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In this paper we apply the theory of the impact picture to the process of scattering of deuter-
ons. We show that the impact-factor representation plays the same role in a complete relativ-
istic scattering process as the Glauber form does in the scattering of a particle on a static
deuteron. Therefore, as we use the impact-factor representation for the deuteron scattering
amplitude, we include automatically the recoil effects of the deuteron, which must be taken
into account when the recoil momentum of the deuteron is not much smaller than the deuteron
mass. The main difference between the impact-factor representation and the Glauber form is
that in the impact-factor representation, the internal wave function of the outgoing particle
is Lorentz-contracted. This also accounts for the difference we found earlier between our
results in quantum electrodynamics and the corresponding ones in the droplet model. To ob-
tain the Lorentz-contracted wave function explicitly, we give the Lorentz transformation equa-
tions relating the laboratory system and the recoil system, defined to be the system in which
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the outgoing deuteron is at rest.

I. INTRODUCTION

Much of our knowledge of the neutron is derived
from deuteron scattering. Among others, the scat-
tering from deuteron targets provides us with in-
formation on (i) 7+n—~7m+n, (ii) K+n—K+n, and
(iii) e+n—-e+n.

Since the deuteron is a bound state of a proton-
neutron pair, it is necessary to have a theoretical
tool to extract the amplitude of neutron scattering
from that of deuteron scattering. In the past, this
role was adequately filled by the Glauber form, to
which a vast amount of work has been devoted.’

The Glauber form is based on the assumption
that the deuteron can be treated as a static target.
When the recoil momentum A of the deuteron is
comparable to the deuteron mass M,;, however,
this assumption is no longer valid. Thus a new
method is required to deal with deuteron scattering
when the recoil momentum A is of the order of 1
BeV —a region now accessible to experiments.

One of the treatments of nonstatic deuterons has
been given by Casper and Gross.? They applied it
to e+d—e+d, and showed that the effect of Lor-
entz contraction due to the recoil is responsible
for the disagreement of dG z,(—-A%)/dA? at A2=0
with the electron-neutron interaction experiment.
(Their treatment emphasizes only the region of
small recoil A< M,, where the recoil effects are
in general quite small.) Other developments along
this line were pursued by a number of authors.?
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Quite independent of such developments, our
understanding of a general high-energy scattering
process has greatly increased over the past few
years. In particular, there has emerged, out of a
study of quantum field theories, a unified picture
of high-energy scattering. We have now at our dis-
posal many powerful tools to deal with problems of
high-energy collisions. In this paper, we shall
apply them to a specific problem - the scattering of
a deuteron. Our approach will lead to a very sim-
ple and natural formulation of the problem. Fur-
thermore, this formulation is applicable not only to
a loosely bound system like the deuteron, but also
to a tightly bound system such as a hadron. Indeed,
for a hadron with a mass under 1 BeV, the recoil
effects already become important when the momen-
tum transfer is of the order of a few hundred MeV.

II. PRELIMINARY CONSIDERATIONS

In various examples in quantum electrodynamics?*
and ¢° theory,® we have demonstrated that, in the
limit s - with the momentum transfer fixed, the
scattering amplitude is always in the form of the
impact-factor representation. Consider, for ex-
ample, the special case of Compton scattering
where the incident particles may exchange an ar-
bitrary number of photons. (The corresponding
impact diagram is illustrated in Fig. 1.) This ex
ample is chosen here because the incident photon
in this process is treated as a bound system of
two particles (an electron and a positron), and is
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therefore similar to the case of the deuteron.
Furthermore, photon exchanges always give am-
plitudes linear in s, in approximate agreement
with the behavior of diffractive amplitudes if log-
arithmic dependence of the energy is neglected.
The scattering amplitude for this process is given
by

%isf d2bd?x, exp(—ik - 0)I? (F,, X, )I°

X

je? - je? -
1- exp[%%Ko(b -3%) —%Ko(b +§§L)] E .
(2.1)

In (2.1), T,=3A, I° is the electron impact factor
(in the position space) given by

1°=m,™, (2.2)

with m, the mass of the electron, and I7(f,X,) is
the photon impact factor proportional to®

[ Tl ], =0, 2.3)
where
x,=tx2z, (2.4)

and ¢; and z,b‘; are respectively the initial- and the
final-state wave functions of the electron-positron
pair representing the photon. We have taken the
positive z axis to be in the direction of the spatial
momentum of the incident electron.

