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We study a model in which multiparticle processes are envisaged as ocurring via the form-
ation of a fireball and a leading particle. We impose a bootstrap condition on the fireball de-
cay distribution by demanding that it be the same, in its rest system, as the over-all distri-
bution in the c.m. system. This leads us to a. set of integral equations for both single-parti-
cle and multiparticle inclusive distributions. We examine these equations in the scaling lim-
it, we show that the multiplicity of produced particles grows logarithmically with energy and
that the multiparticle distributions factorize for particles traveling in opposite directions,
and we obtain a bound on the size of the two-particle distribution function. If Regge con-
straints are imposed, we show that the model predicts that the scaling limit for the single-
particle distribution function, in the central region, is approached from below. Furthermore,
many of the features of a Mueller analysis are clearly exhibited by the model. We illustrate
various properties of the model by means of two examples, one of which is in qualitative
agreement with experiment.

I. INTRODUCTION

Particle production is the dominant feature of
high-energy collision processes, accounting for
roughly 80%%up of all events, and a variety of models
have been proposed to describe these processes. '
Several of these models' consider high-energy pro-
cesses occurring through the formation of one or
several clusters of particles, often called fire-
balls, which then decay into the observed particles.
A general assumption made in most of these mod-
els is that the decay of the fireball is isotropic in

its own rest system;. other details of the decay
mechanism are part of the theoretical input which

distinguishes among various versions of these
models. In this paper we shall also envisage par-
ticle production processes as occurring via the

formation of a fireball, but shall consider the al-
ternative assumption that the fireball decay distri-
bution, rather thanbeing isotropic, is essentially
the same as the distribution of particles in the en-
tire event. This constitutes in effect a bootstrap
hypothesis.

We shall imagine, for simplicity, a world of only
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one kind of (scalar) particle of mass m. Toward
the end of the paper we shall indicate what features
can be extrapolated from this simple model so as
to apply to actual data, and how the idea itself can
be extended to a more realistic situation. Our fo-
cus will be on inclusive distributions, since these
provide an alternate, and in our model simpler,
way of describing multiparticle processes than ex-
clusive distributions.

For any given event, we concentrate our atten-
tion on a single produced particle, which we refer
to as the leading particle, ' and on the distribution
of the rest, which we refer to collectively as the
fireball. The hypothesis which we shall make is
that the inclusive distribution resulting from the
fireball decay, as seen in its own rest system, is
the same as the total inclusive distribution in the
overall c.m. system save for the fact that what
plays the role of s (the square of the total energy
in the c.m. system) for the fireball decay is the
fireball total invariant mass squared, M'. This
bootstrap hypothesis is essentially identical to the
one proposed by Krzywicki and Petersson4 but has
been arrived at independently. It is clear that a
simple multiperipheral model in which the ex-
changed object is the same as the produced parti-
cle can satisfy this hypothesis when the "leading" .

particle is identified with the particle appearing at
the end of the multiperipheral chain. However, the
model we discuss is more general than this, a fact
that will become clearer, for example, when we
examine the Regge content of the model in the pi-
onization region. Our model is also similar in
spirit to a statistical model, in that we assume
that the fireball is itself composed of a leading
particle and a fireball. ' Our basic assumption is
that the distribution of particles is sufficiently
chaotic so that, when one subtracts out the leading
particle, the same chaos remains. '

The p an of the paper is as follows: In Sec. II,
and in an appendix, we derive the basic equations
of the model and study these equations in the scal-
ing limit, deducing various general properties of
the model. We show that knowledge of the leading-
particle distribution determines uniquely both the
single-particle and the many-particle inclusive
distributions. Furthermore we show that the
many-particle inclusive distributions exhibit fac-
torization properties that arise from absence of
correlations among particles traveling in opposite
directions. We obtain restrictions on the possible
shape of the single-particle spectrum and obtain an
upper bound on the two-particle correlation func-
tion in the central region. We also verify that all
energy-momentum constraints are satisfied by the
bootstrap model. In Sec. III we examine the con-
sequences of imposing Regge constraints on the

