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We present a detailed investigation of inclusive and exclusive multiparticle spectra in sev-
eral simple models of high-energy hadronic interactions. To clarify the origins of particu-
lar structure in these spectra we divide the study into two sections. First, we discuss mod-
els designed to isolate the features arising from kinematic constraints. Specifically, we
treat both pure longitudinal phase space and a longitudinal phase space modified to produce a
"leading-particle" effect. In the second section we consider examples of specific dynamical
models. Here we investigate the simplified Chew-Pignotti model, in both the strong-ordered
and general versions, and a "cp 3-type" multiperipheral model. Our analysis is based on a
cluster-decomposition approach analogous to that used in statistical mechanics. In particu-
lar, we apply a set of "cluster-function sum rules" to relate the correlations found in in-
clusive spectra to those observed in exclusive processes. Within the context of the models,
we establish that these sum rules provide both an attractive qualitative picture of correla-
tions in multiparticle spectra and a useful quantitative framework in which to calculate these
correlations. We conclude with a discussion of the possible extensions of these cluster
techniques to phenomenological analyses of high-energy interactions.

I. INTRODUCTION

Attempts to describe the behavior of strong inter-
actions at very high energy have recently stimu-
lated considerable interest in multiparticle produc-

tion reactions. The obvious complexities involved
in analyzing the many-body final states, however,
have led theorists to seek first a general concep-
tual framework in which to discuss the gross fea-
tures of these reactions and experimentalists to
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study quantities which are, hopefully, sensitive only
to these broad features. Hence, in particular, in-
terest in both theoretical calculations and experi-
mental investigations has shifted from the detailed
examination of specific exclusive processes to-
ward studies of inclusive reactions. By summing
over many exclusive channels, one seeks to iso-
late in inclusive reactions salient general charac-
teristics of multiparticle processes which, in any
given exclusive channel, may be obscured by more
specific features. Eventually, of course, one
would hope to understand in detail the manner in
which the individual exclusive reactions combine
to yield the observed inclusive cross sections. '

At a general qualitative level a very attractive
picture of high-energy multipartiele processes
follows from the Wilson-Feynman proposal ' that
these interactions should be analogous to the be-
havior of a real gas contained in a finite volume.
From this "gas analogy" many of the observed prop-
erties of one-particle spectra, for example, can
be derived. Further, this framework provides
strong motivation for the current interest in study-
ing correlations among the momenta of final-state
particles.

In two recent articles' —hereafter referred to
as I and II —we have developed a systematic ap-
proach to the analysis of multiparticle reactions
which combines the intuitive appeal of the "gas
analogy" with an explicit calculational algorithm
for determining spectra, correlations, and all
other features of these processes. In a sense, the
approach provides a quantitative realization of the
"gas-analogy" framework. Based on techniques
used in statistical-mechanical treatments of real
gases, the approach was derived in an explicit
field-theory model; however, as we shall see
presently, it can be applied to a variety of other
models. By ana)ogy to a similar technique in sta-
tistical mechanics, we call this approach a "clus-
ter decomposition. "4 In the simplest terms, the
cluster decomposition represents a systematic
treatment of correlations in multiparticle reac-
tions. Indeed, one of the most appealing features
of the method is the emergence of direct and sim-
ple relations between correlations in inclusive
and in exclusive spectra; the cluster decomposition
provides a natural link between the "microscopic"
and "macroscopic" perspectives on multiparticle
processes.

The purpose of the present investigation is two-
fold.

(l) to examine possible qualitative features of
high-energy exclusive and inclusive multiparticle
spectra and correlations; and

(2) to illustrate the use of the cluster-decom-
position techniques in several simple models.

This dual purpose leads us naturally to a survey
of several models rather than to an exhaustive
analysis of a single model. Further, in view of
their simplified character, ' more detailed studies
of these specific models may not be warranted.
We shall discover, however, that despite their
relative simplicity, the models can offer consid-
erable insight into the possible structure of many

particle reactions at high energy.
In Sec. II we first define the notation and kine-

matic variables. We then recapitulate those gen-
eral results of the cluster-decomposition approach
which we shall apply to the analysis of inclusive
and exclusive correlations. This summary of pre-
vious work is rather condensed, but, to render the
presentation reasonably self-contained, brief
physical motivation is given for most of the re-
sults. The technical details are, of course, ac-
cessible in I and II.

To clarify the role of kinematic constraints in
shaping the multiparticle spectra, we consider in
Sec. III those correlations which are induced solely
by energy-momentum conservation. We therefore
analyze briefly the inclusive kinematic correla-
tions arising purely from longitudinal phase space.
In addition, we discuss a "modified" phase-space
model, which is designed to illustrate the kine-
matic correlations present when the observed
existence of "leading" particles is incorporated.

Possible forms of dynamical correlation effects
in multiparticle spectra are analyzed in Sec. IV.
We treat two specific models for the exclusive
cross sections and, using the cluster-decomposi-
tion techniques, study correlations in both inclu-
sive and exclusive spectra.

The first dynaxnical model is a simplified version
of the Chew-Pignotti multi-Regge model' that has
previously been studied in the context of single-
particle inclusive spectra. ' We examine this mod-
el in both its "strong-ordered" and general ' forms.
In the former case, we clarify the relation be-
tween the absence of correlations in inclusive and
exclusive spectra and the Poisson distribution of
the exclusive partial cross sections. In the latter
case we find nonvanishing dynamical correlations
and discuss these within the cluster-decomposition
framework.

The second model is closely related to the A,y'
model treated in I and II; in fact, its explicit form
is chosen to reproduce the general structure of
the dynamical correlations of this model. Since it
is mathematically much simpler than the full A.p'
models, however, it is amenable to analytical as
opposed to numerical analysis ' and therefore is
more suitable to our present purposes.

Finally, in See. V, we present a critical discus-
sion of the cluster-decomposition approach in its
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current form and consider the possible extension
of the technique to quantitative phenomenology.

0= pA+pB+Z qs ~ (2.8)

II. KINEMATICS, DEFINITIONS, AND SUMMARY

OF PREVIOUS RESULTS

Consider the exclusive processes

A +B-A'+ B'+1+~ ~ ~ + n

and their inclusive analogs

A. +B A'+B'+1+ ~ ~ ~ + n+X,

(2.1)

(2.2)

2m'
Ws — -Ws& Pq,'. .

vs
(2.9)

Since we shall integrate over all transverse mo-.

menta, only Eqs. (2.7) will concern us explicitly.
Notice further that if we do not observe the parti-
cles A.' and B' —that is, if we integrate over their
longitudinal as well as transverse momenta —then
the longitudinal energy-momentum constraints on
the q,' become

q,'. =q',. +q', , (2.8)

and q, = (0, q', , q', , 0) =-q«, the mass-shell restric-
tion requires

where X represents any number of undetected par-
ticles. For simplicity, we assume that all parti-
cles are spinless and, for the present, identical.
To specify the kinematics we use the momentum
variables

V S —P A
& q (

& 'g P A
—

T/ V S (2.10)

where 0& g «1, and g is fixed and s-independent.
Similarly, the term "target fragment" wiQ refer
to a particle for which

To complete the kinematic preliminaries let us
introduce some useful definitions. We shall refer
to a produced particle, characterized by its mo-
mentum q, , as a "beam fragment" if

q&q,. = m2+q, '=—m~, '. (2.4) VS —PB&qg & 'g PB —'g VS (2.11)

The q,
' are immediately related to the "rapidity"

variable,

y, = —,
' ln(q', . /q, ) =in(q,'/mr, ) =in(mr, /q, ) . (2.5)

Hence translating expressions from y,. to q,' is
particularly simple. Further, in terms of these
variables, the single-particle phase space is just

d2 dq
q 2q'

Since at fixed q' the differential dq'/q' is indepen-
dent of q, one can integrate over q without alter-
ing the longitudinal (dq'/q') part of phase space.
Note that this is not true for the conventional
phase space,

ddq
q2q' '

We choose to work in the center-of-mass frame
with p„representing the beam, incident from
z = -~, and p~ the target. Hence at large s we
have

with q' like q; notice that (2.11) is equivalent to

2 2mT. . mT-
&q,. &

Ws q'vs
(2.12)

For our purposes it will be sufficient to replace
mr '=m'+q, . ' in (2.12) by (mr') —= m2+(q'). Final-
ly, we define "pionization products" as those par-
ticles with momentum such that, in the center-of-
mass system,

Ws»q&s&q, .&»—.(m, ') m'
'g s s

Referring to Fig. 1, we see that in terms of ra-
pidity, fragments are produced within a fixed dis-
tance from the ends of the plot, whereas pioniza-
tion products emanate from the central region,
the length of which grows as lns.

Let us try to convey briefly the purpose of dis-
tinguishing among these kinematic regions. First
we observe that if the distinction between "pioniza-

m'
PA r PA r

VS (2.8)
CR

and

S PA+PB PA +PB
s=1

(2.7)

m2p'= — p-=Vs .B ~ & B

The requirement of conservation of energy momen-
tum becomes, in the center-of-mass system,

MIN YMax

I- I«~i-I

FIG. 1. A schematic representation of an inclusive
one-particle spectrum illustrating the definitions of the
beam and target "fragmentation" regions —labeled BH,

and TR, respectively —and the "central" or "pionization"
region —labeled CR.
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d"0„"=f„(ql,
0

dq]"., q )'~j"
'i'=ii qi

n

-=f„(s,', . . . , s')s (Ws -r s,'.)i=1

x8 (n) (2.14)
q ~

Here f„(q,', . . . , q„') is a completely symmetric
function of its arguments and will be called the
"normalized n-particle exclusive spectrum. " We
have chosen to exhibit the energy-momentum con-
straints explicitly in the threshold functions
8(Vs —g", ,q', ) and 8 (n). The function 8 (n), which
arises from the constraint vs ) P", ,q, , becomes
a complicated function of the q,'. after the trans-
verse-momenta integrations; this is because at
fixed q,', qi depends on q. If we simply ignored
the transverse momenta, then

In our later study of simple models we shall in
fact ignore transverse momenta and thus be able

tion" and "fragmentation" is to be meaningful, it
should not depend crucially on g and g', provided:
they are small and s is large. This means, more
specifically, that the one-particle inclusive spec-
trum for "soft" beam fragments, q',. ) li vs, should
join smoothly with that spectrum for "hard" pion-
ization products, q,'(ll Vs . In I this result was
shown to be valid for models which satisfy the
cluster-decomposition approach; further, in Sec.
III we shall see explicit examples of this smooth
transition. Second, we note that the crucial mo-
tivation for the distinction is that, crudely speak-
ing, the beam fragments take away "all" of the
plus momentum, and the target fragments "all"
the minus momentum, leaving the pionization pro-
ducts nearly unconstrained by energy-momentum
conservation. " We shall see that this means that
the underlying dynamical effects, as opposed to
the purely kinematical constraints, can most
clearly be isolated in the pionization region. Final-
ly, in view of the observed phenomenon of "lead-
ing particles" and the consequent small inelastici-
ties, the distinction seems to have true physical
significance.

To summarize the results of our previous in-
vestigations of field-theory models, we begin by
considering the form of the exclusive differential
cross sections. "

After integration over all transverse momenta
and over the longitudinal momenta of the particles
A' and B', the exclusive differential cross section
for the production of n additional particles can be
written at large s as

to use this explicit form of 8 (n). Notice further
that we have chosen to normalize this differential
cross section to 0„ the cross section for the pro-
cess A. +B-A'+B'. Finally, we observe that the
partial cross section for producing n additional
particles is just

+0([q,'/q+]), (2.16)

where i ~ (1, . . . , m) and j~ (m+1, . . . , n) Thi. s
fundamental factorization property is basic to the
cluster-decomposition approach; we shall estab-
lish it explicitly for the simple models discussed
in Secs. III and IV. We continue the present dis-
cussion by recalling the conse(luences of (2.16) de-
rived in our previous work.

