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Using backward zN dispersion relations (BDR) and sum rules derived from BDR we obtain
the spin-flip f NN and a combination of the flip and nonflip gNN coupling constants, and fit
certain backward xN data. Our results have implications in the one-boson-exchange theory
of the nucleon-nucleon force and in theories of elementary particles which assume universal
coupling to the stress tensor.

I. INTRODUCTION

We have used sum rules ' derived from backward
dispersion relations (BDR) ' in conjunction with
some recent mN phase-shift analyses to determine
the spin-flip f NN and a combination of the flip
and nonf lip gNN coupling constants. With these
coupling constants we then use BDR to fit the B'
and A nN amplitudes. After completion of this
research we became aware of earlier work by
Engels, ' who, using similar methods, obtained re-

suits very much like ours for the f' meson and the
B' amplitude. Nevertheless, we display our re-
sults for completeness, in addition to our new re-
sults on the g meson and the A amplitude. The
strength with which the f'(1260) meson couples to
the nucleon is of current interest to a variety of
physicists. For example, it is relevant both to
those involved with one-boson-exchange models of
the nucleon-nucleon force and those interested in
single-particle saturation of the stress tensor.
We comment upon these topics later.

II. FORMALISM

Assuming Mandelstam analyticity, one of us ' has derived the following set of unsubtracted dispersiori
relations describing elastic 1TN scattering at backward angle (cos8 = -1):
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where r =M'- p2 and Z =2M2+2p2. E(s) represents the invariant amplitudes A (s, cos8=-1) or
B'(s, cos8 = -1). The pole terms occur only for B' and are given by
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On the right-hand side of Eq. (1), the first and second integrals are the contributions from direct- and
crossed-channel wN scattering, the third integral is the contribution of the NN mm channel above threshold,
and the last integral is the contribution to ReE(s) of the absorptive part of the NN- 1/1/ process below NN
threshold. (E, can be shown to be pure imaginary. ') The value of t at which F, is evaluated is given in
terms of the angle y by the relation t =Z -22'coscp. ' Noting that (s, cos8, = -1) corresponds to (u =r2/s,
cos8„=-1) and using the usual crossing relations for the amplitudes A, B' leads to the conditions '

A (+r, -1)=0, B'(+2, -1)=0,

which in turn give the nontrivial sum rules ' for the backward amplitudes

(fr 4M2)1/2(it 4+2)1/2 +
&

P t 4'P
0

(4)

M2 2 s t tt 2 (it 4M2)1/2 (it 4 ~2)1/2 tt

2704



DETERMINATION OF f NN AND gNN COUPLING CONSTANTS

III. B+ SUM RULE AND DISPERSION RELATION

We have evaluated the B' sum rule, Eq. (5), tak-
ing G'/4v = 14.8 and obtaining ImB'(s', -1) from
either the CERN Theoretical' or Glasgow solution
A" phase shifts for ~s' s 2.0 GeV. For ~s' z 2
GeV we use ImB'(s', -1) obtained from a Regge-
pole fit to backward n'p scattering. '

The annihilation contribution [second integral in
Eq. (5)] is very small. There seems to be no res-
onantI =0 activity in pp-m'w scattering for c.m.
energies between 1.9 and 2.6 GeV. ' We have in-
cluded a Regge contribution for NN-mn obtained
by line reversal from the nN- nN Regge fit, ' but
this contribution is very small due to the much
more prominent role played by the nonsense zero
at n=-—,

' in backward NN-wn than in nN-nN.
(This can be seen by comparing the Regge s and
Regge t contributions to ReB' in Table I.) Since
the 0 and other spin-zero resonances do not con-
tribute to the B' amplitude, and there are no other
I~ =O', J) 2 resonances below NN threshold with
sizable coupling to mm,

' we believe it to be a fairly
good approximation to saturate the last integral in
Eq. (5) with the fo(1260). Using a narrow-reso-
nance approximation for the f', we finally arrive

at the result'

(yy()'„„)'/4w = 61.0 + 14

or

yy"~„= 27.8 + 3.0.
(6)

The coupling constant yz,'„'„is defined through the
covariant vertex function

&&~(P|)~" (P2 P»)»

where e~" is the symmetric f' wave function,
I» -=—,'

(P, + p, ), and M =nucleon mass. Engels ' ob-
tains y&((')z)& = 25.8 a 3.0.

