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In this paper we perform a calculation of the w-¢ mixing problem, using the spectral-function
sum rules of Weinberg, which is more comprehensive than previous similar calculations. In
conjunction with the first sum rule we assume asymptotic nonet symmetry. We use the second
sum rule modified by corrections estimated using the Gell-Mann, Oakes, and Renner model of

the SU(3) ®SU(3)-breaking strong interactions.

The predictions of the model are in good agree-

ment with experiment where accurate experimental data are available. We indicate how it is
possible to reconcile previous competing theories within the more comprehensive framework

of our model.

I. INTRODUCTION

Various authors' have used the spectral-function
sum rules of Weinberg? to investigate the problem
of w-¢ mixing. As data accumulate from electron-
positron storage-ring experiments® and photopro-
duction of neutral vector mesons, these theories
will be put to a more severe test.

In this paper, we extend the earlier work of Das,
Mathur, and Okubo' and of Oakes and Sakurai’ by
systematically exploiting the first Weinberg sum
rule and the modified* second Weinberg sum rule.

We find that the sum rules alone specify the w-¢
mixing angle and, in addition, make several pre-
dictions which seem to be in reasonable accord
with experiment.

II. FIRST SUM RULE

We take the first sum rule to be of the form
Jdmz[m'zp(1)(m2)+p(°)(m2)]=86a3

(@,8=0,...,8), (1)
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which is to say we assume asymptotic nonet sym-
metry. This requires U(3) symmetry of the rele-
vant Schwinger terms for which Okubo has pro-
vided some theoretical justification.® The reason-
ableness of the results obtained from this assump-
tion (which we shall give below) lends further sup-
port to the nonet hypothesis.

The spectral functions for the vector currents
are defined through

—if atzeme 0| T{V VOO

fdmz (1)

fdmzp(°)

z)onv’*‘m quqv
q%+m?® —ie

qudv
q2+m2—ie
+6“06y0fdm m'zp(l)(m2)+p(°)(m2)] )

(2)
We define

(24,V)/%0 [ V(0) [0°(a)) = €, (@)F, - 3)

Fgx, Fy4, and ¥, are defined similarly. In addition
we define

(24,V)V%0 | VL2(0) [ p(g)) = €, (q)o
(24, V)%0 | VA2(0) |w(g)) = €, (g)o, -

We assume the existence of a strange scalar (k)
meson satisfying

(2¢,V)/%0 [V 19(0) [k*(q)) = =f 4, - (5)

Assuming that the vector spectral functions are
dominated by the vector-meson nonet, the first
Weinberg sum rules may be written

(4)

Fp? Fy¥®

*"—mpz e 2L (6a)
2 2 2

Fy” =F_w2 +F_¢2 (6b)

2 ’
mp m, mg

F,2 o I

£ = “’2 5 ¢ (6¢c)
m,® mS mg’
Fuouw F¢0¢
Ludo 2906 g

(6d)
my, my

The last sum rule, Eq. (6d), leads' to the well-
known current-mixing condition

ﬂﬂtan(),,ﬂano:wtane,, , (mn
mgy my

where 6, and 6, are the mixing angles introduced
by Kroll, Lee, and Zumino.® As usual, from the
sum rule, Eq. (6b), we can derive the Das-
Mathur-Okubo® relation

émp T(p=1"17) =m T~ 1*1") +myT(¢p—~1*17). (8)

|

III. MODIFIED SECOND SUM RULE

To obtain more information, we need to know
the angle 6. The authors in Ref. 1 used different
approaches to estimate 6 and derived quite different
values of 4. In this paper we shall show that the
approaches of Das, Mathur, and Okubo® and of
Oakes and Sakurai'’ may be reconciled. We shall
use the modified second Weinberg sum rule togeth-
er with the first sum rules, Eq. (6), to estimate 6.

The original second sum rule is well known to
be incorrect* and must be modified. To estimate
corrections to it we use the Hamiltonian density
proposed by Gell-Mann and co-workers’ as our
model of the symmetry breaking:

FC=3Cy— wolky = Welly , 9)
where 3¢, is SU(3)®SU(3)-invariant, and
(woty + wytty) belongs to the (3,3)+ (3, 3) representa-
tion of SU(3)®SU(3). At the present time, this
model appears to be on a fairly sound footing.
Following the work® of Nieh, Kamal, and Lai and
Lo, who use the techniques of Bjorken, we write the
modified second sum rule in the form

fp<1>(m2) Am® = dag, (Z,)+ Wolloay dyp 5$ts)
+ wodgoydyssUs) (10)

where o,B=0,...,8 and we consider a # 8 only in
the case =0, 3=8.