The remarkable similarity between (2.16) and
the "short-range order" or "cluster" properties
of real gases led us to investigate the extent to
which a quantitative treatment of high-energy in-
teractions could be based on techniques borrowed
from statistical mechanics. In particular, we be-
gan by introducing "cluster functions, "
g„(q,', . . . , q„'), to describe the correlations that
could exist among particle momenta in exclusive
processes when q', =q,' = - = q„'. The
g„(q,', . . . , q„') are defined in the canonical manner:

f, (q') = g, (q'), -
f.(q,', q'. ) = g, (q j)g, (q.')-+ g, (q,', q,'),

(2.1V)

f.(ql q: ql) -=g (q )g l(q:)lg (q:)lg, +(ql)g. (q.', q.")

+ gl(q2)g2(ql i qs)+ gl(qg)g, (ql', q,')

+g'3(ql q q ),

f„(q,', . . . , q„') -=

[nil
H1+ f12+ ' ' + les= ff

(g ( .)" g (" ))

where the sum runs over all partitions of n. From
(2.16) we find by induction that, for

(ql s ' P qsss) (qssls+t ' ' 1 qss) t

g„(q,', . . . , q„")-0([q~/q';))-0(e I' "'~)-0

(2.18)

~=—„,....J)
* f„(q', , q„')

0 i =1 m2/Ws i

9(&s —Z q+. ) —. -"-. d +' f.(ql, ",q.') (2»)
nf J'8

& ) i'=1' qi

In II we established that, in the simple Ay' lad-
der model, the f„as defined by (2.14) obey a cru-
cial factorization property; namely, for

(qli ~ ~ ~ ) qm) (qm+l ~

f.(q,', , q„')- f.(q;, , q'.)f„.(q.'„, , q„')
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wherein (I, . . . , m) and j~ (m+1, . . . , n). Hence,
in rapidity space, the g„have finite "correlation
lengths. " It is thus indeed reasonable to think of
the g„as representing short-range correlations
among the final-state momenta in exclusive pro-
cesses. In addition, from (2.18) we were able in
I and II to establish that the integrated cluster
functions, G„(s), satisfied

'e(vs-Z q+) n

G„(s)= +' g„(q,', . . . , q')
8 (n) '."; q,

'

= n„lns +P„+O((lns)/s). (2.19)

As discussed in I and II, this result further
strengthens the analogy between the functions g„
and the cluster functions of statistical mechanics.

Pursuing this analogy further, we were able to
demonstrate that a cluster-decomposition tech-
nique, again similar to an approach used. in statis-
tical mechanics, can be used to relate in a very
simple manner the exclusive cluster functions to
inclusive processes. To establish these exclusive-
inclusive relations, however, we found it neces-
sary, in order to include properly the kinematic
constraints on the q', , to introduce "modified"
exclusive cluster functions, g„, defined in terms
of f„. Thus we have

v i.". ~ dq',. —

~p n & "".m']as q~
(2.21)

and (2.20), the definition of g„, we were able to
prove the "cluster-decomposition theorem. ""

(r~(s) ~ 1 -" "~ dq,',, g.('„.. . ,.:))0'pP I n + s=l "m /vs qi

= exp —,G'„s (2.22)

that f„-f„and thus g„-g„." Now by definition
the fragmentation regions represent a fixed, s-in-
dependent amount of the relevant phase space,
whereas the pionization region grows as lns. In
terms of the gas analogy, the fragmentation regions
reflect "surface" effects and the pionization re-
gions reflect "volume" effects. Since at large s
the f„and g„effectively "reduce" to f„and g„,
respectively, throughout the bulk of phase space,
it is plausible that the nonfactorizability of the f„
does not vitiate the interpretation of g„as repre-
senting short-range correlations in exclusive pro-
cesses.

To study the explicit relations between the ex-
clusive cluster functions, g„, and inclusive quan-
tities, we began with the total cross section. From
the definition

f, (q', ) = f, (q)& (~~-q', )& (1)=-g, (q,'), -
f.(q,', q.') =g, (q,')g, (q.')-+ g. (q,', q.'),

(2.20) Together with the analog of (2.19), this result im-
plies that ops, will exhibit a simple power depen-
dence on s as s-~,

and similarly for the higher g„. The introduction
of the g„ involves some important technical sub-
tleties. It is obvious, for instance, that the f„do
not satisfy a simple factorization property anal-
ogous to (2.16), for the threshold functions them-
selves are not factorizable. Hence the important
"short-range order" property of g„expressed by
(2.18) does not follow exactly for the g„. It de-
velops, however, that one can show that the g„
can still correctly be interpreted as representing
short-range correlations among momenta in ex-
clusive spectra and that the analog of (2.19) for g„
is valid. In Sec. III the simple models will pro-
vide explicit verification of these assertions;
readers interested in the general technical details
are referred to II. For the present, we limit our-
selves to a simple qualitative argument which
clarifies the results of both these references. The
f„, which contain the fundamental dynamical in-
formation, are assumed to obey (2.16); thus the
nonfaetorizability of the f„arises solely from the
threshold functions, 9 (vs —g", ,q&) and 8 (n).
But these functions reflect the kinematic con-
straints and therefore, by our previous arguments,
should be significant only in the fragmentation re-
gions. Indeed, in the pionization region, we see

or(s)/o, (s) =e ~s", (2.23)

with u = Q n„and P =
Q P „.

Let us next consider the relation between the g„
and the multiparticle inclusive spectra. As in the
case of exclusive spectra, we first integrate over
all transverse momenta and over the longitudinal
momenta of the particles A', B', and the unde-
tected particles, X. The inclusive differential
cross section for the production of n additional ob-
served particles plus anything else can then be
written as

= P, (qx ~ ~ q„)„„
T

n-=p„(q,', . . ., q„')e(Vs -Qq,"')8 (n)

(2.24)

The function p„(q'„. . . , q„') is a completely sym-
metric function of its arguments and will be called
the "norma1ized n-particle inclusive 'spectrum, "
Again the threshold functions reflecting the kine-
matic constraints are exhibited explicitly in (2.24).
In models in which (2.16) holds, it is possible to
show that an analogous factorization property ap-
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plies to p„: namely, for

)~ qm) (&m+ x ~ )&~ n) ~

pn('?i ~ ~ . ~ ~ '4) p ('E ) ~ ~ . ~ ~ fm) pn m('f-m+) t ~ i 0'n)

(2.25)

where i e (1, . . . , m), jE (m+1, . . . , n), and r& 0.
Hence we introduce "inclusive cluster functions, "
v.„, to describe the correlations among momenta
in inclusive spectra. We have

(2.26)

and similarly for higher ~„. A similar set of equa-
tions defines 7.„ in terms of p„. Expressing the

n-particle inclusive spectrum as a sum over ex-
clusive spectra,

o ~ o
m~n

(2.2V)

and using the definitions (2.20) and (2.26), it is
possible to establish the "cluster-function sum
rules" relating inclusive correlations to sums
over exclusive correlations. We find the general
relation

(2.28)/ + + + +5
ff(Vj P ~ ~ ~ P Vff / + gn+g@1& ' ' '

y ~N&Pj. p ' ' ' &Pg~ '
t=O 4=X "m2/&s Pf

This equation expresses the physically intuitive result, essential for the consistency of the approach, that
only particles within the same exclusive cluster (and therefore correlated in the exclusive process) can be
correlated in the inclusive spectrum. Furthermore, (2.28) can be inverted formally to yield expressions
for the exclusive cluster in terms of sums over inclusive cluster functions. The general form of these
"cluster-functions inversion formulas" is

(2.29)

Several remarks on the significance of the gen-
eral "cluster-decomposition" results are in order.
First, given the definitions of the g„and ~„and
using (2.21) and (2.27), the results in (2.22), (2.28),
and (2.29) are formal mathematical identities;
that is, they follow formally independent of the
properties of the g„and 7.„. However, the useful-
ness of these results in any model calculation, or
in potential applications to phenomenology, hinges
crucially on the "short-range-order" property of
the cor "elation functions; this, in turn, depends
on the underlying factorization property of the f„.
We shall later illustrate and amplify these state-
ments.

Furler, although (2.28) and (2.29) represent
systematic linear relations between correlations
in inclusive and exclusive processes, it is not
immediately clear from the present discussion
that these relations should be preferred to the
"direct inclusive-exclusive relations" of (2.21)
and (2.2V). To illustrate the potential superiority
of the cluster-decomposition approach vis h vis
the direct relations, let us consider the one-par-
tigle inclusive spectrum. In the cluster expres-
sion for 7, each term will be independent of s for
large s; this follows from (2.18). Hence, the num-
ber of terms needed to saturate the sum rule will
also be independent of s. Indeed, in Sec. IV we

shall demonstrate that in certain cases the first
few terms of (2.28) with n =1 are sufficient to give
an accurate determination of 7, . In the "direct
relations" for T, -given by (2.2V) with n =1-the
contributions are clearly dependent on s. In fact,
since (2.1V) implies that

fn (~ a ) ~ ~ ~ ~ &n) =, , g'z (&)) + ' '
g= l.

we find

(2.30)

,')f„)q,', . . ,q'„) )Ins)" '+ . .)2.3))

Thus the contributions from large n become in-
creasingly important as s grows. Simple inspec-
tion suggests that the number of terms which are
important at large s increases linearly with lns.
To saturate the "direct relation, " therefore, re-
quires a number of terms which increases with s.

Final1y, we remark that the total symmetry of
the exclusive and inclusive differential cross sec-
tions, f„and p„, in their arguments allows us to
recast the cluster-decomposition results in a
slightly different form by integrating over ordered
regions of phase space only. As the resulting
forms of these equations will be useful in Sec. Pf,
we shall quote them here. From the symmetry of
f„we see that
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f.(q;, , q.')
(X0 nf i=1

dq,' '1 dq, ' -1dq„—+ + +
+

'= dqj —
+

n +

," f„(q'„,q'.) =J',' f.(q,', , q„').
2/~ q g 2/~ q 2 2/g q1 &q ) ~ ~ ~ &q+ -1 qj

n

(2.15')
This leads to

o'~(s) dq ~

=exp ~ g. (q,', , q„')
~0(S) n q+& ~ ~ ~ &q+ j ] qj

1

A similar result obtains for the general 7„. For q', & q,
' & ~ ~ ~ &q„',

ao +—i + +s V'
~„01) ~ ~ ~ ) q J =~ + gn+g~qls ' uqnP P19 ' ''PPg~'

E=- 0
(ygq+ &q+'p &'

1 n ~ 1

(2.22')

(2.28')

Here the symbol

y
(yg q+&. ....q+;P+& ~ ~ ~ &u'&

(2.29')

indicates that one integrates over the phase space H, ,dp',./p', subject to p,' & ~ ~ ~ &p', and q,' & ~ ~ ~ & q„' and
sums over the (n+ l) t/n! l! distinct orderings of the ordered p, relative to the ordered q~. Similarly, the
inversion formulas become, for q1 &q„',

g„(q'„. , q.') =Q(-1)' Z „,* T„„(ql,",q:; pl, ",p;)
l y j=l Pi

(yQq ) ~ ~ ~ )q p ) ~ ~ ~ )p )1 n & 1

In the ensuing sections we shall illustrate these general cluster-decomposition results by examining the
relations between inclusive and exclusive processes in a series of simple models. These examples will
provide both an intuitive basis for understanding the cluster-decomposition techniques and an insight into
the possible structure of multiparticle spectra at high energy.