It is now instructive to compare the impact fac-
tor representation (2.1) with the Glauber form® or
the equivalent formula in the droplet model.” The
Glauber form for the m-d elastic scattering ampli-
tude is

%fdzbexp(_ig.g)fdsxqb;‘()?)qbi(f)

x{1 - exp[ixn(ﬁ— 33X, )+ z‘x,(ﬁ+ =0T
(2.5)

In (2.5), ¢;(¢,) is the wave function for the inter-
nal state of the incoming (outgoing) nucleon, &€,
is the momentum of the incoming pion, and y, and

FIG. 1. Lowest-order impact diagram for the scatter-
ing of a photon by an external field. The lowest-order
impact diagram for Compton scattering is obtained from

this figure by replacing the external field with an electron.

[K=)

X, are the phase shifts associated with 7-z and
m-p scattering, respectively, and are the counter-
parts of (ie?/2m)K, and (-ie?/2m)K, in (2.1). Let us
define the deuteron impact factor as

@)= [ dz gp®,, 2)0R,, ), (2.6)

where, for clarity, we have written ¢,(X,, z) and
¢4(X,, z) in place of ¢,(X) and ¢,(X). Then (2.5) is
seen to be in the form of the impact factor repre-
sentation

’-2—’% f d2bd?x, exp(—iA + D)I4X )

X{l - exP[iX n(S - %i.l_) + iXp(S““ %i.l.)]} .
(2.7)

There is, however, a major difference between
(2.1) and (2.7): The deuteron impact factor I¢ as
given by (2.6) is a function of X, only, while the
photon impact factor depends, in addition, on the
momentum transfer as well. This is the same dis-
agreement we found several years ago when we
compared our results with those of the droplet
model.®

To understand the reason for this discrepancy,
let us study (2.6). Equation (2.6) tells us that the
deuteron impact factor is related to the overlap-
ping of the internal wave functions of the deuteron.
There are two important points we wish to em-
phasize: (i) The function ¢4(X) describes the in-
ternal state of the deuteron in the Lorentz frame
in which the outgoing deutevon is at vest. When A
is comparable to the deuteron mass, the wave
function of the deuteron to an observer at rest in
the laboratory system is not ¢,(X) but is related
to ¢;(X) by a Lorentz transformation. (ii) The
wave functions in (2.6) should %ot be interpreted as
the wave functions at £=0. Rather, they are wave
functions on the light cone £ —z =0 if the momentum
of the pion is taken to be in the direction of the
positive z axis. (If the momentum of the pion is
taken to be in the direction of the negative z axis,
then ¢; and ¢; in (2.6) are wave functions on ¢+2
=0.) This is because the pion is traveling with a
velocity near that of light and the deuteron is
therefore hit at time ¢~z.

With the two observations we made above, let us
call the wave function for the internal state of the
outgoing deuteron as seen by an observer in the
laboratory system to be $#(&, X,, z); then, instead
of (2.6), the deuteron impact factor should read

19, %)= [ de,gp@E %, 2)0,,,2)

=f°° dz ‘p;k(K’ iu Z)¢i(§u Z), (2'8)
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where the wave functions are understood to be
those on the light cone £—2=0. From (2.8), we
see that the deuteron impact factor is dependent
on A. Thus the dependence of the deuteron impact
factor on A has a very simple physical reason: It
comes from the recoil of the target. This explains
the lack of such dependence in the droplet model in
its most straightforward interpretation. Indeed,
this is the underlying reason why, as pointed out
three years ago, the impact-factor representation
and the droplet model agree for Compton scatter-
ing only in the nonrelativistic limit.® The explana-
tion of Lee? for the disagreement between the re--
sults of photon scattering in quantum electrody-
namics and the corresponding ones in the droplet
model is therefore irrelevant.