single-particle distribution at x = 0 and x = +1. The
most interesting consequence of imposing these
constraints is that the single-particle distribution
at x = 0 approaches the scaling limit from belong,
as the energy increases, in accord with the recent
ISR (CERN Intersecting Storage Rings) data. ' Oth-
er consequences that follow from these restrictions
on the model are that there exists a finite correla-
tion length determined, as expected, in terms of
the intercept of the secondary Regge trajectory,
and that the two-particle correlation function is
positive (at least for large rapidity separation in
the central region). Section IV is devoted to illus-
trating some features of the model by two specific
choices of the leading-particle distribution, one of
which yields flat inclusive distributions and the
complete absence of dynamical correlations, and
the other which gives results in qualitative agree-
ment with experiment. In the last section, Sec. V,
we summarize some of the salient features of the
model and suggest possible ways to render the
model more realistic.

II. GENERAL THEORY

We consider a world of one type of scalar parti-
cle. We shall define the single-particle inclusive
distribution, at total c.m. energy squared s, as

N(p, s)=
d
—,. dP=

1 do' d p
Otot P

so that

)ldpN(p, s) =(n(s)) .

In each event we distinguish one particle, which we
call the leading particle, with a distribution
NI. (p, s), and refer to the rest of the other parti-
cles as the fireball. Since there is one leading
particle per event it follows that

~
dPNi(p, s) =1.

Consider now a produced particle of momentum
p. Two possibilities exist: Either it is a leading
particle, of momentum p, or it comes from the
fireball. In this latter case the leading particle has
some other momentum, say p'. Let us denote by
N~ the decay distribution of the fireball. Then we
can write

N(p, s) =Ni(p, s)+ JtdP'Ni(p', s)N~((A~ p), M').

(4)

We have written the arguments of N„ in the fireball
rest frame, so that A~ is the Lorentz transforma-
tion that takes us from the c.m. frame to the fire-
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ball frame (we use A, "p to denote the three-vector
after the transformation), and M' is the invariant
mass squared of the fireball, which of course de-
pends on p', the momentum against which the fire-
ball recoils. Except for the fact that we have not
displayed the possible dependence of N~ on p' and
on s, Eq. (4) is general and merely expresses
mathematically the two possibilities mentioned
above. The bootstrap hypothesis we shall adopt is
that N~ is the same function of its arguments as is
N. Equation (4) is then essentially the same "re-
cursion relation" for N obtained by Krzywicki and
Peter sson. 4

To proceed further, we shall now assume that
NI, (p, s) has a scaling limit, ' and that all trans-
verse momenta are limited. We define

x=2p /v s, y-2p)(/Ms, z =2(A~ p),(/M. (5)

In the scaling limit it is easy to check that'

x if xy&0
z=

x
1- ly l

(Ap p)i=pi+k (»X R}
where

(6)

(x/y)[(1 —~yl)'f'-1]p~ if xy& 0
k i(x, X, pi) =

If we pick, for definitiveness, x ~ 0, then Eq. (4)
becomes

d 1 g
N(x, p~) =N~(x, p )+ ( (pp'

(

—N~(y, p~)N(x, p~+k~)+ —Ni, (y, pd')N I,p~+k~) (x 0) .

The above equation is an integral equation for N,
once N~ is given. For the rest of this paper we
shall consider only the simpler equation obtained
by integrating Eq. (7) over transverse momenta.
Defining

f(x) = &'AN(x ii),

momentum conservation. " These sum rules are
obviously satisfied by N as given in Eq. (4) provid-
ed that N~ itself satisfies them. However, it is
perhaps not so clear that once the bootstrap hy-
pothesis is made, no solution violating energy-mo-
mentum exists for Eq. (11). To see that this is the
case we integrate Eq. (11)over x. Then we have

g(x)=2 'd'p, N, (x, p,),

we have

d
f(x}=ldx)+lJ~

~

~g(y)f(x)

(x & 0). (9)

dx f(x)
~p

4xgx + d —gy 1 —y

f
1 1

, dxd(x)+ dxf(x) ) — dyd())),
Jp 0 J,

implying

Recalling that Nf. (y, p~) was normalized to unity
[Eq. (3)], and using the fact that the distribution is
symmetric in y, we have that

(10)

Hence we can immediately rewrite Eq. (S) as

f (x) =g(x) + (

—g(S)f — (x ~ 0) . (11)
j' "dy x

1 —y

The upper limit in Eq. (11) is 1 —x because kine-
matically f is zero when its argument exceeds 1.
Equation (11)has also been obtained in Ref. 4.