III. MODELS ILLUSTRATING KINEMATIC CONSTRAINTS
A. Introduction

At least two considerations suggest that the role of kinematic constraints within the cluster-decomposi-
tion framework requires thorough understanding. First, these constraints produce crucial technical com-
plications, since they have no analogs in the standard statistical mechanical applications of cluster expan-
sions. ' Second, and perhaps more important, at presently available energies, it is clear ""that kine-
matic constraints will represent a significant factor in determining these correlations.

In this section we shall examine in simple models the correlations which arise from the constraints of
energy-momentum conservation; we shall refer to these as "kinematic correlations. " To isolate these
kinematic effects it is natural to begin by replacing all dynamical matrix elements by one and hence by
studying pure phase space. We shall not, however, treat pure phase space in (3+1) dimensions, as it is
unsuitable to our purposes for two reasons. First, its consequences -particularly those for the average
multiplicity and transverse-momentum distributions "—would bear no resemblance to present experimen-
tal observations. Second, we wish to study only longitudinal momentum spectra. Hence we shall first
examine pure longitudinal -mathematically, (1+1)-dimensional -phase space. " The results of this model
may be viewed as reflecting the kinematic constraints imposed on longitudinal spectra by the full (3+1)-
dimensional phase space when the observed rapid cutoff in transverse momentum is included. ""

We shall augment our investigation of kinematic correlations by studying as a second model a "modified"
phase space, designed to illustrate the kinematic constraints among secondary particles when the observed
existence of "leading" particles is taken into account.

We remark at the outset that whereas n-particle exclusive phase space is well defined, the concept of
"inclusive phase space" is ambiguous. To construct an inclusive cross section one must prescribe the
relative weights associated with each contributing exclusive process. We shall adopt the prescription of
associating with each final-state particle a "coupling constant, " X." Hence the "matrix element" for the
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G, (s) —= n, lns+P, =-&m'A. '.
(3.6)

Similarly one can show that higher G„(s) are also independent of s; that is, o.„=0 for all n ) 2. By the
"cluster-decomposition theorem" as formulated in (2.22), this suggests that the total cross section
(normalized by oo) should have s dependence given by s ~.

To verify this result, we must evaluate the total cross section by direct calculation. Calling p„'=qo and

pe =q„„, we may write o„(s) as

go+ Q woo II+1 dq+
&„(&)=;26(P'- g q,

'
)6(P-- Pq,',),n+2 i o l-'-'o' q~

(3 7)

where p = P = vs . Using standard Laplace-transform techniques previously applied to analyses of (3+1)-
dimensional phase space 24 and summing over all n, we find the leading behavior of the total cross section
as s-~ to be

2e '~" (s/m')
r( ) 4 [zl(g)]Q

(3.8)

where y =+0.5772. . . is Euler's constant.
With vo=2A. '/s', we obtain

vr(s) e-'~" (s/m')
eo(s) [1 (X+1)]'

As anticipated, the s dependence of the ratio vr/ao is simply s .
Notice that in addition to providing a mathematical framework in which to calculate this result, the clus-

ter decomposition approach offers an intuitive understanding of the s behavior. In particular, the analogy
to statistical mechanics suggests that the dependence of all physical quantities on the volume should be in-
dependent of the surface effects. Since the volume of phase space is lns, this argument implies that the
dependence of the total cross section on lns (and hence on s) is independent of the fragmentation regions
and can be determined from the form of the g„ in the pionization region alone. But in the pionization re-
gion, (3.3) implies immediately that f„-f„=A, and thusg„-g„-0, n -2, andg, -A.. Thus the s dependence
in (3.9) is understood trivially. In addition, by writing (3.9) in the form suggested by (2.22),

~G r 8 gn r& gn e ' (s/m')
e, [r(x+1)]'

and expanding p(A. ) in a power series, one can verify directly that

p(A) =-p, A+p, A,'+ =-~on'A. '+

(3.10)

This is in agreement with the cluster-decomposition results as shown in (3.6).
By similar manipulations we have calculated the first few terms of the cluster sum rules for Tz and 7,

and verified that they agree with the expansions of the exact forms of these inclusive quantities. Since the
calculations become somewhat involved technically, we shall not present the details here. " Instead, we
shall concentrate on the exact forms of 7, and T, to illustrate the effects of purely kinematic. constraints in
inclusive processes.

Applying the methods used in the derivation of (3.8) to the one- and two-particle inclusive spectra leads
to the expressions

qdx ~
dx

(1 )g J 1
m
SX

(3.11)

and

=' """"x xT 1 2

(3.12)2dX, dX2 . m2 m2 ~-' m2 m2(1-x,-x,)~ ' 1 — — 8(1-x,-x,)0 1—
X1 X2 SX1 SX2 SX1 SÃ2

where x, =q,'/vs . Since these are leading-order asymptotic results, they are valid for (1 -x)(1 —m'/sx)
» m'/s and (1 -x, —x )(1 —m'/sx, —m'/sx )» m'/s; that is, the observed particles cannot be too near the
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boundary of phase space. Physically, these
restrictions mean simply that the "missing mass"
must be large enough to allow many exclusive
channels to contribute to the inclusive processes.

Notice that the presence of factors such as
(1 —x)" ' implies that the behavior of the spectra
depends crucially on X. In the one-particle spec-
trum, for example, for A. &1 we obtain a spectrum
which, as a function of y =In(q'/m), is as shown
in Fig. 2(a); for X &1, however, the shape of the
spectrum is qualitatively as in Fig. 2(b). From
(3.1) it is clear that increasing X at fixed s will
increase the average multiplicity; the functional
form of n(X) given in (3.14) illustrates this ex-
plicitly. Thus we expect relatively smaller n(A. & 1)
to yield spectra as in Fig. 2(a), whereas relative-
ly larger n()I. &1) should yield spectra of the form
of Fig. 2(b). It is interesting to note that recent
numerical studies of longitudinal phase space il.-
lustrate this qualitative behavior even at low s."
We note also that for all A. the one-particle in-
clusive spectrum becomes constant in the "central
region, "as suggested by the gas analogy. Fur-
ther, the explicit form of the spectrum in this re-
gion, do/or- Xdy, is a manifestation of a general
result discussed in more detail in Sec. IVC.

For the two-particle inclusive correlation function

) =.5

cr
)

0

LLI

I—
K

I

LIJ2 2 —
I0

I

-2

X = I.5

I)
3

I

0 Um.
-3

I

-2
I I I

-I 0 I

RAPIDITY, y

FIG. 2. (a) and (b) The asymptotic form -valid for
(1-x)(1 —mI/sx)» mI/s —for the inclusive one-parti-
cle spectrum predicted by longitudinal phase space for
s' ln(s/mt) = ym~= 3. The solid curve in the central
region is the asymptotic spectrum. The vertical dashed
lines indicate that, near the ends of phase space, this
asymptotic form is no longer valid.

,(x„x,) = p, (x, , x,) —p, (x, )p, (x,), (3.13)

we can observe a similar qualitative distinction between the cases A. (1 and A.) 1. First, however, notice
that for any A. when x, +x, & 1 or m'/sx, + m'/sx, & 1, 7, is negative definite since's p, =0. For x, +x, & 1 and
m'/sx, + m'/sx, &1, we see that for A. &1, 7,(x, , x,)&0, whereas for X&1, 7; remains negative. "

For all values of A., however, the correlation function approaches zero when the momenta are in the cen-
tral region. This is an illustration of our earlier remarks that kinematic correlations are important only
in the fragmentation region.

Finally, we remark that from the form of the total cross section, it is possible to evaluate the moments
of the multiplicity distribution predicted by this "pure phase-space" model. " Using the definition (3.1) and
the result (3.8) we see that

S
=A. ln —

s -2'. -)I.g()I,), (3.14)

where

Notice that (3.14) holds for fixed X as s-~." Similarly, since

(3.15)

we have that
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This result establishes that the multiplicity distribution is not Poisson.

C. "Modified" Phase-Space Model

To motivate the "modified" phase-space model let us consider the specific processes in which A, B, A',
and J3' are protons and all remaining particles are pions. Thus the exclusive processes we treat are

and their inclusive analogs are

p+p p+p+ nm+X.

The protons and pions are, of course, distinguishable. Experimental results show that the final-state pro-
tons in these interactions tend to be "leading" particles; that is, the momentum spectra of the final-state
protons are relatively damped when the final-state momenta p„"and p~ are very different from the initial-
state momenta p„' and ps. This means, in particular, that the effects of the phase-space factors 1/p„" and

1/ps, which would tend to enhance the spectrum for small p„" and ps, are canceled by some dynamical
mechanism. We can examine the kinematic correlations that arise when this quite general dynamical fea-
ture is incorporated by considering an ad hoc modification of phase space in which these factors are ex-
plicitly removed. Thus we propose to investigate the model

St
tl

p/+ pl+ q+ g s pf pl-
i=l

~ —- dq) m $ p----- dQ'],' 8(Ws- pq') 8 Ws -g, = —,' f„(q,', . . . , q„) (see Ref 31). .
f=&

(3.17)

(3.18)

Here o', is given by o, = 2&'/s. "
From (3.18) the lowest-order exclusive cluster functions follow immediately:

g, (x) =X8(1 —x)8 1—m'
SX

m2 m2 m2
g, (x„x,) =~' 8(1 -x, -x,)8~1 — — —8(1 -x,)8 1 — 8(1 -x.)«—

2 I 2

(3.19)

and similarly for higher g„.
To discuss the general cluster-decomposition results in a comparative manner we must as usual evalu-

ate the inclusive cross sections directly. Proceeding as in Sec. III B, we find that or/o, is still given by

0' e-'&~ (s/m')~
o, „2 „[r(x+1)]' (3.20)

It is straightforward to verify that, to lowest orders, the contributions of the g„ to the cluster-decomposi-
tion theorem for or/o, are equal to the expansion of (3.20) in powers of A. . Note again that the vanishing of
the g„, n ~ 2, in the pionization region implies that the s dependence of the total cross section is deter-
mined solely by g, .

From (3.20) we see that the average multiplicity in the "modified" phase-space model is also identical to
that in the pure phase-space model and is thus given by (3.14). In treating the inclusive spectra, however,
we must recall that p„' and p~ are distinguished from the "additional" particles. Hence in the "modified'*

model the inclusive spectra of the "protons" will differ from those of the other secondary particles.
Considering first the spectrum of the "pions, " we find that

dX do' dX
~, (x)—= =z (1 -x)' 1-—

X 0'~ X SX
(3.21)

for (1 —x)(1-m'/sx)» m'/s. Notice that this "pion" spectrum, although similar in structure to the spec-
trum in the pure phase-space model, is of the form shown in Fig. 2(b) for all values of A. . It cannot ex-
hibit the "peaking" effect illustrated in Fig. 2(a).

Extension of this approach to the bvo-particle spectrum establishes that, the correlation function for the
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production of two pions is

m' m' m2 m2
r, (x, , x, ) =A.' (l-x, —x,)~ 1 — — 8(1-x, -x,)8 1—

SX~ SX2 SX, SX2

—ll-x, )i(l- ) (1-x,)i(1- ) (3.22)

For explicit form of the first term to be valid, we require (1-x,—x,)(1-m'/sx, —m'/sx, )» m'/s. We
note that, since A. & 0, this correlation function is negative definite. Further, when both momenta are in
the central region, ~, approaches zero.