In the next section, we shall determine
‘pf(K) il’ z )-

III. THE RECOIL SYSTEM

In the preceding section, we have pointed out
that ¢(X,, z) is the wave function of the outgoing
deuteron in the rest system of the outgoing deuter-
on, while the expression (2.8) for the deuteron im-
pact factor involves the wave function of the out-
going deuteron in the rest system of the incoming
deuteron (the laboratory system). We shall refer
to the rest system of the outgoing deuteron as the
recoil system. In this section, we shall study the
Lorentz transformation which connects the recoil
system with the laboratory system.

In the laboratory system, the outgoing deuteron
has the four-momentum

P.f:(PO’ P39 ﬁi.)
= (M, + 302M, 7%, $A%M,71, R), (3.1)

while in the recoil system, the four-momentum of
the outgoing deuteron is

P_;:(Md, 0,6)‘
Notice that
Pf_ =Pf'_’ (3.2)

where the prime indicates the recoil system.
There are, of course, more than one Lorentz
transformation which can bring P, into P;. To see
this, we observe that P} as given by (3.2) is invari-
ant under all rotations and space reflections. As

a result, if L is a Lorentz transformation which
brings Py into P;, (i.e., P;=LP;), then RL is
another such Lorentz transformation where R is
any rotation with or without space reflection. In-
deed, the most general transformation is given by

this form RL, which forms a family of transform-
ations with three parameters.

In order to remove this undesirable ambiguity
due to R, we find it most natural to use the follow-
ing criteria: (i) The transformation does not
change the y axis, i.e., the axis perpendicular to
the scattering plane; and (ii) in the recoil system,
the spatial momentum of the other incident parti-
cle remains in the direction of the positive z axis.
These conditions (i) and (ii) specify the Lorentz
transformation L uniquely. Call the momentum of
the other incident particle to be 2(%’) in the labora-
tory (recoil) system. Then in the high-energy
limit, we have

k~(w, w,0,0).
Since kP,=%'P;, we obtain, by making use of (3.2),

k.=k,,
which implies that

B ~k~(w,w,0,0). (3.3)
Thus the vectors (1,1, 0,0) and (0, 0, 0, 1) are both
invariant under L(A) for all A. Since the subgroup
that keeps two four-vectors invariant is one-di-
mensional, L(A) must be this subgroup. We shall
verify this statement explicitly in the present sec-
tion.

Let A, be an arbitrary four-vector. Then, from
Ak=A'F,

we easily obtain

A_=A", (3.4)
where
A=A tA,. (3.5)

Thus the minus component of a four-vector is the
same in the laboratory system as in the recoil
system. In fact, the minus component is invariant
under any finite Lorentz transformation which
leaves the momentum of the other incident particle

1in the positive z direction. Thus the light cone

t -z =0 has an invariant meaning in all of these
Lorentz frames. Physically, this is because in all
of these Lorentz frames, the other incoming par-
ticle is always traveling with a velocity near that
of light in the positive z direction, and the deuter-
on is always hit at time ¢~z.

Next, we require that the volume of the paral-
lelopiped formed by the vectors A, P, &, and &,
be invariant, i.e.,
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A, AL A} A}l |A, A_ A A,
AZ

M4+M— Md A O Md Md 0 0
¢ = . (3.8)

1 0 0 O 1 0 0 O

0 0 0 1 0 0 0 1

From (3.6), we immediately get
, A

A=A, —M—;A_. (3.7)

Since the y axis is invariant, we have
Al=A,. (3.8)

Equations (3.7) and (3.8) can be summarized as
A_—~
K'l‘—‘KL —M—dA. (3.9)

Finally, from A®=A"%, we get
A=A, -2M, A, +a°M, %A . (3.10)

Equations (3.4), (3.9), and (3.10) completely de-
fine the Lorentz transformation connecting the
laboratory system and the recoil system.