The first term on the right-hand side of Eq. (10)
is defined by

Jasx@Ivee, &1, v ©)10=doay( 2,) -

The quantities { Z,) and (Z;) are model-depen-
dent (Lai and Lo® and Bjorken®). Using a gluon
model, Bjorken® has evaluated the above double
commutator and concluded that, in general, {(Z,)
and (Z,) are quadrically divergent. In this model,
when the bare quark masses are the same, we
have the interesting result that (Z,) vanishes. It
is then possible to obtain an additional relation
from Eq. (10) other than the three we obtain below
[Eqgs. (11a)-(11c)]. We defer discussion of this
additional, less general, relation to Sec. IVC.
For the moment, we eliminate both (Z,) and (Z,)
as follows.

From Eq. (10), we obtain five independent equa-
tions by setting « =8=3,4,8,0 and =0, 3=8.
These reduce to three independent equations when
(Z,) and (Z;) are eliminated, namely

208 +0))=F 2 +F&+F}?, (11a)

V2(04F4+0,F,)=F,~F&-F}, (11b)



[K=2]

4Fgx® = F 2 = 3(F @ + F 7)== 3wg(uy)
= __szmez

From the current mixing condition, Eq. (6d),
and the first Weinberg sum rule, Egs. (6b) and
(6c), we have

(11c)

9w _=Fo  o5p-"L¢
my mp My
F F (12)
99 o ging==¥
my  m, My
Using Eq. (12) we may rewrite Eqs. (11a) and (11b)
as

2+6=3cos?d, (13a)

V2 sinfcosf=cos?6+5 , (13b)
where

5 =ﬁé‘—mﬂ; . (14)

my®—m,
The solution of Eqs. (13a) and (13b) is

6=0 (i.e., m,=m,) (15)
and

g=arctan(1/vV2), (16)

which are results typical of nonet symmetry.°

Using the current mixing condition and first
Weinberg sum rule, Eq. (6a), we may rewrite Eq.
(11¢) as

4mgx® —m,® - 3(mg’ cos® 6 +m,’ sin®6)

=2(fK/f1r)2(mK*2—mK2) ’ (17)

where we have made use of the Kawarabayashi-
Suzuki-Riazuddin-Fayyazuddin (KSRF) relation®

2 2 2
F,2/my*= f,

Making use of Eqs. (15) and (16), we may re-
write Eq. (17) in the simpler form

2myx® = (m g’ +my?) = (fo/fr P (mgpx® =m,®) .
(177)

If in addition we make the common assumption
that f, =0, we recover the third standard result of
the nonet. hypothesis,®

(177)

Before proceeding, let us compare the explicit
nonet prediction m, =m,, with experiment. [The
prediction §=arctan(1/v2) may be only tested in-
directly. Equation (17) is independent of the as-
sumption of asymptotic nonet symmetry.]

The latest data'! give m,, =783.9+0.3 MeV and
from Orsay® we have m,="780.2+5.9 MeV (with the

2my*® = (m & +m,}7) .
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990-MeV point) or my="175.4+17.3 MeV (without the
990-MeV point). This means that the difference
my,—my, is only of the order of typical electromag-
netic mass differences. Since we are neglecting
electromagnetic effects in this analysis, it would
seem to be quite consistent to neglect an effect of
equivalent order. In addition since it is clearly
quite difficult to pin down an “exact” p mass be-
cause of its broad width, this would seem to be a
good way to “fix” the value of m,. Henceforth, we
shall assume m,=m,, =784 MeV. [Small deviations
from this equality could be taken account of by
dropping the first Weinberg sum rule, Eq. (6c).
In this case it is still possible to calculate 6 from
the current mixing condition and Eqs. (11a) and
(11b). Deviations of 6 from the nonet prediction
would depend on &= (m,’ —m,*)/(m.’ —=m4*) and be
quite small.]

IV. COMPARISONS WITH EXPERIMENT

A. Predictions

We now list some of our predictions and their
comparison with experiment. In this section we
list only those results which depend on m,, =m, and
6=arctan(1/v2).