The solution to Eq. (11}satisfies automatically
the inclusive sum rules that follow from energy-

~() r(- )
1 —x (14}

the integral in Eq (11) is the .Mellin convolution of
f with h. Denoting the Mellin transform of f by

dx x =1,
0

which is precisely the energy sum rule. The mo-
mentum sum rule is trivial because f is symmet-
ric in x.

Equation (11}is a Volterra equation for f in
terms of g, with a possible weak singularity since
g(x)/x need not be bounded when x- 0. It can be
solved by taking Mellin transforms. If we define
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1

f (X) = I dx x" 'f(x),
dp

(15) fact that f (x) & g(x) to deduce a general restriction
on f(x), namely,

we have I'dxf (0) ~ — —f (x) ln(l —x)
Jp

(2o)

(16)

f(x) ~g(x), (17)

since the iterative solution of Eq. (11)converges
and is positive since g is. Qfe could equally well
regard Eq. (11)as an equation for g given f. How-
ever, as we shall see below, not all functions f(x)
will guarantee that the resultant g(x) is positive.
Hence Eq. (11) determines an acceptable f (x) in
terms of g(x), the converse not being necessarily
'Le case.

It is clear from Eqs. (10) and (14) that g(0) =h(0)
=1. Furthermore, since g(x) and consequently h(x)
are positive, it follows that for Reh. &0 both g(A)
and Ii(&) are in magnitude less than unity and are
analytic there. Thus f(A) has as its leading singu-
larity a pole at A =0 which implies that f (x= 0)
=constant. The value of this constant is just the
residue of the pole of f (A.) at A. = 0:"

d-
f(0)= -„—,&(~)

'dx—g(x) ln(1 —x)
p x (18)

Since f(0) is finite it follows that, as expected, the
particle multiplicity increases logarithmically with
energy,

(n(s)) = f(0)lns (s-~).
We may use the result of Eq. (18) along with the

Upon inversion, Eq. (16) gives the solution of the
integral equation.

Given a g, or equivalently a leading-particle dis-
tribution, one has a unique solution for f. It fol-
lows directly also, from the Volterra nature of the
integral equation, that

This is an example of the restrictions on f that fol-
lows from positivity of g. What this restriction
roughly says is that if f (x}has a hole near x= 0, it
cannot be too deep, otherwise it cannot be a solu-
tion of Eq. (11). If one uses the energy-momentum
sum rule, Eq. (13), it is easy to see that Eq. (20)
is always satisfied if f(0) ~ 1.

Having discussed some of the general properties
of the equation for the single-particle inclusive
distribution, let us now turn to the equations that
describe the many-particle inclusive distributions.
We shall consider these equations only in the scal-
ing limit and shall integrate over transverse mo-
menta. We begin by defining an n-particle inclu-
sive distribution as

f„(x„.. ., x„)= (/x, /

. /x„/)d

(21)

In this notation f, is what we have previously called
f. We should note that if more than one of the ar-
guments of f„vanishes then f„ is not uniquely de-
termined. However, it will be interesting to con-
sider the limits of f„as its arguments approach
zero in various ways.

We can now proceed to derive an integral equa-
tion for f„ in much the same way as we derived the
equation for f, . Suppose there are produced parti-
cles at x] x2, . . . , x„. Again there are two possibil-
ities: Either the leading particle is at x; (some i
~ n), in which case the fireball provides the other
n —1 particles, or the leading particle is at some
other value y and the fireball provides all the n
particles. The bootstrap hypothesis which we
adopt is that the n and (n —1)-particle distributions
from the fireball are given by f„and f„„respec-
tively. Thus we have

fn(xi' i xn) = 2 Q g (xi)fn-i(~(xi& x'i)& s ~(xi -is xi)& ~(xi+it xi)& ' ' i ~(xni xi))

dy+
, ly! (no 2) (22)

where [recall Eq. (6)]

a if ah&0
z(a, Ii ) =

and the factor of —,
' come from the factor of 2 in the

definition of g, Eq. (8). If we know g and f„„Eq.
(22} is an integral equation for f„. In the Appendix
we show how this equation may be solved by taking
Mellin transforms. Thus we see that knowing g we
can obtain f —= f, from Eq. (11) and then obtain
f„f„.. . , f„ from Eq. (22). Alternatively, if we
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know f„and if Eq. (11)has a unique non-negative
solution for g, we may eliminate g altogether from
Eq. (22) and obtain all f„, n& 2, in terms off„ the
single-particle distribution.