Alternatively, (3.4), (3.9), and (3.10) can be
written as

B 1 A% 1 A% A
AO—<1+2Md2>A0 -2MazA3 _MaA“ (3.11)

, 1 A 1 A? A
Ai=5 j ko +( 1- 2Md2>A3 - A (3.12)
, A A
A=~ EAO +M:A3 +A,, (3.13)
AL=A,, (3.14)

where A is taken to be in the x direction. Thus

Ag A,
As 12 pa)l 40 |, (3.15)
Af A,
Aj A,
where
- 7
1LLar 1A A
2 M2 2MS T M,
1 A2 1 A A
L(a)= -2 _A2 .
(a) N 1 N i 0. (3.16)
A A
-, i, 1 0
L o 0 0o 1

It is remarkable that, unlike the more familiar
forms of Lorentz transformation, no square root
appears in (3.16) for L(A).

It is easily checked that the elements L(A) form
a group. We have

L(A)L(A,) = L(A, +4,) . (3.17)

Thus the inverse of L(A) is L(-A) and the unit
element is L(0). This group is actually the little
group which leaves the null vector [1,1, 0] invari-
ant, in the case of 2 +1 space-time dimensions
with the y axis omitted. The infinitesimal gener-
ator for this group is given by

0 0 -10
r={ 0 010} (3.18)
-11 0 O
0 0 0 O

To understand the meaning of I", let us rewrite
(3.18) as

0 0 -10 00 0 O
0 0 0 O 00 ~
r= 0010 (3.19)
1000|010 0
0 0 0 O 00 0 O

The first term in the right-hand side of (3.19) is
the infinitesimal generator for a rotation in the
x,~x, plane, and the second term in the right-hand
side of (3.19) is the infinitesimal generator for a
rotation in the x,-x; plane.

In terms of I", we have

L(A):exp(—l%r), (3.20)
Since
1 -100
1 <100
= 00 00 (3.21)
0 0 0O
and
r’=0, (3.22)
we have
L(a)=1+T +5(A>2r2 . (3.23)
M, " 2\M,

If we substitute (3.18) and (3.21) into (3.23), we get
precisely (3.16).
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IV. CASE OF SCALAR NUCLEONS

In order to simplify the discussion, let us ignore
the spin of the nucleon and assume that the deuter-
on is a bound state of a scalar proton and a scalar
neutron. The case of spin-; nucleons will be
treated in Paper II of this series.

A. Wave Function in Position Space

Let the wave function of the internal state of the
outgoing deuteron in the recoil system be called
®,(x’), where x’ is the (4-dimensional) relative
coordinate of the proton-neutron system. Let this
wave function on the light cone #' =z’ be called

¢f(:?1,z')=<l>f(x')|t,=z/. (4.1)
By (3.13) and (3.12) on the light cone ¢’ -z’ =0, the
relative coordinates x, in the laboratory system
related to x; by

X =%, (4.2)
A%,
M,
Thus the wave function of the outgoing deuteron in
the laboratory system is

(4.3)

z2'=2z -

- + A%
8,50,20=0,(%1,2 - 2E) (4.4)
a

B. Wave Function in Momentum Space

The recoil effect can also be described in the
language of the momentum variables. Let us first
recall that, for the wave function at equal time
t=0, the spatial momentum of a virtual state is
conserved, while the energy is not. Similarly, for
the wave function at the light cone ¢ -z =0, conser-
vation of momentum holds for the minus compo-
nent and the transverse components, but not for
the plus component. From (3.4) and (3.9), this
conservation law holds both in the laboratory sys-
tem and in the recoil system.

Let us first specify the momenta variables in the
recoil system. The minus component of the out-
going deuteron is equal to M,. If we denote the
momenta of the proton and the neutron in the out-
going deuteron as 2] and k], respectively, then,
as a result of momentum conservation for the
minus and the transverse components, we have

ky_+k;_=Mg, (4.5)