(1) Introducing the standard dimensionless pho-
ton-vector-meson coupling constants

fp:mpz/FPy fo=V3mg/Fy fu=V3mJ/F,,

this model predicts

1 1
=3 _—9 2 ) =9:1:1.18 .
AN AR ( me

The theoretical predictions of Das, Mathur, and
Okubo! are

(18)

and those of Oakes and Sakurai! are

L.L. i_g :0.65:1.33 .

RN
The experimental results from the Orsay storage
ring yield
1.1 1
The latest photoproduction experiments as sum-

marized by S6ding™ give somewhat different re-
sults:

1. L. ——9 0.9+0.3:1.5+£0.5.

fpz .fw f(b
At present, therefore, it does not seem possible
to discriminate between the various models be-

=9:1.256+0.1:2.1+0.2 .



2620 B. G. KENNY 6

cause of the substantial experimental errors pres-
ent in the measurements of the various f,2/4w. In
view of the present agreement between measure-
ments of f,,.>/4n from Orsay® 2.56+0.4 and photo-
production experiments®® (2.60, no error quoted),
one would hope for better agreement in the future
between the different experimental determinations
of fy2/4nm.

As a final comment we note that, assuming
Sonoy =0 (see below), saturation of the isoscalar
7%y form factor with the w yields®®

1‘}";’—% =(2.28+0.12)x10~2 ,
w

The dimensionless coupling constant f,,0, can
be deduced from the rate I'(w—~ 7%) (see below) to
be £(0.39+£0.04), from which we conclude

f2/4r=23+5,

which may be compared with the Orsay measure-
ment?

fl/Am=18.4x2 |

and the prediction of this model, using the Orsay
result f,*/4m=2.56+0.27 together with Eq. (18),

f.2/4n=23.0£2.4 ,

in good agreement with the deduction of f,7/4x
from I'(w— 7%) above.

(2) In the narrow-width approximation, satura-
tion of the K-meson isoscalar form factor with the
w and ¢ mesons yields

Jus® | forg_ 1 (19)

f w f b 2
Combining this with the result

OJ_MQ,M =0
2 2 ’
my, m¢,

since there is no unitary singlet electromagnetic
current, yields

f¢K7r=

S
fukE
Su

We have used the standard definitions®

f¢/fw =—tandy,

0¢/mé
o'w/mwz

)

| =

3cos?g=

(20)

=3sin?g=

D=

=tang, .

We may also deduce
fwKTr/ferT(:—tanGN . (21)

We shall make use of this later.

Gourdin'® has noted that by measuring the cross
section for

e*+e - ¢p~KK ,
it is possible to deduce from the Orsay data3
| f ox%/f 4|=0.3490.025 (22)

in good agreement with our prediction, Eq. (20).
(3) Assuming SU(3) invariance of the vector—
pseudoscalar—vector-current vertex (i.e., d-type

coupling) we have

V(@ [J5(0) [0°) =(m° [J5(0) [p°) .

Using the vector-dominance model® (VDM) for
the (isoscalar) electromagnetic and baryonic cur-
rents, one obtains from this the relation

Ouw

Fg F, _0O¢
‘/_2(m¢2gp¢n+mw2gpww _m¢2gp¢1r+mw2gpw1r ’

(23)

in a straightforward fashion. Using the results of
Eq. (12), Eq. (23) reduces to

cosé sinf sinf cosé

ﬁ(—rn_;gpdhr - My gpw1r>=——m¢ gp¢ﬂ—mgpw” .

(23"

Insertion of the nonet value for 6 [Eq. (16)] yields
the result

gp(z,,,,:o . (23”)

This means that the strong decay ¢— pr— 37 is
forbidden in our nonet scheme, provided that one
has SU(3) invariance of the vector—pseudoscalar—
vector-current vertex as we have assumed. The
fact that the decay ¢~ 37 is very inhibited com-
pared with what one might expect from the decay
rate of w— 37 supports both of these assumptions.
(According to Pilkuhn'* the ratio of the coupling
constants squared g,,,”: gp¢yr_ 1S approximately
400:1.)

Using the usual vector-dominance model™ for
electromagnetic decays of vector mesons V ~ Py
(which is simply w= pr°=y7° p— wr®~y7° because
the p-¢-m vertex cannot contribute) we predict

1 1
gw.,roy:gp,,oyigq,,ro},:?:f—:0=3:-1:0 (24)
p Juw

115

for the ratios of the various dimensionless cou-
pling constants. (See Gourdin'® for their defini-
tions.)