To facilitate the illustration of the cluster-function sum rules in this model, we shall restrict our con-
siderations to the form of the spectra in the fragmentation region of one of the incident particles; let us
choose the beam fragmentation region. In this case the 0 function arising from the constraint on the minus
components of momenta can be ignored, and the model cross sections reduce to

gn

ao nt
dg'.PA pt+ i5.(~s pi+ pq+)

,' 0 s — q',.
i=i

(3.23)

With this simplification the calculational details will be more transparent and a more thorough study of the
sum rules will be possible.

From (3.23) we find that the "total" cross section in this "single 8-function model" is

~a ' r'~'™~'
s- I'(~+1)

Further, the one- and two-particle inclusive correlation functions become

r, (x) =A. (1 -x)~

and

r, (x, , x, ) =X'[(1-x,-x,)~8(1 —x, —x, ) —(1 —x, )~(1 —x)~].

(3.24)

(3.25)

(3.26)

Notice that for large s the difference between the spectra predicted by the "single 0-function model" and
by the full "two 0-function model" is indeed negligible in the beam fragmentation region. In Fig. 3, for ex-
ample, we plot the two different forms for the one-particle spectra at an energy appropriate to conventional
accelerators; the curves are virtually identical over a wide range in the rapidity plot. This provides
another illustration that kinematic constraints produce important effects only in the fragmentation regions.

From (3.23) we can evaluate the first few exclusive cluster functions for the production of pions. We ob-
tain

g, (x) =X8(1 —x),

g, (x, , x, )=A,'[8(l -x, -x,) —8(1 -x,)8(1 -x,)],
and

g, (x, , x„x,) =X'[8(1 —x, —x, —x, ) —8(1 —x, —x, ) —8(1 —x, —x,) —8(1 —x, —x,)+2].
The contributions of these g„ to the sum rules can now be evaluated explicitly. We obtain

dx, I dX, dX2
g, (x)+ ' g, (x, x,)+ —~

' ' g, (x, x„x,)+ =A. +A.'ln(1 -x)+ —, ln'(1 —x)+ ~ .
m/s XI m/s "m/s 1 2 2

(3.27)

(3.28)

From (3.25), we see that to this order the inclusive one-particle spectrum for the production of pions is

r, (x) =A. (1 -x)~ =A. +x'ln(1 —x)+ —, ln'(1-x)+
g3

and hence the sum rule for 7 y is verified. Similarly, the sum rule for v, requires
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I
1 dX3

~2(xggx2) g2(xgtx2)+ J g3(xgtx21x3) ' +".
m2/s X3

=x'I e(1 -x, -x,) —0(1 -x,)e(1-x,)]
+ X'[0 (1 —x, —x, ) ln (1 —x, —x,) —8 (1 —x, ) ln (1 —x, ) —8 (1 —x, ) ln(1 —x,)] + ~ ~ ~ (3.29)

1 da dx,
J 2„or (dx, /x, ) ' x,

(3.30)

where the sum over i is over all types of particles
produced. Since we have calculated inclusive
cross sections explicitly as sums over exclusive
ones, (3.30),becomes a consistency check." From
(3.25) we see that the contribution of the pion
spectrum to (3.30) is

+1
A.

(1 -x}'dx =
"m2/s A, +1 (3.31)

and thus there is an additional contribution neces-

A direct expansion of v, as given by (3.26) verifies
this result.

At this juncture there are several important
comments to be made. First, in both (3.28) and
(3.29) the contributions of the individual exclusive
cluster functions appear to be logarithmically sin-
gular near the phase-space boundary. This is a
consequence of the asymptotic approximations in

(3.24) through (3.27) which are valid to O(m'/s).
Very near the phase-space boundary -that is, for
x=m'/s or (1-x)=m'/s -these approximations
break down, and the explicit forms of both the in-
clusive spectra in (3.25) and (3.26) and the exclu-
sive contributions in (3.28) and (3.29) are modified.
Thus although they may be strongly peaked near
the end of phase space, the actual exclusive con-
tributions to the sum rules for ~, and T, are not
singular. Further, the dynamics can reduce this
strong peaking effect by "softening" the abrupt
phase-space cutoff. " In II, for example, we estab-
lished that in a multiperipheral model the propa-
gators of the exchanged particles provided damp-
ing such that the individual exclusive contributions
to the cluster sum rules were smooth -that is,
neither apparently singular nor sharply peaked—
near the phase-space boundary.

Second, both the spectra calculated in (3.25) and
(3.26), and the exclusive clusters, given by (3.27},
apply, as previously noted, only to the pions.
There is a particularly informative way of seeing
that (3.25) cannot represent the full one-particle
spectrum. Several authors have recently empha-
sized that the general constraints of energy-mo-
mentum conservation together with the definition
of the inclusive one-particle spectrum require
that 34-36

(do) dx
(1 )y

0
Z "proton"

(3.33)

where x„-=p„'"/Ws. Notice that, as anticipated,
this spectrum is suppressed for small x„relative
to (3.25). The contribution to (3.30) from (3.33) is

+1

x„(1-x„)~'dx„= (3.34)

and thus the consistency requirement is satisfied.
Notice further that the average multiplicity of

the "protons" is

(n)~„,.„-=x x(1 —x)
dx g-1

4m /S

(3.35)
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FIG. 3. The one-particle inclusive spectra predicted
by the "single-function" model —dashed curve —and the
"two 0-function" model —solid curve —as a function of
rapidity for L = 1 and Y~.= s 1n(s/m ) = 3. Notice that
in the beam fragmentation and central regions the curves
are indistinguishable.

sary to yield (3.30). This is, of course, just the
term arising from the spectrum of the "proton. "
To calculate this spectrum in the single 9-function
model we must return to (3.23). From this result
we see that

fl tl

0

(3.32)

By manipulations similar to those used in the
treatment of the previously discussed inclusive
spectra, we find
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= A. ln(s/m ') —y& —&g (&) —1. (3.36)

Combming (3.35) and (3.36), we find that the total
average multiplicity is n = X 1n(s/m ) —yA. —A,g (A. ),
which also follows by calculating n from

using or as given by (3.24).
Finally, it is of interest to compare the predic-

tions of the "modified" phase-space model with
recent experimental results on inclusive spectra.
For this purpose we return to the full two 0-func-
tion modified phase-space model, as its results
can be applied over virtually the whole range of
phase space. Consider the one-particle inclusive
spectrum, which the model predicts should be
given by (3.21). The experimental data shown in
Fig. 4 are taken from an analysis of the reaction

with incident ~' momentum = 18.5 GeV/c. " Since
the observed n is not present in the initial state,
the "leading" particle effect is removed. Hence
(3.21) may be applied. To compare the simple
mode1 with the data, however, we must recall that
the experimental longitudinal-momentum spectra
include proper integrations over the transverse

independent of A. . This is, of course, the expected
result since in the single 8-function model there
is only one "distinguished" particle in any exclu-
sive cross section. In addition, from (3.33), we
see that

dx
Flsecendesies = ~ ( )

"m2/s +

I0.04—

0.02—

I I

y, =0

momenta, whereas the model is formulated in
(1+1)dimensions. For our present purposes, it
will be sufficient to replace m' in (3.21) by
(mr') = m'+(q'), where (q') is the average value
of the square of the transverse momentum. " With
this replacement one obtains the curve shown in
Fig. 4 for the model spectrum. Since the compari-
son is intended solely to illustrate qualitative fea-
tures, we have taken A. =1 for simplicity; this
gives, by (3.14), a total average multiplicity n = 6,
which is roughly correct at this energy when one
allows for unobserved neutrals. We observe that
the data fall off more rapidly at large I y I

than the
pure kinematic constraints require. Indeed,
whereas the model spectrum shows the nearly flat
central region expected by the gas analogy, this
effect is not present in the data. Although increas-
ing A. would make the model curve narrower and
hence more like the data, it would also lead to an
average multiplicity higher than that observed ex-
perimentally.

In Fig. 5 we plot the two-particle correlations
which follow from the modified phase space model
and compare these to a sketch of the data for the
process m'p- n m X with incident n'momentum
=18.5 GeV/c. 37 The data clearly show structure
quite different from that required by the simple
kinematic constraints. In particular, 7., in the
model, as anticipated, approaches zero in the cen-
tral region"; the data, however, exhibit strong
positive correlations for y, = y, =0. Thus even
our rough considerations suggest that kinematic
constraints alone do not control the one-particle

X
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FIG. 4. A rough comparison of the experimental one-
particle inclusive spectrum —solid curve —for x+p

m X atp& = 18.5 GeV/c as reported in Ref. 37 with the
spectrum calculated from the "modified" phase-space
model -dashed curve —with A, = 1 and Y~~ = 2 ln(s/m )
= 3. The curves are normalized to the same height;
hence the vertical scale is arbitrary.

FIG. 5. A rough comparison of the experimental 7I. m

correlations —solid curve —in the process m+p x n.

+ X at pz = 18.5 GeV/c as reported in Ref. 37 with the
correlations predicted from the "modified" phase-space
model-dashed curve-with A, = 1 and Ym~= 21n(s/m )
= 3. The curves shown are plotted as functions of y2 at
fixed y~ = 0.
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inclusive spectrum; there must be significant dy-
namical effects.

To extract in a quantitative manner the dynami-
cal effects from present data one clearly requires
a more detailed knowledge of the structure im-
posed by kinematic constraints in specific inclu-
sive processes. Given such knowledge, one could
analyze the experimental results in terms of a
kinematic "background" and dynamical contribu-
tions. However, the thorough, quantitative analy-
sis of kinematic constraints required for this ap-
proach is beyond the scope of the present paper.
We intend to treat this problem elsewhere. "

Happily, to study dynamical effects in simple
theoretical models there is an alternative to the
above approach. Since the kinematic constraints
vanish in the pionization region, "for which 1»x,
» m'/s, we can isolate dynamical effects by an-
alyzing the inclusive spectra in this region. In the
next section we shall use this second approach to
investigate possible simple forms for the dynami-
cal effects in multiparticle spectra.

IV. DYNAMICAL MODELS

A. General Considerations

f f -A,"

so that

g„-g„-0, n& 1.

Hence, from the sum rules,

7„-7„-0, n& 1.

(4.1)

(4.2)

(4.3)

These results suggest that, at least in prelimi-
nary theoretical investigations, the correlations
arising from the underlying dynamical interaction
can and should be isolated by considering dynami-
cal models in the pionization region only. This re-
striction, although it provides a considerable sim-
plification, is not a limitation of the approach, for
the behavior of any specific dynamical model in
the fragmentation region, in which kinematical

From the preceding section we can extract two
immediate conclusions. First, the kinematical
constraints on final-state momenta arising from
energy-momentum conservation can indeed be in-
corporated within the framework of the cluster de-
composition. Second, these constraints induce im-
portant correlations among particles only in the
fragmentation regions; at very high energies par-
ticles produced in the pionization region are not
correlated kinematically. Mathematically, this
result is expressed by considering the form of the
exclusive spectra in the pure kinematic models in
the limit in which x, =q,'/v s - 0. One finds im-
mediately that

and dynamical correlations coexist, can be studied
by the same techniques introduced here.