Ezﬁ’;;o. (4.8)
Let us put

ky_=BMg, Ry =(1-BMy; (4.7)
then

0<B<1, (4.8)
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as k,_and k] _ are necessarily positive. We shall
call the relative momentum between these two par-
ticles to be p, i.e.,

p' =3y k)3 (4.9)
then

pL=aM,, (4.10)
where

a=B-3% (4.11)

and, because of (4.8), is restricted to

-l<as<t (4.12)
From (4.6)-(4.11), we get
ky_=(G+aM,, K, =PL, (4.13)
k=G -aM,, Kk, =-p, (4.14)

From (4.13) and (4.14), we easily obtain &, and k,
as

By =GroM,, K =pi+G+a)X,  (4.15)

k, =G -aM,, k, =-pi+(G-a)k. (4.16)
Furthermore,

p-=aM,, B.=Pi+aA. (4.17)

In the above, the momenta without the prime de-
note the quantities in the laboratory system.

The wave function of the internal state of the out-
going deuteron on the light cone is a function of the
minus and the transverse components of the rela-
tive momentum. Denoting this wave function in the
recoil system as f(D’, @), we immediately obtain
from (4.17) that this wave function in the laboratory
system is

F(B,-ad,a). (4.18)

It is interesting to observe from (4.18) that the
wave function in the laboratory system can be ob-
tained from that in the recoil system by a transla-
tion of the transverse component of the relative
momentum. It is also significant that (4.18) is
much simpler than the corresponding formula giv-
en by Casper and Gross® and is valid for a larger
region. (It is valid for arbitrary A rather than for
small A only).

The relationship between f and ¢ will be given in
(5.6) below.

V. SUMMARY
We now summarize the results as follows.

A. Position Space

The 7-d scattering amplitude, with the recoil of
the outgoing deuteron taken into account, is equal
to
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-

ik - > - A+X - A .
i;fdzb exp(—iA - b) fd3x¢f*(xl,z - Md*) ¢;(X.,2) {1 —exp[ix (b - 3%,) +ix (b +3% )]}, (5.1)

where ¢, and ¢, are the initial and the final inter-
nal state wave functions of the deuteron, respec-
tively, and x, and x , are the phase shifts for 7-»
and 7-p scattering, respectively. Equation (5.1)can
be considered to be the relativistic generalization
of the Glauber form. This equation is surprisingly
simple, with the recoil effects represented by a
translation in the z coovdinate. Needless to say,
with a trivial change of notations, (5.1) holds for
the scattering amplitude of a particle from a sys-
tem of two particles.
We may define the deuteron impact factor to be
Id(i?uil)zf dz(b;‘(i_uz - AMZ{L>¢’i(5EuZ);
(5.2)

then the m-d scattering amplitude is in the form of
the impact factor representation

% f dbd?x, exp(—ia D)4 (F,, % )

x{1 - exp[ixn(s —-3X,) +iy ,(B +3%x)]
(5.3)

B. Momentum Space

The impact factor and the scattering amplitude
can also be expressed by integrals over the mo-
mentum space. Let us define the deuteron impact
factor in the momentum space to be

$9(F, 4. = [ dixie RN, %) (5.4)
then

1/2
9d(fu )= (2m™s fdﬁl f da
-1/2

Xf*( ﬁ.l. +qJ. - QK, a)f(ﬁ.u a) >
(5.5)
where

1/2

b(%,,2) = (2m) M2 f a5, [ do

-1/2

—ioMgetipy X, £
xe L f(pyy @)

(5.6)

We see that, in the momentum space, the recoil
effect is represented by a ¢{ranslation in the tvans-
verse component of the momentum.

The 7-d scattering amplitude can be expressed
in the impact factor representation:

B [ s, ql@n o +T00F - T)
= S,(F, +3 )S,(F, =g ],
(5.7)
where

5,@0= [ erie ST iemlig, @), 6.8)

is proportional to thg m-n scattering amplitude of
momentum transfer Q,. A similar expression
holds for S,.