The uncertainty in our answer arises mainly
from uncertainty in the width of the f' The i.nte-
gral in the B' sum rule is dominated by the (2, 2)
resonance whose contribution to ImB' is very well
determined by the phase-shift analyses. It is ex-
tremely unlikely that uncertainties in the other
phase shifts and in the high-energy Regge c'ontri-
bution can significantly alter the value. We base
this opinion on the fact that we have used two sets

TABLE I. For several values of W we display the various contributions to ReB+(th) and compare with ReB+(exp) ob-
tained from CERN Th. phase shifts. Below 1.2 GeV the results become very sensitive to minor effects like small
changes in the Q 33 pha se shift (&3%) and 71 x and n -p mass differences . "Direct" is the contribution from the first in-
tegral in Eq. (1) and "Crossed" is that of the second integral, in both cases for vs'(2. 2 GeV. "Regge-s" and "Regge-t"
are the high-energy Regge contributions in the s and t channels, respectively. "Pole" is the nucleon pole contribution,
and "f pole" is the t -channel contribution assuming saturation by the f meson.

W (GeV) Pole Direct Regge-s Crossed f pole Regge-t &+ (th) B+ (exp)

1.099
1.110
1.127
1.160
1.186
1.202
1.221
1.24Q

1.253
1.275
1,32Q
1.362
1.416
1.470
1.501
1.524

1.572
1.617
1.644
1.672
1.697
1.716
1.769

-1057.7
-987.7
-895.1
—754.7
—669.8
-625.7
-579.8
-539.5
—514.8
-477.2
-413.8
-366.8
-318.6
-280.3
—261.7
-249.2
—226.2
-207.7
-197.7
—188.2
-180.4
-174.8
—160.5

-563.5
-638.4
-727,5
—883.4
-797.1
-528.1

11.2
503.5

678.1
759.0
638.1
490.2
307.8
220.0
234.8
265.8

304.3
261.6
201.4
130.6
65.9
25,9

—50.2

—5.7
-5.7
—5.7
—5.7
—5.8
-5.9
—5.9
—6.0
—6.0
-6.1
—6,2
—6.3
—6.5
-6.7
—6.8
—6.9

701
7 y3

—7.5
—7.6
—7.8
—7.9
—8.3

61.5
59.4
56.5
51.4
47.9
45.9
43.8
41.8

40.5
38.5
34.8
31.9
28.7
26.0
24.7
23.7

21.9
20.4
19,6
18.8
18.1
17.7
16.4

-78.2
-75.7

72 Q 1
—65.4
-60.6
-57.8
-54.6
—51.5
—49.6
-46.4
-40.4
—35.6
-30.2
-25.6

23 y3

21Q 7

—18.7
—16.3
—15.0
-13.8
-12.8
-12,0
—1Q.2

0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45

0.45
0.45
0.45
0.45
0.45
0.45
0.45
0.45

0.45
0.45
0.45
0.45
0.45
0.45
0.44

-1644.0
-1648.6
—1644.4
-1658.4
-1485.9
-1172.0
-585.8
-52.2

+147.8
+267.5
+212,1
+113.0
-19.1
-67.0
—32.8
+11 3

+73.8
+50.3
+0.4

—60.6
117,3

-151.6
2 13y3

-1687.1
-1607.5
-1686.5
—1702.2
-1513.9
-1186.9
-585.2
—75.9

+129.9
+267.4
+205.4
+115.3
-44.7
—87.1
—3Q.1
-8.0

+56.5
+35.3
—9.5

-66.9
—118.8
-153.4
—205.2
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TABI,E II. Relative contributions of different partial waves to the s integral in the B"and A. sum rules for CERN Th.
and Glasgow A phase-shift analyses. The upper limit of integration is 2200 MeV for CERN and 1960 MeV for Glasgow.