To illustrate the use of the cluster-decomposition
analysis and of the sum rules relating inclusive
and exclusive spectra, we shall study two simple
dynamical models for the exclusive differential
cross sections. The first model is a version of
the Chew-Pignotti model, ' which has been dis-
cussed elsewhere in the literature. ' This model
is ideally suited to our purpose, for, although it
is quite simple, many of its features are shared
by more sophisticated multi-Regge models. The
second model is ad hoc in the sense that it cannot
be derived from an underlying theoretical frame-
work. However, in its qualitative features, it is
very similar to the Ay' ladder models which have
been studied previously in this context. 3 '

As in Sec. III, we shall formulate specific mod-
els for the exclusive differential cross sections in
terms of a longitudinal phase space only. We
shall further integrate over two of the momenta in
the final state; this will replace the 5 functions of
energy-momenta conservation by 8 functions re-
stricting the sum of the q, . In the pionization re-
gion, these 0 functions can then be ignored. In
calculating cross sections, therefore, each of the
momenta can be integrated independently over the
region eWs & q,

' & m'/e 'Ws in the center-of-mass
system. "

Finally, to motivate the explicit form of the ad

hoc model, we recall that the property crucial to
the "cluster-decomposition" approach is "short-
range order" in momentum space, realized explic-
itly by factorizable differential exclusive cross
sections. In its simplest nontrivial form, "short-
range order" suggests that the differential exclu-
sive cross sections depend explicitly only on the
separation between adjacent or "nearest-neighbor"
momenta. Indeed, in I we established that in a
certain approximation the exclusive cross sections
corresponding to y' ladder diagrams did become
dependent only on "nearest-neighbor" separations.
Thus as a second example of the applications of
the cluster technique, we shall study a "y'-type"
model in which the n-particle exclusive differen-
tial spectrum in the pionization region is given by

d" o "/o,
=fn(qx~ . ~qn)

pter 1 2 .1 ~ ~ ~ 1 ~ 4 4

in the region in which q', & q,' & ~ - ~ & q„'. Since
d" o'"/o, is a symmetric function in all its argu-
ments, the extensions of (4.4) to other regions of
phase space are immediate.
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B. Quantitative Discussion I
'A qn B

P

For clarity of exposition we shall divide the dis-
cussion of the dynamical models into two parts.
In the present section, we examine the basic quan-
titative aspects of the models and calculate the ex-
clusive and inclusive correlation functions we wish
to study. In addition, we verify explicitly the clus-
ter function sum rules through the first few or-
ders. Thus the thrust of this section is primarily
quantitative. In Sec. IV C, we discuss and com-
pare the qualitative features of the models and in-
terpret these in physical terms.

2
[Mf =

a I
~ ~ ~

FIG. 6. A schematic representation of the simplified
Chew-Pignotti model showing the particle-particle-
Reggeon coupling constant P and the Reggeon-Reggeon-
particle coupling constant g .

1. The Chen -Pignotti Model

The simplified version of the Chew-Pignotti model, formulated directly in terms of longitudinal phase
space only, asserts that the cross section for producing n additional particles can be written as

n 2 n n+2

n

i2 PA PB qi
28 2 Jp + q+. .. + p+ p~ piin

n n

X 5 S -Pg -PB — q- 5 S -Pg -PB — q
s=l i= 1

(4 6)

As in Secs. II and III, we have chosen to exploit the symmetry of iM„~' under interchange of the identical
final-state particles to write the integral in (4.5) over an ordered phase space. 4' In the region of phase
space in which P~" ) q',. ) ~ ~ ~ )q„')PB", the matrix element M„ is given by

20t

~2 p4@2n i.i+ 2

i=0
(4.6)

where q,
—= P'„, qn„=—pB, and

+ + 2
qS+ls, ,„-=(q,+q„,) =m, 1+

«+l q&

The coupling constants P and g are defined in Fig. 6. Using (4.V), we may recast (4.6) as
r+ t- 2a + 4c, m2

(4 'I)

(4.8)

Here

f„tq,', . . . , q„')=l" (1+—*,

) (1+," ) (4 9)

and X = g'/2.
In (4.8) we see explicitly that the factor (p„"p~ )'" provides the type of "dynamical damping" which we in-

corporated into the "modified" phase-space model of Sec. III. Hence this dynamical result offers a postez-
iori support for our previously ad hoc modification.

Applying the arguments detailed in Sec. II to integrate over the "leading-particle" momenta p~" and PB",
we find immediately that

s, P' " --- dq,'. 8(&s-q,'-P", , q,'. ) ~ (p„"p )'-
n 2 A Li 4 +m 4s &+ ... ,+, , q,. m'—'n

q+ &n m2 4Q

~+ r+ + i- + n ql» qn
PA PB qn

(4.10)



2674 DAVID K. CAMPBE LL

Here

n n

j„"= vs —g q',. and p,'- = v s —g q,—. .

To isolate the dynamical from the kinematical correlations, we shall study (4.10) in the "pionization re-
gion. " Then

j„"-Ws, j'--Ws, (I+,', -1, and 1+, , -1.
~A &a qn

Further, the 8 functions reflecting the kinematic constraints on the q,. may be ignored; that is, each q',.
may be integrated independently over the pionization region. In terms of rapidity, the length of the pioniza-
tion region is

L = Y,„+In(ee')

where Ym»--In(s/m') and e and e' are constants independent of s. In I we established that in models satis-
fying (2.16) the actual total cross section has the same dependence on Y .. that the cross section calculated
in the pionization region does on L; that is, after combining the contributions from the fragmentation and
pionization regions, the ec' dependence vanishes. We have further seen an explicit example of this result
in the behavior of the total cross sections in the kinematical models of Sec. III. Thus for simplicity we
shall henceforth ignore the distinction between L and F- . We may then write

(
= (4.11)

Finally, using oo(s/m') =~P~(s/m')'" ', we find

(4.12)

Given the form of f„ in (4.9), the fundamental factorization requirement (2.16) is manifest. Hence this
model is directly amenable to the cluster-decomposition approach.

Before presenting the details of this analysis, however, we should point out that the multi-Regge form
of the matrix element M„shown in (4.6) allows two different physical interpretations. One interpretation
argues that since the dominance of a single Regge exchange is valid only for large energy, the matrix ele-
ment M„must for consistency be considered in the "strong-ordered" limit, which, in terms of our varia-
bles, requires q,'. » q,'„. This means that (4.7) should read

S] .+~ —Pl (4.13)

and the subsequent equations should be altered accordingly. The second interpretation takes the form of
M„given in (4.6) as an ansatz valid over all phase space. 4' Since, as we shall shortly see, each of these
versions of the model helps to clarify certain aspects of correlations in inclusive and exclusive spectra,
we shall treat them both.

a. Strong ordered limit. -In the "strong-ordered" limit, the matrix element M„becomes, using (4.13)
and canceling common factors,

1+ f - 2'
~M ~' = P4g~~ i & ~& (4.14)

Hence, after integrating over the "leading" particle momenta and restricting consideration to the pioniza-
tion region, we find that

(4.15)

This equation can be integrated immediately to give a Poisson distribution for the partial cross sections,

0 s A. lns m2
2

Vo m nf
(4.16)

But since "a Poisson distribution arises from uncorrelated emission, " we anticipate that in this simplified



MULTIPARTICLE SPECTRA IN SIMPLE THEORETICAL. . 2675

limit all the correlation functions, both inclusive and exclusive, should vanish. From the cluster-decom-
position analysis it is trivial to verify that this is indeed the case. First, we observe that the expression
for the partial cross section in (4.15) is in the form of (2.15) with all the f„=A.".4' Hence from (2.17), all
g„=0, trivially, for n ~2, and g, =A. . Thus the sum rules relating inclusive to exclusive correlations show
that 7„=0, n & 2, and T, = A., and the cluster decomposition instantly verifies our intuition.

To establish directly that there are no correlations in the inclusive spectra and therefore to verify the
validity of the cluster sum rules, we can evaluate these spectra explicitly. We find for the inclusive one-
particle spectra

+ ''J +
+0 q m, n q ql q q2 "q qm-l "m lvs qm+l m /Vs qn

dq g [A. ln(vs /q)] '
[A. ln(vsq/m')]" "

q, „(m-1)~ (n -m)!

=x—s~.dq
q

Using the result that or/o, =s~, which follows immediately frcm (4.16), we have

dq dq do dq
q 0'~ q

as asserted. Similar1y, the two-particle inclusive spectrum for pl p2 follows from

d 0 2 dp, dp2 ~ ~r-l dql &-2 dq
0' +

0 Pl P2 ), , P, ql P q) -l
+ + ~q+

x
l dq„, r+l dq„, -2 dq

P2 qf+l P2 k+2 qm-l

(4.17)

(4.18)

, dp, dp, g [A. ln(vs /p, )]' ' [Xln(p, /p, )]" ' '
[A. ln(~sp, /m')]"-"

p, p. . .«„(l—1)! (m —I —1)! (n -m)!

, dp, dp, g [xln(&s/p, )]" '
[A. ln(&sp2/m')]" "

p, p, „,„(n-m)! (n -m)!

, dp, dp, ~ (A. Ins)" '

g2 g P 1 P2
Pl P2

Hence, with x,. = p',. /s,

dxl dx2 d 0'
2 dxl dx2

P2(xl ~ X2)
Xl X2 gr Xl X2

=~, (x,)~, (x,)
d Xl dX2

Xl X2

(4.19)

(4.20)

and therefore T, =0 by explicit calculation. Thus the strong-ordered version of the Chew-Pignotti model
yields no dynamical correlations among the final-state momenta. 44 To investigate nontrivial correlations
we must turn to the second version of the model.

Finally, although we have restricted our considerations to the form of the inclusive spectra in the pion-
ization region, it is clear that the similarity of ~M„~' given by (4.14) to the matrix element in the "modified"
phase-space model allows us immediately to determine the spectra in the fragmentation regions as well.
Since the resulting spectra are essentially identical to those discussed in Sec. III C, we shall not treat
them explicitly here.

b. General Case. If we interpret the f„given by (4.9) as an ansatz for the form of the normalized ex-
clusive spectra in all regions of phase space, then the total cross section is given by
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o,(s/I') ~ I

~ dq+ "'r dq,' '"-' dq„'
+ + fg(qlp '''&qg)

+0 n m /~s qI "m /~s q2 "m /Ws qn

q' "'I dq' "'n-I dq+ tt' q+ a
qnI 2 ~ ~ ~ 1+~ ''' 1+ p+ + + +, ,) (4.21)

~0' 8 8
(4.22)

where $, (A, ) is the leading eigenvalue of the eigen-
value equation

I
1=1 I dyy' '(1+ y)'-=A.f (], a).

0
(4.23)

As shown in the Appendix, the constant c(A.) can be
written as

1() ~'(~)If.'I'
where

(4.24)

where a =4m.
The sum in (4.21) can be evaluated by standard in-
tegral equation and Laplace-transform techniques;
we treat the details in the Appendix. The result
is that the total cross section has a leading asymp-
totic behavior of the Regge form

The final equality follows directly by differentiat-
ing (4.23)." As discussed in I, the result that the
one-particle spectrum in the pionization region is
related to the derivative of the leading Regge tra-
jectory function with respect to the coupling con-
stant is common to all models in which the cluster
decomposition is valid and in which an nth-order
cluster contains n particles.

It is straightforward to extend the discussion to
multiparticle inclusive spectra. In particular, we
find that the n-particle inclusive spectrum can be
written, in the region of phase space in which

x, &x, ~ &x„, as

d "& dxi dx„= p„xi, . . ., x„
r I n

sf ($, a)
0

&&C~ C~" C (4.27)
(=K 0

Notice that the "total cross section" given in
(4.22) has in fact been calculated from the behavior
of the exclusive cross sections in the pionization
region. Both the general cluster-decomposition
results of I and II and the preceding specific exam-
ples in Sec. III establish that the actual total cross
section will be modified by multiplicative con-
stants dependent on A. which arise from the con-
tributions of the fragmentation regions. The 8 de-
pendence, of course, is correctly given by (4.22).