C. Discussion

We make the following remarks:

(i) If we replace the 7 by an electron, i.e., we
consider e-d scattering, then it suffices to retain
the lowest-order terms in the electromagnetic in-
teraction. This means that we can replace
[1 -exp(ix, +ix,)] in (5.1) by-i(x ,+x,)- The scat-
tering amplitude for e-d scattering is then pro-
portional to the form factor

.XJ.

fd%exp(—i{&-il)(pf*‘(i“z - AM )4;{(:?“2).
d
(5.9)

We observe from (5.9) that the Fourier transform
of the form factor is not the charged density, as
commonly supposed. Rather, the quantity that is
relevant to the form factor is the overlapping of
two displaced wave functions on the light cone.
This displacement becomes important as the mo-
mentum transfer is comparable to the mass of the
particle.

To estimate the magnitude of the recoil effect,
let us take

()= ¢, (%) = (a/m)**e™¥2 (5.10)
then the form factor given by (5.9) is equal to

o= A?
La2pr =2y-1/2 _
(L+30°M,™) exP( 16a(1+%A2M,,‘2))'

(5.11)
It is interesting to observe that although the form
factor decreases exponentially when A% <<4 M2,
this exponential decrease levels off as A% becomes
comparable to 4 M,* as a result of the recoil effect.
Detailed numerical analysis of the recoil effect
will be given in a forthcoming paper.

(ii) In the present paper, the spin of the nucleons
is ignored. When A is comparable to the nucleon
mass, the recoil effect due to the spin is signifi-
cant. This will be discussed in Paper II of this
series.
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(iii) In the present paper, we restrict ourselves
to elastic processes only. This discussion is
easily extended to an inelastic process A+B~C
+D, as will be given in Paper III of this series.

(iv) It is straightforward to generalize the im-
pact factor representation to the process of deuter-
on-deuteron scattering. Let the impact distance
between the two deuterons be b and the relative
coordinates be X and X’. Let p and » be the proton
and the neutron, respectively, of the first deuter-
on, and p’ and »#’ be those of the second deuteron.

?2—’% f d?bd?x,d?x’, exp(—iA - DI 4(F,, X UE,, &)

{1 —explix 5+ %, -

where x ,, is the phase shift for pp scattering and
the other notations are obvious.

(v) In the discussion on 7-d scattering here, the
pion is assumed to have a large momentum in the
positive z direction. In other cases, it may be
convenient to choose the momentum of the pion to
be in the negative z direction. The modification is
trivial and we give it explicitly below.

The Lorentz transformation which connects the
recoil system and the laboratory system is

A=A, , (5.13)
A=K, - A*K, (5.14)
AL=A_-2M,'A-K, +A°M,?A, , (5.15)
or, alternatively, we have
1 A% 1 A% A
(1+2 % )A 3L, A, - MdAl, (5.16)
1 A7 1 A? A
A= =9 a7 (1 3y )A A (5.17)
,_ A
Al__M;A - A3+A1: (5.18)
Al=A,. (5.19)

Equations (5.16)—(5.19) are the same as (3.11)-
(3.14) with A~ -A,, A}~ —A} and can be summa-
rized into

The impact distances between the particles are
’ g iz _Llx
pp’, 32X, —32X},
', b+3X +3%,
- 1z 1
np’, b-3X, -3Xi,

nn',

U"i
Np—

1
L+EXL.

Thus the d-d scattering amplitude is equal to

13, 1

x_L)+lXpn(b+2x.L+ x1) "'iX,,p(B"% X, - sz.)“’le,(b—E +3%!, )]}:

(5.12)

Al A,
Al ’
S l=p@| 4 |, (5.20)
A] A,
A} 2
where
, 1 A 1 A? A n
14— == .
| "emr 2wz i, °
1 A? 1 A2 A
L(A)ﬂ —iMdz 1—51‘4—‘12 w 0 _ (5.21)
A A
| 7, M, 10
L o 0 0o 1]

The impact factor is equal to the overlapping of
the wave functions on the light cone x, =0, and is
explicitly given by, instead of (5.2),

f dz ¢} (xl,z +A

Needless to say, conservation of momentum for a
virtual state holds for the plus component, but not
for the minus component. If we interpret « in (5.5)
as the plus component of the relative momentum
divided by M, then (5.6) becomes

)q»(x“ ). (5.22)

1/2

6@,2)=en=u [ap, | da

-1/2
-
xcteuas B3 £(5, )