Partial wave

Ssg

Pss
+sf
&~s

Dss
Dss
Dg~

D1s

Esz
+s5

Gse

Gsz

Gge

Ggz
High-energy Regge
(vs' &2200 MeV)

Total

B (CERN)
(GeV-')

0.095
0.044

-7.643
0.580

-0.126
0.848
0.345

-0.578
0.532

-0.942

-0.912
0.532

-Q.154
1.126
0.056

-0.111
0.077

-0.213

-0.496

-6.940

B' (Glasgow)
(GeV-')

0.081
0.038

-7.643
0.420

-0.095
0.819
0.195

-0.471
0,462

-0.889

—0.871
0.345

-0.018
1.070
0.003

-0.000
0.005

—0.277

-0.496

7y32 2

A (CERN)
(Gev ')

-Q.125
0.116

-0.708
0.210
0.002

-0.488
0.043

-0.199
-0.147

0.549

—0.163
0.199
0.054

-0.715
0.012

-0.046
-0.032

0.167

-0.177

-1.448

A- (Glasgow)
(GeV ')

-0.104
0.098

—0.713
0.127
0.007

—0.46Q

0.027
-0.151
-0.133

0.481

—0.156
0.121
0.006

-0.659
0.001

-0.000
-0.002

0.182

-0.177

-1.505

of phase shifts (CERN Th. and Glasgow A) which
differ considerably above the (3, 3) region but still
give essentially the same result for y~",„'„[asseen
by the error bars in Eq. (9)]. The contributions
from individual partial waves other than the (3, ',3)
are not negligible —they are, however, of roughly
the same magnitude (S-,' of the P» contribution)
and alternate in sign, effectively canceling (see
Table II).

Knowing the f' pole strength, we can now use the
BDR [Eq. (I)] to determine ReB' in the physical re-
gion, and have compared the output result ReB'
(th) with ReB'(exp) (i.e., with ReB' as determined
by phase-shift analysis). The results of using the
CERN Th. phase shifts are shown in Fig. i. The
agreement between input and output is quite re-
markable in view of the large cancellations which
take place in order to give the final values of ReB'
(see Table I). The agreement between ReB' (th)
and ReB'(exp) does depend rather sensitively on
the input nN phase shifts, and leads to a poor de-
termination of y&0~„.

' The fit with the Glasgow A
phase (not shown) is not as good.

To sum up, the f'NN coupling constant is rather
rigidly determined from the B' sum rule. From
an examination of Table I it is seen that although
the f contributes non-negligibly in providing a
close fit to the data, it is improbable that such a
fit without the sum rule would provide as reliable
a determination of y&0„'„.

400

300-

200-

100-

& —100-
C9

g)
—200-

-300-

-400-

-500 I I

1.2 12
I I I

1.4 1.5 1.6
{Gev)

I

1.7 1.8

FIG. 1. ReB+ (th) calculated via dispersion relations
(solid curve) compared with ReB+ (exp) determined by
the CERN Th. phase-shift analysis (dashed curve).

IV. APPLICATIONS

(a) In the one-boson-exchange model of the nu-
cleon-nucleon interaction, the f'-meson exchange
(which is attractive in the S states) is normally
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omitted, while a relatively large ~-exchange con-
tribution provides the required hard core in the S
waves (the 'S, phase shift is particularly sensitive
to this effect). Ueda" has recently found that a
value of (yap»'»)'/4v as large as 10 would not ap-
preciably affect the ~-produced hard core." With
our value of y~p»'», f' exchange in the Born approx-
imation is opposite in sign to and roughly twice
the magnitude of ~ exchange in the S states. If not
cut off rather drastically, it could considerably
soften the ~-produced hard core.

(b) There have been several determinations"
of y&o„'„ through the use of meson dominance of the
stress tensor e„„(x). These invariably yield val-
ues of y&0„'„-5-10, a factor of 3 to 6 smaller than
our value of -28 [Eq. (6)]. Another determination
involving a theory of scale breaking" yields a val-
ue of yf pp'N+ yf N'„9, again small compared to
ours (unless yz",»'» is sizable and negative).

y...y,» (m, ' -4u') y.»»y.../~~4' 40 4~ 1&4m

1 I'" ImA (s', -l)ds'
24~ "(N+p) 2 S

(10)

In Eq. (10) the p-meson contribution is 2.265.
The breakdown of contributions to the s' integral

is given in Table II. From Eq. (10) we thus obtain

y--y.» ' ' ~ ' =0.8O~0.05 GeV-'.
4~m 40

The coupling y~„, can be obtained from the g mw

decay rate through the formula '6

with I',+„-=150+ 50 MeV and m~ =1660+20 MeV.
Combining Eqs. (11)and (12) we fi'nally have the
result