A further consequence of our restriction to the
pionization region is that we can determine n only
to within a constant dependent on X. From (4.22)
we have, using (3.14),

The function C(z), which is discussed in detail in
the Appendix, is given by

(4.28)

where the sum runs over all the eigenvalues,
given by (4.23) and for convenience we have intro-
duced the notation f„'=—S f/Sg~& &

. The structure
N

of the n-particle inclusive spectrum as a product
of functions reflects the underlying "short-range
order" or factorization property of the exclusive
cross sections. From the general definition (2.26)
of the inclusive correlation functions, we can use
(4.27) to find

n =A, ' ln, +y(Z),
d$, s
dA. m

(4.25) 7, (x) = X ' -=y(X)
d$,

~, (x) -=C, (x) „dx = dx

dx 1

dg, (A.) dx
dA. x (4.26)

where q(A. ) is essentially determined by the behav-
ior in the fragmentation region.

Evaluating the inclusive one-particle spectrum,
we find using techniques discussed in the Appendix,
that

and (4.29)

7, (x„x,) = y'(X)Z (x, /x, ),

for x, & x,. Higher T„can be calculated similarly.
To illustrate the cluster-decomposition sum

rules explicitly, it is convenient to chose for sim-
plicity a specific value for a =4m,„. A natural
choice is n;„=-,', the approximate average meson-
trajectory intercept, which leads to a =2. For
comparative purposes we can also consider the
case a,„=-,', so that a =1. Further, to avoid ex-
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cessive detail, we shall restrict our present ex-
plicit verification of the cluster techniques to the
cluster-decomposition theorem for o' r/a'0 and the
sum rules for v, and T, for e;„=—,

' . We have also
verified the inversion formulas for e;„=—,

' and both
the sum rules and inversion formulas for a;„=—,';
we shall discuss these results in the qualitative
discussion of Sec. IVC.

For n;„=-,' the first four exclusive cluster func-

tions become

g, (q) =x,

1 I
+ + +)

1

for q, &q2 &q3, and

(4.30)

+ + + + + 2 + + +2 + + +2 +2 +)

Hence the lowest-order terms in the cluster-function sum rules for o' r/o'„v„and ~, are

0 ~s dq,

q 1 dq+

=A. lns+A, '(—,'lns- f.)+A.'(41ns -7)+ (4.31a)

~, (e)=a, (~)+g —a. (4, ~)+ g ' ' a.(~, x„~,)+ ~ ~
dx dxi dX2

~i
[&,q] [xi, x2,q]

=A, +5k. +12k, + (4.31b)

and finally, for q', & q,',

dx dx,~.(~„v.) =z.(e„e.)+ it x Zs(Vz V2 &)+ Z i
t gg(Q'i V2 &g &2)+ ' ' '

[q&,q2, x] [q1..q2.~ye~27 " X X1 2

10q 2q q
qi qi qi

-A. ———5—ln ~+ —ln ~ +5 ~ ln — + ~ ~ ~ (4.31c)

Referring to the Appendix, in which the expansions of the exact forms of o r/v„~„and r, for a;„=-,' are
calculated, we see that the cluster sum rules, as given in (4.31), do indeed agree order by order with the
exact forms of the inclusive quantities. The details of this agreement, while they provide explicit verifi-
cation of the cluster expansion, are primarily of technical interest. The less technical, and therefore
perhaps physically more interesting, results of this model are treated in the qualitative discussion of Sec.
rV C.

q -Type Model

The calculational techniques used to analyze the Chew-Pignotti model are directly applicable to model
cross sections in the y'-type model. For brevity we shall simply quote the results.

The partial cross sections in the pionization region are given by

~p "m2/Ws qi "m I&s q2 "m IWs qn q]. qn-1.
(4.32)
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(4.33)

for q', & q,'& q,'& q,'.
The structural similarity of this model to that

treated in the previous section allows us to read
off the results for the simplest inclusive cross
sections. In particular, we see that the eigenvalue
equation determining the Regge-pole spectrum
becomes

I =Z dyy~ '(I-y).
kp

Thus

(4.34)

(4.35)

and the total cross section at high energy is given
by

~v s 1 1+ (1+4'')"' s
o0 m' 4 (1+4A. )'~' m' (4.36)

Similarly, we find that

(l + 4g)1&0

d)0
dX

(4.37)

and

(1+4U Z/2

T, (x„x,)=-
1

for x, &x, .I + 4X

(4.38)

Verification of the cluster-decomposition sum
rules is now completely straightforward; we shall
therefore simply remark that the sum rules do in-
deed agree with the expansions of the exact re-
sults and proceed to the discussion of the qualita-
tive features of the models.

C. Qualitative Discussion

Let us begin with some general remarks on the
model results for inclusive cross sections. First,
the total cross sections exhibit Regge asymptotic
behavior,

Thus the first few exclusive cluster functions are
given by

g, (q') =A. ,

(4.39)

From the cluster-decomposition theorem (2.22)
we have both an intuitive understanding of this
power dependence on s and an explicit calculational
technique for determining $0(A. ) from the exclusive
clusters. Note, however, that this calculational
technique leads to a power-series expansion for
$0(A.)„since the trajectory function will in general
have singularities as a function of A, —see, for ex-
ample, (4.35) -the question of the convergence of
this series must be confronted. We shall discuss
this point in detail in Sec. V.

In the pionization region the one-particle longi-
tudinal inclusive spectra in the models are con-
stants, independent of the rapidity y = In(q, /m).
This result is common to all models exhibiting
short-range order in the sense of (2.16) and is a
specific illustration of the "central plateau" hy-
pothesis "'which maintains that in the pioniza-
tion region the one-particle spectrum should de-
pend only on q. Further, the explicit form of the
spectra is in each case

do d &g(X) dx
g, '

dX

where $0(A. ) is the Regge trajectory that deter-
mines the leading behavior of the total cross sec-
tion in the model. In this context we should re-
mark that the kinematic correlation models treated
in Sec. III also give this result; there, since $0(A.)
=A,, the one-particle spectra in the pionization re-
gion simply reduce to ~, =X.

The two-particle correlation functions in these
dynamical models also exhibit several general
features. When both particles are in the pioniza-
tion region, we have found that the correlations
depend only on the ratio of the momenta of the two
observed particles; in terms of the rapidities of
the particle, y, and y„ this means that the cor-
relations depend only on the difference y, -y, .
Further, the range of the correlations —that is,
the effective "correlation length" —as @ function
of rapidity depends on the separation between the
leading Regge trajectory and the secondary tra-
jectories. Both these features are common to
models in which short-range order is present. ' '
As Figs. 7(a)-7(c) illustrate, however, the shape
of the correlation function is strongly model-de-
pendent. But this is exactly as one would hope,
since it implies that the structure of v., deter-
mined from experiment will yrovide dynamical in-
formation which will permit one to discriminate
among various possible models. In this sense,
the two-particle correlations are potentially con-
siderably more interesting than are the one-parti-
cle spectra.
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To discuss qualitatively the cluster-decomposi-
tion sum rules relating inclusive and exclusive
correlation functions, it is illuminating to com-
pare graphically the exact and sum rule results.
In Figs. 8(a)-8(d) we plot 7', , the full two-particle
correlation functions, and a7„ the approximations
to these functions obtained from the first three
terms in the cluster-function sum rule. The three
figures refer to the three different examples
treated in Sec. IV B, that is, the Chew-Pignotti
model with a;„=—,

' and with ~;„=~ and the "q'-type"
model. In each instance we see that the approxi-
mation reproduces both the magnitude and shape
of the exact result remarkably well.

We can also interpret the difference in the struc-
ture of the contributions of the various exclusive
correlation functions to the sum rules in an intu-
itively appealing manner. Notice that in each case
the contributions of the higher-order exclusive
clusters to aT, are wider than those of the lower
order g„. But this is exactly as we should expect,
for the undetected particles in the higher-order
clusters can lie "between" the two observed parti-
cles and thereby correlate their motion over a
range in rapidity that is greater than the correla-
tion lengths found in g, . Figure 9 iQustrates this
effect schematically.

In contrast to this general result, we note that
the width of 7, relative to g, -that is, the relation
of the inclusive and exclusive "correlation
lengths" —is model-dependent. Indeed, in Fig.
8(a) we see that zv, )w, whereas in Figs. 8(b)-E2
8(d) the reverse is true.

From the results of Sec. IV B it is obvious that
the accuracy of the approximations given by the
cluster sum rules depends on A,; a comparison be-
tween Figs. 8(b) and 8(c) illustrates this result
explicitly. Further, we have already mentioned
that the question of the convergence of the cluster-
decomposition results, viewed as power series in
A., must be discussed. In view of these observa-
tions, it might be suspected that the accuracy of
the approximation in Figs. 8(a)-8(d) arises solely
from the relative smallness of A, . To dispell this
suspicion and to underscore the significance of
the cluster decomposition, we have plotted in Figs.
10(a)-10 (c) the approximations to 7., resulting
from the "direct inclusive/exclusive relations" in
the sense of Sec. II. Recall that, schematically,

FIG. 7. The two-particle inclusive correlation
functions, 7 2, in the pionization region for (a) the Chew-
Pignotti model with n. = 2 and A, = 0.165 so that (pP.)
= 4, (b) the Chew-Pignotti model with 0.~ = 4 and A, = 0.2
so that gpP) =- 0.2; and (c) the "p -type"model with A. = 0.1
so that (p P) =- 0.1. Notice that in each case v.

2 depends
only on y& -y2 and, in particular, is independent of s.

and

de„,f„
0 n

d'o dC, dC, + dc f0 q q
n~2 n

(4.41)

(4.42)
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FIG. 8. The exact two-particle inclusive correlation functions compared to the approximations obtained by keeping
only three terms in the cluster-function sum rule for (a) the Chew-Pignotti model with e~ = 2 and A. = 0.165 so that
)|pP) = 4 ' (b) the Chew-Pignotti model with e~ = 4 and A, = 0.2 so that ( p(A) —= 0.2; (c) the Chew-Pignotti model with nm
= 4' and A, = 0.3 so that $p P.) = 0.38; and (d) the "p -type" model for A. = 0.1 so that (p(A) = 0.1. In each case the contri-
butions of the three exclusive terms are shown individually.

'

In (b) and (c) notice that Cgs = 0 since g3 = 0 for these
cases.

so that T, can be calculated directly from the f„by

)
dx, dx, x„(d'x) (x dx) (x dx)

—'Qda„, f„--(g ck x,f )x(g de„; „)„„ (4.43)
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Cg&

cg~ = O.

Cg4 = Q iL

FIG. 9. A schematic illustration of the result that the
contributions to 72 arising from exclusive cluster func-
tions g„should have widths that increase as n increases.
The shaded circles represent unobserved particles.

Since the cluster functions g, to g4 are determined
by the exclusive spectra f, to f„ to compare
(4.43) to the results shown in Figs. 8(a)-8(d) we
should keep only the terms through f~. The re-
sulting approximations are shown in Figs. 10(a)-
10(c); as anticipated, the results depend strongly
on ln(s/m') =2Y,„and the approximations to T2

become increasingly poor as s grows. Recalling
that these "direct relation" approximations con-
tain the same dynamical input as the cluster ap-
proximations shown in Figs. 8(a)-8(d), we see
clearly that the cluster decomposition, in addition
to offering an appealing conceptual framework,
can provide a useful and efficient calculational
procedure to relate inclusive and exclusive correl-
ations.

V. CRITICAL DISCUSSION AND CONCLUSIONS

To introduce our final remarks we shall sum-
marize several general observations that follow
from the simple model results of the preceding
sections.

In the discussion of kinematic models we found
that the constraints of energy-momentum con-
servation led to one-particle inclusive spectra
which exhibit a relatively flat central region; this
behavior is expected from the "gas analogy" but
is not yet confirmed by experimental results at
current energies.