(5.23)



2644 H. CHENG AND T. T. WU

|

APPENDIX

In this appendix, we give some diagrammatic examples of the wave function on the light cone.
A. Scalar Particle with Pion Loop

As a model for deuteron scattering, consider the elastic scattering of a neutral and spinless particle in
an external field. The scattering proceeds through the following steps: (i) The incident particle turns into
a mt-7" pair; (ii) this pair is scattered by the external field; (iii) the pair recombines to form the out-
going scalar particle. The impact diagram is the same as the one illustrated in Fig. 1. Applying the im-
pact diagram rules,!® we get

= (= (° (1 -8)
9(F,,4.)=g%2 3fd fd* ..B, = . Al
(F,,4.)=g%@2m) P A 5[pl2 +m? —B(1 - P[P, +d. - (2B - DF, P+ m? — \2B(L - )} (A1)
In (A1), m is the mass of the pion and X is the mass of the scalar particle. We see that the impact factor
is indeed in the form (5.5). By comparing (A1) with (5.5), we get

1/2

gz -ad

f(pua)zﬁLz,’_mz_)\z(%_az)- (A2)
Also, from (5.6), we have
1/2 - - 1 2\1/2
- _ - > - 2+ip,* g(‘ - )
_ 1/2
=(2m) 2)\”2g ) a’ae“"“"‘KO([mZ —Az(i - az)]x/zliLl)(% - a?)V2 (A3)
-1/2
If the pion pair forms a loosely bound ‘“deuteron,” i.e., if
A=2m —-¢€, (A4)
where
e<m , (A5)
(A3) can be further simplified. We have
1/2 > > 1 2\1/2
) ~ -3y1/2 = —iakz+ip°x g(‘l—a )
(%)~ (21 fdpl f_m dae R (A6)
In the limit €~ 0, the dominant region of integration in (A6) is
ra=0(e"?), p,=0(e?). (AT)

Thus we may make the approximation § — a@®~} and then replace the region of integration in o to (-, o),
Thus (A6) becomes

p@)~2em a2 g [asp e FH g ame = Ham) e g EREIMER]) (48)

47| X| ’

which is just the Yukawa form.
We may also consider higher-order impact dia-
grams such as the ones in Fig. 2. It is easy to
verify that the impact factor from the sum of such
diagrams is always in the form of (5.5). Thus, by
a proper choice of the wave function f(P,, a), we
may obtain a nonperturbative approximation to the FIG. 2. Higher-order impact diagram for the scattering
scattering amplitude. of a two-body system by an external field.
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B. Vector Particle with Pion Loop

Next we shall consider the case of a neutral meson scattered elastically by an external field. The impact
diagram is still the one illustrated in Fig. 1, where the incident and the outgoing particles are understood
to be of spin 1. Applying the impact diagram rules,!° we get

1 481 —B)P,-(p+q1),
8, 00- a0 [a, [ do— 0 ' ,
(Fod)=g"@n™ Jdb. ) a8 s T~ A5, +4. - (28 - DEP +mi? - AL = B}
where ¢ and j denote the polarization of the incoming and the outgoing meson, respectively, and where p is
half the difference of the momenta of the pions created by the incident vector meson:

(A9)

_ >v_(1 20(p.2+m?) | 20(p 2+m?) . ‘
P=(po, b5, D1) = (2‘17\ - ('1“ = 40[2-)_)\ yZQA+ "('1—_ 4_()[2))&_—’ L) (A10)
Thus
. g(i - a”)"’p,
f(pJ.; a)_ﬁ_Lz +m2—)\2(i-—o¢2)’ (A]-]-)
with
2a(p,%+m? s
P R ryca] e (a2)
where € is the polarization vector of the vector meson.
In the position space, we have
53 27)"3\1/2 fd" fuzd iarz+ipex (%_a2)1/2 i 3
$(X) = (2m)"AM2g Py e ae + lr)Lz +mE - NE - B (A13)
In the limit of small binding energy € -0, we have
o~ -2en g [ d%e*’w?ﬁz‘—p; & _tem) gz $>_exp<;ﬂvl»_; <i%) (A14)

