
PHYSICAL RE VIEW D VOLUME 6, NUMBER 9 NOVEMBER 1972

Regge Effects in V ~id Production

D. C. Peaslee
Research School of Physical Sciences, The Australian ¹tional University, Canberra, Australia

(Received 15 March 1971; revised manuscript received 20 March 1972)

It is argued that a recent interpretation of unnatural-parity exchange in p b,++ and co 6++
production becomes more satisfactory if a second exchange-degenerate trajectory is intro-
duced in additon to the ~-B: namely, A&-R. Two advantages are the allowance of a realistic
slope for the x-B trajectory and interpretation of the narrow dip in coo production near
t =-0.25 (GeV/c) as a ghost effect. The broad dip near t =-0.75 (GeV/c) for p production
becomes more flexibly interpreted, and it could vanish under suitable circumstances.

Recent measurements' of p'6" and (d'6'+ pro-
duction by m'p at 8.7 GeV/c were made for the
purpose of displaying a particularly simple Regge
exchange. Exchanges contributing to the partial
cross section vo =pooda/d~t

~
must have I=1, P

=(-1)~"and signature factors fixed to give real
resonances only with G = -1 (+ 1}for po (&oo) pro-
duction. These were taken, respectively, as the
w and B trajectories, assumed to be degenerate.
In p production vo showed a broad minimum at
t= —0.8 (GeV/c)', which was interpreted as a
zero in the w-B trajectory. The corresponding 0,
curve for oF production showed instead a narrow
dip at t= -0.25 (GeV/c)', which was noted but not
explained.

In the data of Ref. 1 the dip in 00 for p 6" ap-
pears definitely significant; what little other in-
formation is available tends more to confirm than
refute this conclusion. A sample' of similar total
size over five incident momenta from 2.95 to 4.08
GeV/c had necessarily to be of less resolution in
t but showed values of 0, compatible with Ref. 1.
An experiment' at 5.45 GeV/c shows a just-signif-
icant dip at t= -0.6 (GeV/c)', in the sense that
the average o, for t = —0.8 to -1.4 (GeV/c)' some-
what exceeds the error on the zero cross section
observed at the dip. Another measurement at 5
GeV/c shows a similar but quantitatively nonsignif-
icant dip; this reference, however, quotes very
small values of era for all t, being a factor 2. or 3
below those of Ref. 3. This smallness away from
the dip region could be a cause for insignificance
of the observed dip. In summary, the dip struc-
ture claimed in Ref. 1 for 00 in p'6" production
receives mild support and no contradiction from
other measurements.

Reference 3 notes, however, that the slope e'
= 1.2 (GeV/c) ' assumed' for the linear w-B Regge
trajectory in the interpretation of this dip is rather
large. Those authors point out that a linear tra-
jectory containing both m and B would have a slope

of about one half the cited value: namely, n'=0. 65
(Gev/c)-'.

The present note proposes an alternative fit by
introducing a second, independent Regge trajectory
based on the observed A, with J =1' and a corre-
sponding J~=2 somewhere in the R region (m
=1.6 to 1.8 GeV/c'). This trajectory is assumed
to be exchange-degenerate like the m-B trajectory,
but has opposite G parity; only a total of two and
not four trajectories is involved in the fit. ' Since
the trajectories are fixed by observed points, there
is just one adjustable parameter, the ratio r
=P„/Pa of the trajectory couplings. At the cost of
this parameter, it is possible to accommodate at
least the following three features of the situation
instead of one, as by assuming' r =0: (i) linear
trajectories for both m-B and A, -R contain the
observed mesons, (ii) the dip in o, for p'b, "re-
sults from interference between the trajectories,
(iii) the narrow dip' in vo for uPb, "at t= —0.25
(GeV/c}' results from a suppressed A-trajectory
ghost.

These conditions turn out to specify r fairly
uniquely and consistently, sr= 1.5 +0.5. The am-
biguity of sign is associated with the quadratic
dependence of cross section on amplitude.

One would a Priori except the gp vertex to couple
to the A, trajectory about as strongly as to the w

trajectory, and empirically the A, - mp and p- mm

widths are comparable. If linearity is assumed,
the slope of the m-B trajectory is

n '=m 'c'-m 'c'
B B 1f

=0.66+0.06 (GeV/c) '.
For the A, trajectory a ghost at tc= -0.25 (GeV/c)'
implies a slope of

n„' =(m„'c' —tc) '

=0.72+0.06 (GeV/c) '.
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These values are not significantly different, so
we adopt an average

n' =0.7+0.1 (GeV/c) '.