In the pure longitudinal phase-space model, the
shape of the inclusive spectrum in the fragmenta-
tion regions depends crucially on the relative
weights of the contributing exclusive processes.

For small n, the spectrum tends to peak in these
regions; for large n, the spectrum rises smoothly
to the central plateau. In the "modified" phase-
space model, in which the "leading" particles in
the final state are distinguished from the "second-
aries, " the one-particle inclusive spectrum for
the secondaries shows a smooth rise to the cen-
tral plateau for all n. Further, in both kinematic
models, the correlations in the two-particle in-
clusive spectra vanish when both particles are in
the central region. From these remarks and the
more specific results of Sec. III we conclude that
kinematic constraints can produce considerable
structure in the fragmentation regions in multi-
particle spectra but should have small effects in
the central region at large s. Clearly, the struc-
ture resulting from kinematic constraints must be
understood in more detail before one can hope to
isolate the dynamical information contained in in-
clusive spectra.

The simple dynamical models treated in Sec. IV
are all characterized by "short-range order"
among the final-state momenta in multiparticle
processes. Hence their specific predictions for
inclusive spectra exhibit the general features
common to "multiperipheral" models. In particu-
lar, the one-particle inclusive spectra are flat in
the central region. Further, the correlations in
two-particle inclusive spectra depend, in the cen-
tral region, only on the difference between the
rapidities of the two particles. In addition, the
widths of these correlations —that is, the. correla-
tion lengths —are determined by the differences
between the leading and secondary Regge poles in
the models. The detailed structure of the two-
particle dynamical correlations, however, is quite
model-dependent; for instance, whereas the gen-
eral Chew-Pignotti model predicts positive two-
particle correlations, the q'-type model leads to
negative correlations.

In addition to providing illustrations of possible
structure in inclusive spectra, these simple mod-
els offer detailed examples of the application of
the cluster-decomposition technique to the study
of multiparticle spectra. To complement their
specific results and to place them in proper per-
spective, we shall now present a general, critical
evaluation of the utility of the cluster-decomposi-
tion approach in this context and discuss the pros-
pects for applying the techniques to phenomenologi-
cal analyses of multiparticle spectra.

First, we observe that the cluster decomposition
provides a conceptual framework in which impor-
tant qualitative features of the model cross sec-
tions and spectra can be understood in simple in-
tuitive ways. Hence, for example, the s~ behav-
ior of the total cross section in the longitudinal
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phase-space models emerges naturally by con-
sidering the form of the exclusive cluster func-
tions in the pionization region. Further, in the
strong-ordered limit of the Chew-Pignotti model,
the direct relation between the Poisson distribu-
tion of partial cross section=. and the lack of cor-
relations in the multiparticle spectra is immedi-
ately clear in the cluster framework.

Second, we note that the cluster decomposition
leads naturally to quantitative relations among in-
clusive and exclusive processes. Qf these quan-
titative relations perhaps the most interesting are
the "sum rules" expressing correlations in inclu-
sive spectra as sums over those in exclusive pro-
cesses. As our specific calculations illustrate,
these sum rules have the very attractive feature
that the number of exclusive contributions neces-
sary to give an approximation of any required ac-
curacy to an inclusive correlation function is in-
dependent of s. Indeed, the model calculations
establish that in certain instances the first few
exclusive contributions provide a very accurate
approximation to the two-particle inclusive cor-
relation function. 4'

Thus from both qualitative and quantitative points
of view the cluster decomposition offers valuable
insight into the structure of the model multiparti-
cle spectra. Even within the context of these sim-
ple models, however, there remain certain ques-
tions to be resolved. We shall concentrate here
on two: the formal extension of the sums over par-
tial cross sections from the kinematic limit of
N =ss to infinity, and the convergence of the
cluster-decomposition sum rules considered as
power series in A..

It is relatively straightforward to demonstrate
that the formal extension of the sums from sIs to
infinity introduces totally negligible errors for
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FIG. 10. A comparison of the approximation obtained
by keeping the first three terms in the "direct relation"
for 72 with the exact result at the two energies 1n(s/m )
= 2'~ = 5 and ln(s/nz ) = 2Fm~ = 15 for (a) the Chew-
I'ignotti model with u~ = 2 and A, = 0.165 so that $ p(A)
= 4, (b) the Chew-Pignotti model with n~ = 4 and A. = 0.2
so that ( p P.) = 0.2; (c) the "y3-type". model with A, = 0.1
so that (p(A) —0 1 Notice that the approximations be-
come poorer as s increases.
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large s in the models treated in Secs. III and IV.
Indeed, since in aQ cases the average multiplicity
is proportional to lns, one can show that the sum
of all terms from C ln(s/m') —here C is a con-
stant -to infinity is negligible. Consider, as an
illustration of this result, the case in which the
partial cross sections obey a Poisson distribution

and

~=cps (~,0' 0'

0 n=0 0

where

-1+ (1 +4k.)'"
2

(5.8)

(5.9)
v A."[In(s/m')]"

nf

Formally, (5.1) implies

(5 1) and

1 [1 + (1 + 4A.)'~']'
4 (1 + 4A.)'" (5.10)

~c s g A."[In(s/m')]"
0 n=0

2 nt

(5 2)

From (5.9) and (5.10) we observe that both c (X)
and n(A. ) have power-series expansions which con-
verge only for A. & —,'. But the general cluster-de-
composition formalism establishes that

provided

1 S-C(lnC - 1n g-I )

[2)T(C lns)'"]' ' lnC —Inq). —1 (5.4)

lnC& Ink, +1. (5 5)

That (5.5) is a natural condition is seen by noting
that n = A. lns; to obtain a good approximation to the
formal result (5.2) we must obviously include
those partial cross sections near the average mul-
tiplicity. Similar proofs mould apply to all the
models discussed here.

The question regarding the convergence of the
cluster sum rules forces us to confront a more
serious problem. As a specific illustration of the
possible convergence difficulties, we shall study
the y'-type model introduced in Sec. IV. We re-
call that, in the pionization region,

f.(q,', q,', . . . , q„") =x" () —~) ~ ()—,"
)

(5.6)

for q, & ~ oq

v " ' dq' "'I dq'
yn I 2 . . .

+ +
~O W&its qI "m2Ws q2

n-I dq+
&&, ." f.(e,', ., v„')

~m2/Vs qn

(5.V)

In fact, we know that the sum in (5.2) should be
truncated at N,„=(s/m')'~'. However, we can
readily see that the error term resulting from
trunc"ting the series at N =C ln(s/m') satisfies

s ) g q)."[In(s/m ')]"
/ n=C1n(s/m ) 8 ~

exp(z[lnA. + lnln(s/m')]]
C 1n(s/m2) 1 (z +1)

(5 2)

o. (A. ) = P o.„(A.),
n=1

where

(5.11)

G
s "~ dq'I ~ ~ ~

m „2/~ q

= q„N)q(, )+q„(x)+o(m'/s).

dqn," z.(~l, , ~:)
m2/Ws

(5.12)

dx A, dx
x (1+4K)"' x (5.13)

and thus clearly has a cluster expansion which di-
verges for A. &-,'.

It is apparent that these convergence difficulties
do not prevent our using the cluster decomposition
to study simple theoretical models, for we have
alternative ways of calculating the inclusive quan-
tities explicitly and hence of knowing the region
in which the cluster expansion converges. It is
equally clear, however, that one must understand
how to proceed when one does not have alternative
calculational methods or when one wishes to use
the sum rules to verify the assumptions underlying
the cluster decomposition. In particular, in po-
tential applications to phenomenology one would
have neither freedom to vary A. nor knowledge of
the validity of the cluster decompositio~.

One possible approach to this problem is the use
of Pads approximants 4' or other summability

Since the nth-order exclusive cluster, g„, is pro-
portional to A.", we see that (5.11) is just a power
series in A. for n(A) and hence will diverge for

Thus although n(A. ) is a well-defined analytic
function of A., with no singularities for A, &0, the
cluster-decomposition expression for o.(A) con-
verges only for A, &-,'. Similar convergence problems
will beset the cluster-function sum rules for in-
clusive spectra; the one-particle spectrum, for
example, is
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TABLE I. The exact trajectory function, the two low-
est-order Pade approximants, f~~ ~ and f~ ~, and the
corresponding number of terms in the cluster-decom-
position expression for n (X) for several values of A, & ~4.

A. n(A, ) f n (A,) +n (A,) f nj(A, ) +n2(A.) +n (A,)

0.5 0.37 0.33
1 0.62 0.60

0.67
5 1.8 0.83

0.26
0

—2
-20
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FIG. 11. An illustration of the use of Pade approxi-
mants to approximate the cluster-function sum rules
beyond their regions of convergence. Shown for the
"y3-type" model with A. = 0.5 are the exact two-particle
correlation function, v2, and the f & ' ~ Pade approximant
to v 2/A, as determined from the first three terms in
the cluster sum rule. The cluster sum rule itself di-
verges for this value of A. ; keeping only three terms in
the sum rule leads to an approximation for 7 2 which is
roughly an order of magnitude too large and hence can-
not be drawn on this scale.

methods to evaluate those cluster expansions
which diverge. As illustrations of these tech-
niques, we present in Table I the results of apply-
ing lower-order Pads approximants to the first
few terms in the cluster expansion of n(X) and in

Fig. 11 a Pade approximation to the two-particle
correlation function, 7, Notice in each case that
weH beyond the region of convergence of the power
series the Pads approximants still give reasonable
values for the results.

Finally, let us consider the prospects for apply-
ing the cluster-decomposition approach to analysis
of experimental data. Clearly the cluster approach
has very attractive features, particularly in the
relations it yields between inclusive and exclusive
correlations. If the results of the simple model
calculations proved indicative, the implications

for phenomenology would be profound; specifically,
these results would suggest that by analyzing a
fixed and possibly small number of exclusive spec-
tra at large energy, one could understand in de-
tail inclusive spectra at aQ higher energies.

Before one can hope to develop a "phenomeno-
logical" cluster decomyosition, however, several
vital questions must be answered:

(1) What is the proper manner to incorporate
charged particles into the approach? In particular,
should one also seek to include isospin- or higher
internal symmetries —by assuming a "matrix fac-
torization"" of the exclusive cross sections?

(2) To what extent is the factorizability of ex-
clusive differential cross sections empirically
valid? Further, should this be a simple factoriza-
tion —as in (2.16) —or a "matrix" factorization?

(3) Beyond what energy should one expect the
asymptotic picture to apply? Can one meaningfully
attempt to relate exclusive and inclusive correla-
tion functions from present data'?

Possible resolutions to these and related ques-
tions are currently under investigation.

Although our "cluster-decomposition" approach
was originally motivated by an analogy to statisti-
cal mechanics, we have not in the present article
dealt explicitly with possible relations between the
simple models for multiparticle spectra and known,
specific statistical mechanical systems. Since it
develops that in some instances exact statistical
analogs of the simple models can be found, it
seems appropriate to remark briefly on the gen-
eral relation of our discussion to statistical me-
chanics.

First, we note that the dynamical models treated
in Sec. IV are exact analogs of one-dimensional,
nearest-neighbor interaction models for fluids or
imperfect gases. A general discussion of such
systems is found in Z. W. Salsburg, R. W. Zwan-
zig, and J. Q. Kirkwood, J. Chem. Phys. 21, 1098
(1953). The conceptual link between multiparticle
hadronic systems and imperfect gases provided by
this reference may prove very useful in refining
and c1arifying the "Feynman-Wilson" gas analogy. '
I thank Dr. Richard Arnold for stressing this point
to me.