V. A SUM RULE AND DISPERSION RELATION y»»'/4m =2.3 +0.8. (13)

The physics of the A sum rule [Eq. (4)] differs
in several ways from that of the I3' sum rule.
(i) There is neither a nucleon pole term nor does
the (3, 3) dominate to anywhere near the extent
that it did in the B' sum rule. Thus the higher
phase shifts play a more significant role in the
evaluation of the first integral in Eq. (4). (ii) There
are at least two resonances with I~ =1' present in
the mm-NN channel below NN threshold: the p(765)
(J'~ =1 ) and the g(1660) (J'~ =3 preferred).
(iii) There is some evidence for weak resonant
activity in the I =1 component of pp- v'm scatter-
ing. e However, the Regge parametrization for this
process obtained by line reversal from mN-mN
seems to provide an adequate interpolation to the
data. ' In the spirit of duality, we have included a
Regge contribution in our calculations, but have
omitted any higher resonances to prevent double
counting. We define covariant vertices for the g:

Most of the probable error is due to the uncertainty
in y, „„.The main observation to be made at this
point is that the p definitely does not saturate the
A sum rule. "

Proceeding as in the B'case, we use the BDR
[Eq. (2)] and our coupling constant [Eq. (13)] to
calculate Red (th) at various energies and com-
pare with ReA (exp). The various contributions
(using the CERN Th. phase shifts) are given in

160-

120-

80-

40

y(r) (2)

(P,)*, ',"r„P„Pz+ ', "P„P„Py)

x.(p, ) "'"(p.-p, ),

&...=f~...r...Q„Q.Q~~"'"(e, —e,),

(8)

0
C9

-80

where

&=-'(p, + p, ), Q =2(e, + e.).
—160-

I

1.6
I

1.7 1.8
Then if we adopt p universality" [y»'=yz„'
= (2.3)(4m)] the sum rule gives a value for the linear
combination'~ y» ——y"»» —(1 -m '/4M2)y+»». We
obtain the following sum rule:

FIG. 2. ReA (th) calculated via dispersion relations
(solid curve) compared with Bed {exp) determined by
the CERN Th. phase-shift analysis (dashed curve).
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TABLE III. For several vaIues of W wb display the various contributions to ReA (th), and compare with ReA {exp)
obtained from CERN Th. phase shifts. The columns are labeled as in Table I, except that here we saturate the t chan-
nel with a p meson and a g meson. These contributions are labeled p and g.

8" (GeV) Direct Regge-s Crossed Regge-t A. (th) A. (exp)