The wave function ¢(X) is as singular as |X[* at the origin. Thus the impact factor in the momentum
space, as given by (A9), is only formal as the integral is divergent. However, for the scattering of a pair
of pions in an electrostatic field, the origin does not contribute to the scattering amplitude. This can be
seen by observing that the bracket in (2.1) vanishes at X, = 0. Physically, when 7* and 7~ coincide, there
is no electric charge anywhere and interaction with the electrostatic field does not occur. We may there-
fore subtract out the contribution from the origin and replace (A9) by

s, 00 [ap, [ ao

x 46(1 _ﬁ)Pi(p+ql)j
3[@2 +m? = 2*B(1 - HR[D. +d. ~ (28 = 1T, ] +m® -2*p(1 - B)

T - preceding term with q, =7, }.

(A15)

The second term in the bracket of (A18), being independent of §,, corresponds to a delta function 5(X,) in
the position space. Hence the inclusion of it in (A15) does not change the scattering amplitude. The ex-
pression on the right-hand side of (A15) is now a convergent integral. This definition of the impact factor
in the momentum space was indeed adopted in quantum electrodynamics.
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A simple model which explains the observed suppression of the K; — u*u~ rate has been
used to calculate the CP-violating contribution to K — Iy decays. For K; — p*u "y this
rate is comparable to the Dalitz-pair rate while for K; — e*e™y and Kg — {[’y the contribu-

tion is small.

Recently there have been many attempts to ex-
plain?® theoretically the observed lower limit on
the K, - u*u~ rate.? If CP nonconservation plays
a dominant role in these decays as suggested by
Lee and Christ! then its implication in other rare
decay modes is worth examining. In this note we
discuss the question of CP nonconservation in
K -1y decays. The C and CP properties of the
various final states possible in these decays are
shown in Table I. The K - Iy decays can take
place through electromagnetic interactions which
are CP-conserving. Since the lepton pair state
has to be produced through a photon conversion it
must be a C-odd CP-even state. Thus K,
~ITCS,)y(M1) and K s~ 1T @S,)y(E1) are the CP-con-
serving electromagnetic decays. The CP-admixed
states in K; and K¢ will be neglected because their
contribution to the K, s,~ Iy rate is small.

We consider the possibility of the existence of
CP-odd nonelectromagnetic interactions. Such an
interaction has been described by Wolfenstein *
which explains the suppression of K, - u*u~ rate
without upsetting any other experimental result.
In this model the interaction Hamiltonian is given
by

H'=iG’ sinfy A3, vavsd, » 1)
where A", is C-odd | AS|=1 axial-vector current and

transforms as the seventh component of SU(3). G’
is the strength of the interaction and is given by

3.8X1072>G'/G>1.1x10"2, 2)

This interaction requires the lepton pair to be
in C-even CP-even state and thus only K,
~IICP)y(E1) is allowed. K¢~ iy decays are not
allowed because the matrix element (y|A}|K) is
zero due to C invariance. This however can take
place through bremsstrahlung in which K ; decays
into I (1S,) state and then one of the leptons emits
a photon, giving /I (*P,)y(E1) final state. CP-con-
serving decays are the electromagnetic K
~11CS,)y(M1) and K g~ T ®S,)y(E1). As a result
the decay rate is simply the sum of CP-even and
CP-o0dd rates and there are no CP-violating K, -
K g interference effects in the photon spectrum.

In this model a definite CP violation could be mani-
fested through a correlation between muon spins
and photon polarization.

It is natural to add to H’ an interaction Hamil-
tonian® H'' where the hadronic current A% is cou-
pled to a vector leptonic current in the form

H' =iG"" sin6, A%, vad, - (3)

This interaction allows K, — I7 (3S,)y(E1) decay, and
K -K interference effects might be observed in
the photon spectrum because K g is electromag-
netically allowed to decay into the same final
states. This interaction, however, does not con-
tribute to K - I7 decays and the conclusions regard-
ing K, - i~ are unaltered. In the following, we