Second, it develops that more complicated —and
hence, more realistic -models for multiparticle
hadronic spectra also have exact statistica1 me-
chanical analogs. In particular, Professor T. D.
Lee (private communication, and paper in prepar-
ation) has shown that ladder diagrams in a (3+ 1)-
dimensional @' theory are in exact mathematical
correspondence with a particular one-dimensional
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gas system. This equivalence permits the use of
the full formalism of statistical mechanics in dis-
cussions of the multiperipheral model and further
suggests possible approximation procedures to be
used in the analysis of experimental data. I am
grateful to Professor Lee for informing me of his
results prior to their publication.
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APPENDIX

In this Appendix we provide the technical details necessary to complete the discussion of dynamical cor-
relations in Sec. IV. Specifically, we derive the total cross section and the one- and two-particle inclusive
spectra in the general case of the Chew-Pignotti model. The methods are relatively standard and apply di-
rectly to the "p'-type" model as well.

From (4.9) and (4.12) we see that the exclusive partial cross section for the production of n additional
particles in the Chew-Pignotti model is

2— (A1)

where x, =q,'. /Ws. Introducing y, =x, /x, -1, x, —= 1, we find that

p "m /s ~l "m /sp& ~2

rl
"[(I+y,)'" (1+y )']

"m /sQ .~ «p ~n1 n-1

dg ~ 1
tPl dP m

Here

Dn I ~ ~" ~
1+ ~g (9 ~2 ~n (AS)

with Do(x) = 8(1 —x). Defining D (x) —= p„",D„(x), we
see that the total cross section satisfies

= —+A, —1+/ g ' d D

dy(1+ y)'y'-'D(v) .
V Pp

(A8)

From (AS) we observe that

(A4) In (A8) the second equality follows because D(t) =0
for t & 1. Thus

dp ~ x
D„(x) =X —(1+y)'D —,

kp
(A5)

Dv)= I AJ'dy(1-+y)'y' ' ' (A9)

and hence that D (x) satisfies the integral equation
and the solutions of the eigenvalue equation

D (x) = 8 (1 —x) + A. ~

—(1 + y )'D—I' dy, x
p 3'

(A6)
1 = A.

~ dy y' '(1+ y )' —= A.f (v, a)
P p

(A10)

Introducing a Laplace-type transform"

D(v) =— dxx" 'D(x),
Jp

we can diagonalize (A6) via

(AV)

determine the spectrum of D(v). Further, the
rightmost pole of D(v) determines the leading be-
havior as s -~ of D (m'/ys) and hence of vr/o, .
Near this pole, which occurs at v -=$, (A.) & 0,

$.(&)(-sf/» l.=g,(u)[v —&.(&)1

and hence, using the inversion formula

(A11)
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c+i~
D (e ")= . exp(vx)D(v)dv,

2wz g

we find

(A12)

and

A(x) —= P A„(x)
n=1

m' (ys/m') «&(~

(D -" &5.(&)lf.'I
(A13)

F(x) =-Q F„(x)
n=o

we see that (A1V) leads to

v s 1 1 s gyv

o, m' d-- g,'(z) (f,'( m' (A14)

The differential spectrum for producing a single
particle at the mth vertex in an n-particle exclu-
sive cross section can be written as

Here we have introduced the notation f, ' —= & f/Bvi, &

and used the result that f,'( 0 to write -9f/Bvj„~
=

i f,'i. Using (A4) we see that as s - ~,
(A19)

where F(u) satisfies the integral equation

F(u) =0(1 -u)(1+ u)'+X )
—F —(1+y)'.f1 dy u

p

(A20)

The diagonalization procedure outlined previously
yields

(dx") dx„d
(

)
)

d (x„x) (A15) f(v, a)" l-.f(., a)
(A21)

where

yff 1 ~ . . n 1 2 ~ ~ .

x 1+— (A16)

Changing variables to y,. =x, /x, -1, x, =l, we ob-
tain

where f (v, a) is defined by (A10). Again the right-
most pole of F(v) will determine the leading asymp-
totic behavior of F(x) and thence of A. (x); since we
are evaluating the spectrum in the pionization re-
gion, 1»x» m'/s, and hence the leading asymp-
totic behavior of A (x) is sufficient to determine the
spectrum. Inverting the Laplace transform for
F(x) and substituting into the equation for A, we
find

(A1V) (1/x) K 0()()

x „,„~g,(~)if,'i
(A22)

where

ytf-1 ) yc 1+y 0 1+

)( 19 y ~ ~ o y1 n-1

Hence the inclusive one-particle spectrum, which
follows from (A15) by summing over all n and m,
becomes, after normalizing by o~,

dx do dx 1
T, (x)—-=—=—

(A18)
d$, dx
dA, x (A23)

I p
— =L9 1 —— 1+—

Introducing

Similarly, we can readily establish that the dif-
ferential cross section for the production of two
particles at positions l and m in an n-particle ex-
clusive process can be written, for x, & x, as

(d'x),",dx, dx

( () (~x)d (xx„)

where A is defined by (A16) and

Changing variables to y, =x,
n 1 d

B„(u)= X" ' (1+
o

-I"""("'-)("-) —(":) ( .-')
/z, y, =x, /(x, —1), i ) 2, and calling z/x = u we find

»)(" „',) ~('-'- )

(A24)

(A25)

(A26)
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Comparing (A26) to (A.18), we see that B„(u)
= E„(1/u) and we can apply the previous results to
B(z/x) —= g„",B„(z/x). Note, however, that al-
though 1» z & x» m'/s, we cannot assume that
z»x. Hence, in particular, we cannot claim that
the rightmost singularity of B(v) will dominate; we
must in fact retain a11 poles in the expansion of

f(v, a)
1-Af (v, a) (A2V)

in order to determine the full behavior of B(z/x)
for z/x=1. From the eigenvalue condition (A10)
we see that

I
1=1 dy(1+ y)'y" '

=4.,'.(:) (A28)

As A, -O for general a we get an infinite sequence
of eigenvalues

(„—= -N+X ( ) (A29)

B(v)= .&'(-f ')tv —t~(&)j
(A30)

where f„'=sf/sv~
&

. Thus upon applying the in-
verse Laplace transform to B(v) and evaluating all
the pole contributions, we obtain

For arbitrary a and A, the t„become complicated
functions of A, . For a =n,„ there are n0+1 eigen-
values and the infinite sum in (A28) truncates at
n = n, +1. Proceeding formally in the general case
we note that near the Nth pole,

and

$, (A) = -2+ A. ——, A.'+4AS+

From (A10) we see that for a =4o.;„=2

(A34)

(5+1)' (k+ 2)'

Further, (A31) then implies that

(A35)

(A36)

Combining these results with (4.22) and (4.29) we
find that the lowest-order terms in the expansions
of the exact forms of a'r/o'0, v, , and T, are given
by

In ~ = 0A. In, +InCA.

= (X+ —,A.'+4k. '+. ) ln5 S

cross sections with the results of the cluster-func-
tion sum rules for e;„=-,', we note that in this case
the eigenvalue condition (4.23) reduces to the cubic
equation

t' —t'(3 —4A. ) + t (2 —8)).) —2X =0. (Ass)

This equation yields three (real) roots $„)„and
The explicit forms of these roots as functions

of A. are complicated and not of particular interest
here; we note only that from (ASS) we can estab-
lish the power-series c.xpansions

g, (z) =a+-,'z'+4m'+ ~ ~ ~,

$, (A. ) =-1+2%.—8A.3+

~(*) g (~/~)'"
(A31)

Thus the normalized two-particle inclusive spec-
trum, obtained by summing over n, l, and m in
(A24) and using (A14), (A.22), and (A31), assumes
the form, for x, &x»

+ (-z~'-7~'+ ~ ~ ~ ),

7', (q) = y(A. ) —= A.
0 = A. + 5A.'+ 12k.'+ ~ ~ ~,d)0

and for q,'&q,',

(ASVa)

(Asvb)

d'o'(x„x, ) dx, dx, 1
v, x, x, X')f,'~'

dx~ dx2 1 ~x

(A32)

Recall here that the eigenvalues are ordered such
that g &$ & ~ .&$ & ~ ~ ~

0 N

To compare the exact forxns of the inclusive

+~+ln2 ~+ +5~+ ln ~

Comparing these equations with (4.31) establishes
the anticipated term-by-term agreement between
the cluster sum rules and the expansions of the
exact results.
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p2(x&, x2) p& (x~) p& (x2), 7 2+ 0 in general. The extent
to which 7. represents short-range correlations is thus
unclear, and we therefore prefer the canonical definition
(3.13).

For a general discussion of the properties of the
multiplicity distributions in high-energy scattering,
see A. H. Mueller, Phys. Rev. D 4, 150 (1971).
2~Since one can show that Bn /BA, & 0, it is clear that

(3.14) can be used at finite s only when A « lns.
Notice that the factor (P&+pz ) does not guarantee

that the particle with p~+ (p z ) will have the largest
plus (minus) momentum in the final state but does
strongly enhance the spectra of these distinguishable
particles for large plus (minus) momenta.
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3~We have again used the approximation of "linearizing"
the 6 functions. See Ref. 23.
+The difference in s dependence between 00 in this

model and 0.
0 in the "pure" phase-space model is ex-

plained by the factor (p„'+p& ).
In a more detailed study, currently in preparation,

of the kinematic constraints on inclusive processes in a
(3.+ 1)-dimensional phase space with a transverse cutoff,
we establish that the existence of the .(strongly damped)
transverse momenta also smooths this abrupt cutoff:
D. K. Campbell (unpublished).

34E. Predazzi and G. Veneziano, Lett. Nuovo Cimento
2, 749 (1971).

C. E. DeTar, D. Z. Freedman, and G. Venezziano,
Phys. Rev. D 4, 904 (1971).

K. Biebl and J. Wolf, Phys. Letters 37B, 197 (1971).
3~W. D. Shephard et al. , X'hys. Rev. Letters 28, 703

(1972).
This replacement is, of course, a crude approxima-

tion and in particular cannot reflect the "smoothing"
effects of proper integration over transverse momenta.

The result that v 2 0 in the central region is, of
course, an asymptotic one. But even for this relatively
low s we see that the model v2 is quite small when

y2 m y&
~ 0.

N. Nakanishi, Phys. Rev. 135, B1430 (1964).
+Notice that (4.5) does not represent a "strong-order-

ing" assumption but is rather a general consequence of

the symmetry of ]M„[2.
42G. F. Chew, in Proceedings of the Fourteenth Inter-

national Conference on High Energy Physics, Vienna,
1968, edited by J. Prentki and J. Steinberger (CERN,
Geneva, 1968).
+Recall that we have restricted our considerations to

the pionization region and thus all kinematic correlations
have been ignored.

44In Ref. 7 a quantity called a "correlation fraction"
is introduced to describe correlations among particles
at given links on a multi-Regge chain. This "correla-
tion fraction" is found to be nonzero in the strong-or-
dered Chew-Pignotti model. It is important to recognize,
however, that the canonically defined inclusive and ex-
clusive correlation functions do vanish identically in
this model forn ~ 2.

45We note thtaBf(g.,a)/8 t(& t & 0.
We shall shortly see that this result could have pro-

found implications for phenomenology.
4~For a general introduction to and survey of the appli-

cations of Pade approximants in physics see G. A.
Baker and J. L. Gammel, The Pade Approximant in
Theoretical Physics (Academic, New York, 1970).

4 By "matrix factorization" we mean factorization in
the internal symmetry indices which would perxnit the
exchange of other than vacuum quantum number s.

4~The equivalence of this transform to a Laplace trans-
form is established by changing variables to y = lnx.