From the radiative decay width*

T{w—=7%)=1.1+£0.2 MeV

we may deduce’®

|guwroy |=0.39£0.04 . (25)
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Although the decay p— 7% has not yet been ex-
perimentally observed, it is possible to estimate
Bpr0y from the 7% electromagnetic form factor
using p dominance of the isovector part.'®

Using® f,,,*/4n=2.56 £+0.4, we estimate

&pn0y=0.13£0.02 . (26)
From the branching ratio (Lefrancois®)
(¢ —-7°y)/T(¢—~all)=(0.25+0.09)%,
we estimate
|g gnoy| =0.03£0.01 . (27)

Finally, from w-¢ dominance of the isoscalar
part of the m°y electromagnetic form factor,™® we
find that g0, and g,.0, are relatively negative.
Therefore from experiment and VDM we conclude
that

BuwnOy* 8pnOy* & om0y
=—-(0.39+0.04):(0.13+0.02): —(0.03 £0.01),
(28)

in good agreement with the prediction, Eq. (24).
(4) From the Orsay result® fp2/41r =2.56+0.27 and
our predictions for f,,/f, and f /1, [Eq. (19)], we
estimate
f2/4m=23.0£2 ,
fi/ar=195+2 . (29)

Using these estimates together with Eq. (20), we
predict

2 2
L@.rK_=l<Ji)=2.17io.22 ,

47 9\4rx (30)
fwKT(2=_1_(iuf_>_
“4r "36\4s =0.64+0.06 ,

Using the notation of Gourdin'® to relate coupling
constants in broken SU(3), we have

fI{*Kﬂ’2 fmrwz_é(l_%a)z . (31)

47 47 8\ l+a

From the decay width'!
T'(K*—~Knr)=50+1 MeV
we estimate
Frokxn?/AT=1.28+0.03 . (32)

Combining this with the Orsay result® £, 2/47
=2.56+0.4 we find

@=-0.09 , (33)

where we have dropped the error in ¢ which arises
principally from the error in the pmw coupling con-
stant.
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Now using the earlier result
fwKT{/f¢KT(= ~tanéy , (21)
we have in the above notation

fdeTK"z_gfpmrz 1“1)2 2
47 4 47 \1+a cos“fy ,

(34)
fwkx:ymz(l—a)” . 2
4r 4 47 \1+a) ™ Oy -

Note that our expressions for fux% and f % in
broken SU(3) differ from those of Gourdin,'® who
uses the incorrect mixing angle.

With g=arctan(1/v2)=35.2°, 6,=28.6°, we find

2
%:2.1&0.3,

f —2 (35)
LUK -0.65+0.1,
47

in excellent agreement with the predictions in Eq.
(30). [Note that the error estimates given in Eq.
(35) are fairly crude and take into account only the
experimental error in f,,, and not any error as-
sociated with our estimate of a.]

In summary, we have estimated f,xx and f x%
from f,, , using broken SU(3) symmetry for the
VPP coupling constants and found these estimates
to be in very close agreement with the values pre-
dicted by vector-meson dominance together with
the nonet mixing angle. This gives us further con-
fidence in the internal consistency of our treat-
ment and additional support for the asymptotic
nonet symmetry hypothesis.

B. Further Predictions

In Sec. III we found the relation
2mpx® = (my? +m,°) = (f/fr) (¥ = m,*). (167)

If £, #0 it is not possible to deduce information
from this equation about f, or m, without some
further assumption. We recall that if one has a
field theory containing a scalar field and a vector
field which interact, it is necessary to introduce
a new vector field which will correspond to the
physical spin-1 particle. This must be done in
order to prevent mixing of the physical spin-0 and
spin-1 particles.

In certain theories’® the mass of the vector par-
ticle is not shifted by the presence of the scalar
particle. If this were the case, myg* would be in-
dependent of f,. (m, does, of course, depend on
f«-) We would then deduce from Eq. (16) the

standard nonet result
ZmK*2=m¢,2+mw2 , (16”)

together with the interesting equality
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m=mg* , (36)

i.e., the x and K * are degenerate in mass. We
are unable, however, to predict f,.

