel. Again the first nonvanishing contribution
comes from the third term in Eg. (1.16). We de-
fine the scalar functions f,(x.P„x~ P„P'), a
=1, . . . , 4, by

A = 16m'i[ —h(0)+ 2g, (0}+Pa'g2(0)], (1.29) We then compute the ETC between the vacuum and
the two-pion state and find'

(m(P~), m(P2) ( [soJ)(x, 0) 4((0)] ~ 0) = 16m'i([2f (0, 0, P') +f (0, 0, P')Po'+ f~(0, 0, P')6 'O
+ 2f~(0, 0, P')Po&o —h, (0, 0, P )]g,.) +f,(0, 0, P')P, pg

+f,(0, 0, P')h, b, ) +f,(0, 0, P'}(P,b J + b,pq)]6'(x) . (1.34)

Qne can compute the differential cross section but
we shall not pause to do so here. We merely note
that as in the scalar channel case the cross sec-
tion for the two-pion channel behaves like s ' as
S~

In conclusion we have seen how measurements
of cross sections for the processes (1.1) involve
off-diagonal matrix elements, at zero argument,
of the bilocal operators that characterize the light-
cone expansion. In the absence of the leading sin-
gularity that appears before the covariant
(s„s„-g„,O), specification of the ETC [&,J,, J&]
by the contribution of the term proportional to R",

alone is incomplete and one has to specify the
form of the nonleading singularity because it gives
rise to a nonvanishing contribution as we have

seen. Finally in electroproduction the situation,
E~(&u) = 0 if exactly true would imply the absence
of the most leading singularity, if one discards the
circumstance that the matrix element of each of
the operators Ro, . . .„(0)vanishes between spin-
averaged proton states. This then would entail
the vanishing of q-number Schwinger terms. We
have proposed here two further tests for the q-
number nature of the Schwinger term, namely the
high-energy behavior of the cross sections in Eqs.
(1.20} and (1.24) for scalar and 2n production, re-
spectively. These questions will be settled both by
more precise data on electroproduction and by
possible future measurements of these cross sec-
tions.
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Front-back asymmetries of multiplicity distributions are shown to discriminate among
pictures of multiparticle reactions.

Considerable emphasis has been placed of late
on the study of multiplicity fluctuations in high-en-
ergy collisions. ' Particular stress has been laid
on the fact that the energy dependence of moments
of multiplicity distributions can provide a means
of discriminating between the so-called "indepen-
dent emission" and "fragmentation" pictures. In
this note we call attention to a mode of data pre-
sentation which permits one to distinguish the al-
ternatives in a single experiment at one energy, in
which momenta of secondaries need not be mea-
sured if the experiment is performed with collid-
ing beams of equal energy.

The experiment we envisage consists of a mea-
surement of the cross section for production of n~
particles in the right hemisphere (forward in the
c.m. system) and nl particles in the left hemi-
sphere (backward in the c.m. system), which cross
section we denote by Q(nz, nz). For fixed total
multiplicity n =nI +n~, plot

P(n; n~) = P (n~, n —n~)/Q (~ n, 2n)

as a function of nl, . In proton-proton collisions
this distribution is necessarily symmetric about

the point nl. =-,'n since we may write

P(n;nz, ) =cr(nz)o(n -n~)/[g( —,'n)]' .
Its behavior near the symmetry point is a sensitive
indicator of the shape of the multiplicity cross
sections o(n~) within each hemisphere.

In a fragmentation picture, with the possibility
of large multiplicity fluctuations within each hemi-
sphere, it is usual to assume a(n~) ~ (n~)

' for
large n~. This leads to a distribution

P„„,„„„,„(n;n~) = (-,'n)'(n~. ) '(n -nl, ) '

which is minimal for nl = —,n, as shown in Fig. 1.
Thus in a fragmentation Picture, asymmetric
events, with unequal numbers of particles pro-
duced in the right and left hemispheres, are the
rule.

In a simple multiperipheral (or independent-
emission) model, the multiplicity cross sections
follow a Poisson distribution in the variable (-,n~),
1.e. ,

&(&z,) =(a(&))'"' ' '/(2us —I) t

This in turn leads to a distribution