, 1,(I )
mph(1+8 &) s —u

sinwn r(n ) 2s,

p (I g s Iw(xg) s
sinwn„ I'(n„—1) 2s,

(2)

Generalize the one-particle propagator for ex-
change by'

This is, however, significantly different from
a' =1.2 (GeV/c) '.

A Veneziano-type amplitude involving the z-B
trajectory has a factor I'(1 —ns); since the A, tra-
jectory starts its resonances (real mesons) at n„
= 1 instead of n~ =0, we expect a corresponding
factor I"(2 —n„). Hence with g' signature factors,
the amplitudes as s- ~ are

ture.
The most physical way of introducing a complex

trajectory' is to regard it as a sum over real
single-particle exchanges, the single particles
comprising an infinite sequence of Regge recur-
rences. Then a reaction amplitude has the form

b(J, t)T(s, t) =Q' [,( ) ] Pgz) . (4)

Here the sum is over even (Q') or odd (Q ) inte-
gral, non-negative J, with z = (u —s)(4m' —t) ' in
the case of a single mass m for the reacting parti-
cles. The denominator in Eq. (4) is simply the
propagator of the exchanged particle of spin J with
angular function P~(z) and amplitude b(J, t)

The amplitude T(s, t) in Eq. (4) can be expanded
about its poles, say J=J„when t =tp. For the ex-
pansion it is convenient to define an inverse func-
tion,

a-'(x) =M'(x), x&O. (6)

Take mand x real to'begin with; this limitation
will be relaxed below. A pole of Eq. (4) is then
specifically

Gs(t-ms') '- n'
Ng

G„(t-m„') '- n'
AA 1

the amplitude for p, production is

A'=
2 2

(r(l+ a„) n[ta (-,n'm n)+i]I' n+2 2s,
—(1+as) [ cto(-,'wns) —i]}.

n '(J,)=t„

J', =a(t,).
Consider the function

J —n(t) =n(a '(J))- n(t)

and expand to first order about the pole:

[J- n(t)] - [J.—n(t. )]

(6)

= a'«OHl, a '(J) —t] - [n-'(J, ) —t,]].
In the factor outside the brackets we have ne-

glected any slight difference between n„and a~,'

this can be absorbed in the variation of the coef-
ficients P„, Ps, which will be neglected anyhow.

Equation (3) for ~A~~' yields an interference min-
imum around t =-0.8 (GeV/c)~ for + r =2 + 1, if we
use linear trajectories with slope from Eq. (1), and

(m, c)' =0.02 (GeV/c)', (m„c)' =1.15 (GeV/c)'. The
positive sign for x gives a somewhat deeper and
sharper minimum.

For oP production the trajectory signatures are
reversed from Eq. (3), so that a ghost could arise
as n„-0. This is eliminated by the conventional
factor o.„, but the resultant function is perfectly
smooth in the neighborhood of the ghost. To ob-
tain a dip, some additional hypothesis is needed,
and the most immediate in the current climate is
to ascribe some complex part to the trajectory.
Thus, the ghost-forming and -suppressing factors
may get slightly out of register and yield a narrow
oscillation, which is essentially the observed fea-

By Eq. (6) this becomes
(8)

n'(t, ) 1

J —n(t) n '(J) —t

1
M(J) —t '

which by insertion into Eq. (4) yields a standard
Regge form. This argument is just a repetition of
that in Ref. 8, perhaps too much expanded, but
given in order to facilitate extension to complex
trajectories in a "realistic" way.

The extension is trivial: All physical particles
are subject to spontaneous decay even while under-
going virtual exchange, so in Eq. (4) we should put
M'(J) -M'(J) iI'(J)M(J) —Here I'(J) «. M(J) in gen-
eral, so we can treat the imaginary part as a
small correction. In the previous treatment e and
fp now become slightly complex, but Jp and t re-
main real Equation (6).becomes
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=n(M, '-ir M, )

= n(M, ') —trpb, n'(M, ') . (10)

50
l I I / ( I ! I I

Taking g, = n„(to) and rpfon' = nz(to), we can write 5

n(t, ) =nR(t, )+in, (t,),

where e, is positive for to& 0. The previous argu-
ments now repeat exactly, leading to

n'(t, )
M'(Z) —t Z- n, (t) in, (t-, )