Using! m4=1020 MeV and m,,=784 MeV we esti-
mate

mg*x =910 MeV , (37

which seems a little high even allowing for the
fact that m%* is heavier than mix. (From the data
of Ref. 11, we estimate an average K * mass of
897 MeV.) Therefore we reject the simple hypoth-
esis that the K * mass is not shifted by the exis-
tence of the «."

In order to proceed further, we must adopt a
specific model of the K *-k mixing. It is interest-
ing, therefore, to consider the work of Gasioro-
wicz and Geffen,'® which not only provides us with
a model, but also indicates a way in which the
theories of Das, Mathur, and Okubo' and of Oakes
and Sakurai'! may be reconciled by taking account
of the kappa meson. Using effective-Lagrangian
techniques, they construct a so-called “super-
Lagrangian” which enables one to estimate the K *
mass shift in terms of f,. They obtain a general-
ization of the current-mixing mass formula of
Oakes and Sakurai, namely

2 in2
41",<2 ___1_5:3<cos29 +s1n2«9) , (38)
mg*"  m, me My,
where T', is defined by
Fp? [ Fy¥
mpz_erK*z (39)

From the first Weinberg sum rule [Eq. (6a)] and
the KSRF relation, we have

T =1+3(f./f. )7 . (40)

[Note that Eq. (38) reduces exactly to the mass
formula of Oakes and Sakurai when f,=0.]

Since we have assumed current mixing for w-¢
(by virtue of assuming the validity of the first
Weinberg sum rule), it is clearly an attractive
proposition to extend this concept'® to the whole
nonet of vector mesons. Using the results m,=m,,
f=arctan(1/v2) of asymptotic nonet symmetry,
the mass formula Eq. (38) of Gasiorowicz and
Geffen simplifies to

2I' 1 1 ,
mk® m¢2 + m (387)

Assuming m,=1020 MeV, m,="784 MeV, and

mgx =897 MeV, we find

(f./f,)?=0.08 . (41)

Combining this with Eq. (16’), we estimate that
m, lies in the range 1000-1100 MeV. (This is

within the currently accepted experimental range
for m,."") It does not seem worthwhile to attempt
to pin down the mass m, more accurately than this
because of the errors involved in the other quan-
tities which enter into the equation defining s,
[Eq. (167)].

We see then that it is possible within our model
(which has the mixing angle 6 fixed through the
assumption of asymptotic nonet symmetry) to rec-
oncile the superficially different approaches of
Das, Mathur, and Okubo® and of Oakes and Sakurai’
by allowing f,#0. This was in fact hinted at by
Oakes and Sakurai, who pointed out that the differ-
ence between the two methods of determining the
mixing angle was only of second order in the SU(3)
breaking. We have explicitly exhibited the differ-
ence here by including (f,/7,)?, which is of second
order in the SU(3) breaking.

As a check on the above speculation, we can ob-
tain independent information on f, by saturating
the weak K-m vertex with the K*. We obtain

_ 2 Fyg*fr¥gn
f+ (0) ‘m— mK*z ’ (42)
which may be rewritten as
8 1/2 m 1
VZ£.(0)T M =<§> 3‘;27"—; Fekgn (43)

using Eq. (39). From the experimental result®
fp2/41r=2.5610.27 and our previous estimate
fr*xn2/471=1.28 £0.03, we may deduce

[V2Z £,(0)]*r =1.027, (44)

where we have dropped the errors arising from
Jo and fyxgr.

If we combine this with the Glashow-Weinberg?®
formula

V2RO =T e (45)
and the experimental result®!

Fx/VZ £,(0)f,=1.27+0.03 . (46)
we are able to deduce

(fe/fx)=0.09 , (47)
and

fK/fw =1.26 ’

(48)

V2 £,(0)=0.99 ,

where we have consistently dropped the errors on
the experimental quantities. The value for (f,/f,)
is in surprisingly good agreement with that ‘de-
duced above, lending support to our adoption of
the model of Gasiorowicz and Geffen for x-K*
mixing as an additional hypothesis to our own hy-
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pothesis of asymptotic nonet symmetry. In addi-
tion, the value obtained for v2 f,(0) is about what
one would expect.