1.099
1.110
1.127
1.160
1.186
1.202
1.221
1.240

1.253
1.275
1.320
1.362
1.416
1.470
1.501
1.524

1.572
1.617
1.644
1.672
1.697
1.716
1.769

-68.9
—76.3
—85.8

—104.1
-100.1

77+3
-28.0
+18.0

+33.9
+37.6
+23,2
+15.3
+30.5
+28.3
—06

—28.1

-69.2
-62.7
-34.6
-0 2

32.1
48.9
71.1

-2.0
-2.0
—2.0
-2.0
-2.0
-2,0
—2.0
-2.1

2 Q1
-2.1
—2.1

2 Q2

2 +2

2 y3

2 +3

-2.4
-2.4
-2.5
—2.6
-2.6

2 y7

2 Q 7
-2.9

8.7
8.4
8.1
7.4
6.9
6.6
6.4
6.1

5.9
5.6
5.1
4.7
4.3
3.9
3.7
3.6
3.3
3.1
3.0
2.8
2.7
2.7
2.5

+0.6
-0.5

2 y1

-4.7
-6.4

702
-8.1
-8.9
—9.3

-10.0
—10.9
—11.4
-11.7

11 Q 7
—11.6
-11.5

11 3
-11.0
—10.8
-10.6
-10.4
-10.2
-9.8

-8.1
-8.0
-7.8
—7.4

7 y2

-7 0
—6.8
—6.6
—6.5
—6.3
-5.9
-5 6
-5.2
-4.9
—4.7
-4.6
-4.3
-4.1
—3.9
—3.8

3y7

-3.6
-3.4

-0.15
-0.15
-0.16
-0.16
-0.16
-0.16
—0.16
—0.16

-0.16
—0.16
—0.16
—0.16
-0.16
-0.16
-0.16
-0.16

-0.15
-0.15
—0.15
—0.15
-0.15
-0.15
—0.15

—69.7
-78.4
—89.8

—111.0
-108.9
—87.0
—38.7

+6.4

+21.7
+24.7
+9.2
+0.7

+15.5
+13.2
-15.7
—43.2
—84.0

77 y3
—49.1
—14.5
+17.9
+34.8
+57.3

—91.9
-89.5

—108.4
—136.5
-132.0
-109,9
-65.2
-17.1
-0.8

4.6
-13.9

17 Q3

-3.5
-4.2

-42.4
-57.4
-99.6
-89.2
-63.0
-26.6

+2.6
+21.4
+46.4

Table III, and a graph of the result is shown in
Fig. 2. The result is a bit perplexing. The fit
would be excellent if the curves were not displaced
by a constant amount along the ordinate (Glasgow
A does give better results in the higher-energy
region). The displacement is quite large, and all
explanations of this result that we can imagine are
nontrivial. For example, one possibility is that
the phase-shift analyses are incorrect at higher

energies. The discrepancy cannot be explained by
the presence in the t channel of a few isolated high-
energy resonances or by a constant background;
if the strength of these contributions to A, were
large enough to provide a fit to ReA (exp), the A
sum rule would be grossly violated. We see that
the sum rule provides an important constraint on
theoretical ideas.
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Muon Pair Production in Electron-Positron Annihilation
and the Bjorken-Johnson-Low Limit

M. A. Ahmed
Physics Department, University of Ehartoum, Khartoum, Sudan

(Received 6 March 1972)

Electron-positron annihilation leading to the production of a muon pair and a system of
hadrons is investigated in the Bjorken-Johnson-Low asymptotic limit. The equal-time com-
mutators are calculated from light-cone expansions and expressions for differential cross
sections obtained. Comparison with the work of Gross and Treiman is made.

e+p e+p, +p, +X, (1.2)

where the hadron system is denoted by X for short.
The process (1.1) involves iwo timelike photons
while in (1.2) the incident photon is spacelike and
the outgoing one is timelike. We shall limit our-
selves here to a discussion of processes (1.1).

To lowest order in electromagnetism, two types
of Feynman diagrams are relevant and these are
shown in Figs. 1 and 2. Figure 1 describes had-
ron production in states that are even under
charge conjugation while Fig. 2 corresponds to the
production of states that are odd under charge con-
jugation. There is no interference between the
contributions arising from these two sets to the
inclusive cross section and following Gross and
Treiman we restrict our attention to processes of
the type shown in Fig. 1.

The Bjorken-Johnson-Low' (BJL) asymptotic
limit for the process (1.1) is accessible physically
and in fact one is probing a new kinematical re-
gion for these types of processes. For the egual-
time commutators (ETC) that arise in the BJL
expansion Gross and Treiman' use the quark-gluon

In a recent article Gross and Treiman' proposed
new experiments that probe further the properties
of products and commutators of electromagnetic
(e.m. ) currents near the light cone. Specifically
they consider the process

e'+e - p.'+p. +X,+X,+ ~ ~ ~

where (Xj is any system of hadrons, and the pro-
cess

model. On the other hand, operator-product ex-
pansions for short' or lightlike distances have
been offered on rather general grounds. These
expansions of course determine the ETC's. ' In
this note we treat the process (1.1) with the ETC's
calculated from the general framework provided
by light-cone expansions. The latter have proved
valuable in understanding scaling behavior, and
since the ETC's that involve time derivatives of
current components or that involve space compo-
nents are necessarily model-dependent, it seemed
to us desirable to extract the properties of these
objects, in particular the Schwinger terms, from
the light-cone expansions. In this way direct con-
tact between ETC's and the bilocal operators that
characterize light-cone expansions is made.

Let l„ l be the momenta of the incident elec-
tron and positron pair, k, k be those of the out-
going p.

' and p. , respectively, and let P be the
momentum of the hadron system. Define

l =l, + l, k=k, +k

Q = —,'(l+ k),

and note that P = E —k. The graph of Fig. 1 in-
volves the amplitude

M» =i d'xe'@ " X T* Jp &x J„-—,'x 0

(1.4)

with J „being the e.m. current. The BJL limit is
Qo-~ with Q and all hadron momenta held fixed.
In the c.m. frame of the incident electron-posi-