' (12)

where ~ =(P —P,)/(P, P+). Here X is pure imagi-
nary; in the realistic approach of Eq. (12) we put

zR = n and recognize J as e, so that X = 1. The
two situations can be combined under Eq. (13) by
the restriction

Reg o 0. (14)

The replacement in Eq. (13) is necessary only
when

~
n —no ~

is of order nz or less; in the pres-
ent analysis this situation occurs only near the
A-trajectory ghost at tc = —0.25 (GeV/c)'. This
anomaly is taken to have an experimental width of
b, t=0.05 (GeV/c)'. Its actual shape is of secondary
concern here, and depends on the choice of X.
The solid curve in Fig. 1 corresponds to X =0; the
better fit of the dashed curve for X = 1 corresponds
to a single complex trajectory of conventional

Here n'(t, ) has a slightly complex argument as in

Eq. (10); for its imaginary part to be non-negative
would require n" (t, ) &0. For a strictly linear tra-
jectory n' is a real constant, which is sufficient for
our purposes.

A more abstract procedure' is to replace a sin-
gle Regge trajectory by a pair of complex conju-
gate trajectories. The total amplitude then re-
mains as real as before, although the physical
necessity for this is not argued. In any case, this
is a more formal procedure; the complex conju-
gate parts are introduced explicitly in regions of
negative t and hence are necessarily devoid of
direct interpretation in terms of particle masses
or decay widths. With this procedure the usual
singularity P(n —no)

' in the neighborhood of a
Regge pole is replaced by P,(n —n,) '+P (n —n ) ',
where n, =no+in, and P,* =P . In order to approach
the usual trajectory as nI 0, let p, + p = p; then
the prescription becomes

P (n —n, ) . n,
n —n, (n —n, )'+ n, ' (n —n, )'+ n, '

M
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FIG. 1. Fit to 0'0 ( p )/ap (M ) with parameters described
in text; experimental points are from Ref. 1.

imaginary sign. ' The ghost structure is sensitive
to the value of r and determines sr= 1.5+0.5; as
before, there is some variation of the fit with sign

Note that here
~
P'/P ~' =A =0.4+0.1, in good

agreement with Ref. 5; this ratio depends mainly
on the forward cross sections and hence on the
8 trajectory (i.e. , the pion pole near t =0). For
P'/P real and positive the relative phase of &u to
p production at ~t~S0.22 (GeV/c)' is P=0.8—0.9
rad, as compared with the observation" p =1.5
+0.3 rad. The present model, especially with no
background terms in Eq. (3), may be too simple
to fit these refinements.

The ratio o,(p)/oo (&u) plotted in Fig. 1 has no
special significance beyond being the most efficient
way to display the points raised here. If the pres-
ent interpretation is correct, a narrow dip in Fig.
1 should occur near t = -1.4 (GeV/c)' as a ghost
effect in the B trajectory. There are no present
data on pood'/dt of sufficient statistics to reveal
any narrow fluctuations of this sort; and the spe-
cific shape of this "ghost effect" is hardly predict-
able. Similar effects seem to occur in m'p- g'a".

The A trajectory lies slightly higher than the J3
and should dominate as s- ~. This emergence will
be slow but implies the eventual disappearance of
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the p' dip around t = -0.7 (GeV/c)' with increasing
s, while the narrow &oo dip at t= -0.25 (GeV/c)' re-
mains. Note that the present interpretation, un-
like that of Ref. 5-, does not absolutely require the

existence of the p dip.
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We show that the fermion-loop model for K&~ yy recently proposed by Rockmore and
Wong makes the puzzle of the missing X2 p+p, rate some four times worse, and that the
difficulty cannot be removed by the usual CP-violation hypothesis.

In a recent letter, Rockmore and mong' have
shown that the fermion-loop model can be used to
provide a quantitative explanation of the K,'- yy
rate. It is the purpose of this comment to point
out that their explanation only makes the K,-g'p,
puzzle worse.

The branching ratio

is measured to be less than 0.31x10 ' with 90/p

confidence. ' If one assumes CP invariance and
standard electrodynamics, one can bound this ratio
by R ~ 1.17x 10 ' by using unitarity and only the
imaginary part of Ã2- p, 'p, .' The experiment is
outside this bound. It has been suggested by Christ
and Lee4 that a CP violation could produce destruc-
tive interference and vitiate the use of the uni-
tarity bound. However, given a model for the
K,'-yy process such as Rockmore and Wong' s,
one need not just bound the K,'- p. 'p. amplitude,
but rather one can calculate the whole thing. As-