C. A Further Sum Rule

In Sec. III we mentioned that, in a certain model,
the quantity (Z,) vanished, and consequently it
was possible to derive another modified second
sum rule in addition to Eqs. (11a), (11b), (11lc).
From the current-mixing condition and the first
Weinberg sum rules, Eqs. (6), we may write this
additional relation in the form

(mp/fp)z(mK*z - mpz) =3(f*mi” = f* m,* + [ Emyx®)
(49)

It would have been possible to use this relation
in the previous section to deduce f, rather than go
to the trouble of invoking a particular model*® of
K *-k mixing. However, we deferred discussion
of this relation until now because, as indicated in
Sec. III, it appears to be model-dependent.

It is of interest to check the consistency of this
sum rule, Eq. (49), with the sum rule Eq. (16/)
(which is model-independent) together with the
specific model of K *-x mixing discussed in the
previous section. Using the value

(f/fr)?=0.08 ,

deduced from the mixing model of Gasiorowicz

and Geffen together with the result fx/f, =1.26,
which we may deduce from Eqs. (41), (45) and (46),
we rewrite Eq. (49) as

mp 2 mK*z _ mp?‘ B ,
<f,,> ——f1r2 0.219 . (497

The left-hand side of Eq. (49’) may be evaluated
numerically using 7+ =897 MeV, m,= 784 MeV,
fr =130 MeV, together with the experimental re-
sult® f,?/47=2.56 +0.27. We then arrive at the
“equation”

0.215=0.219 , (497)

(The 10% error on the left-hand side arising from
the error in f,?/47 has been dropped.)

It is clear that the model-dependent sum rule
Eq. (49) is extremely well satisfied numerically
and lends support to our earlier estimate of f./f,
base« on the mixing model of Gasiorowicz and
Geffen. Because this sum rule is satisfied much
better than one might have expected, we must con-
clude that the vanishing of (Z;) is not as model-
dependent as we previously have suggested. In the
absence of a realistic model of the strong interac-
tions, it is not clear what the full implications of
(Zz) =0 might be. However, if we assume a spe-

cific model such as the gluon model of Bjorken,
the implication is that the bare quark masses are
equal so that any inequalities in the physical quark
masses arise from SU(3) breaking in the interac-
tion Hamiltonian.

V. SUMMARY AND CONCLUSION

In this paper we have performed a calculation of
the w-¢ mixing problem, using the spectral-func-
tion sum rules of Weinberg, which is more com-
prehensive than previous similar calculations. In
conjunction with the first sum rule we have as-
sumed asymptotic nonet symmetry. This is a use-
ful simplifying assumption and seems to be in
keeping with other approximations that are made;
for example, deviations from exact nonet sym-
metry seem to be of about the order of electro-
magnetic effects (which are consistently neglected
here). In addition we have worked with the second
sum rule, modified by corrections estimated using
the Gell-Mann, Oakes, and Renner model of the
SU(3)®SU(3)-breaking strong interactions.

The results for f,, f,, f bresented in Sec. IVA
are in no better or worse agreement with experi-
ment than previous theoretical calculations. In
order to distinguish between the various theories
on the basis of these quantities, more accurate
experimental data are needed. However, the ad-
ditional results presented in this section seem to
be in quite good agreement with experiment.

In Sec. IV B, we introduced an additional assump-
tion by using the “super-Lagrangian” of Gasioro-
wicz and Geffen to estimate the K* mass shift
from the nonet prediction due to the presence of
the kappa meson. With this additional assumption,
we were able to link the previous works of Das,
Mathur, and Okubo and of Oakes and Sakurai in a
logical fashion, rather than regard them as com-
peting theories, as is usually assumed. A value
for the kappa mass was deduced which lay within
the present experimentally accepted region.

In Sec. IV C a further sum rule, thought to be
model-dependent, was discussed. It was found
that, in fact, it was completely consistent with the
model-independent results of the previous sections
to an accuracy well within experimental error.
This leads us to have further confidence in our at-
tempt to unite the competing theories of Das,
Mathur, and Okubo and of Oakes and Sakurai by ex-
plicitly including the ¥ meson within the frame-
work of the mixing model of Gasiorowicz and
Geffen. In this sense it is hoped that our current-
mixing model for w-¢ is not simply a third alter-
native to the two standard theories, but rather an
intermediate, more exact, model which is hope-
fully closer to the truth than the previous theories.
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We note finally that the accuracy with which the
sum rule discussed in Sec. IV C holds indicates
strongly that it is znot in fact model-dependent (as

we suggested it was in Sec. III). The reasons for
this are not clear to the author at the present time.
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