The multiparticle integral equation, Eq. (22),
possesses factorization properties. These matters
are considered in detail in the Appendix, where we

show that there are no correlations between parti-
cles traveling in opposite directions. That is, if
x, ~ x, &0 and x,+, .x„&0, then

n(Xlf ) Xk) Xk+1) ~ ~ ~
y X„)

=fk(x~& ) xk)fn k(xk+(f -' ) xn).

y, —y, = ln R + ln
PS~2

(R-o),
where m„- is the transverse mass, m„
=(m'+p )"'. If we define

(25)

f,"(x)= f,(x, Rx)

then it follows from Eq. (22) that f,"(x) satisfies
[see also Eq. (A7)]

(28)

f,"(~)=n(*)f() „)+n(«)f() „,)
+ J" —n())f.'(, ) . (27)

It is clear from the above that f,"(x) vanishes for
x&1/(I+R) as it must from energy-momentum
conservation.

We see that f,"(x) satisfies the same integral
equation which f does, except that the inhomoge-
neous term is changed. Denoting this inhomoge-
neous term by G, (x) we obtain the Mellin trans-
form solution of Eq. (27) as

G'(~)f.( )-1 g(~). (28)

It is of special interest to study f, (x=0), since
this puts us in the central region for the two-parti-
cle distribution with a finite rapidity separation,
characterized by R. Now f,"(0) is just the residue
of the pole at A. =0 in Eq. (28), so we have

(24)

In the Appendix we also show that the functions f„
obey the sum rules that follow from energy-mo-
mentum conservation. "

For the two-particle distribution, we then need
only consider f,(x„x,) when x„x,&0. Let x, =Rx„.
as s-~, R is related to the rapidity difference
y, -y, by

f,'(0) = ——Fi (~) G.(0)

= f(0)G (0)
(I.+~)-I d=f (o) —g(x)f

Jp x 1 —x

f2(o)-2f(o)f -. (31)

Since, experimentally, it appears that f (x) attains
its maximum at x=0, we have

f,'(o) - 2l.f (o)]'. (32)

The above implies that, in the central region and
in the scaling limit, the two-particle correlation
function satisfies

C,(x„x,) = f,(x„x,) —f (x,)f (x,)

- If(0)]' (x„x,-o). (33)

III. REGGE CONSTRAINTS

Up to now we have studied some general proper-
ties of the bootstrap equations. We wish, in this
section, to inject some information that comes
from a Regge analysis of inclusive reactions. "
According to Regge theory, the shape of the limit-
ing distribution f (x), near x = +I and x = 0, is gov-
erned respectively by the triple-Regge and pioniza-
tion Mueller diagrams shown in Fig. 1. We shall
impose this Regge behavior on f(x) as a constraint
on the model.

The triple-Regge diagram of Fig. 1(a) corre-
sponds to the production of a fireball through the
exchange of a Regge trajectory of intercept u, .
This yields a, behavior of f (x), near x = +1, which
is given by

f (x) - (1 —
l
x

l
)' '"i (x- +1), (34)

neglecting logarithmic terms.
The behavior of f (x) as x- 0 is given by the pion-

ization diagram of Fig. 1(b). The exchange of the
Pomeranchukon together with a trajectory of inter-
cept np yields, as shown by Brower and Ellis, '

f (x) - I x I

' "' (x- o) . (35)

With o.,=c(~=1 we obtain the constant f(0). The
high-lying trajectories that will appear in Eq. (35)

+( «)f( „)
(29)

We may use Eq. (29) to bound f,"(0), for iff,„ is
the maximum value attained by f we have

(s+z) ~
dxf;(o) ~ f(0)f - —

l. r(x)+ "(Rx)], (30)
0 x

which on using Eq. (10) becomes
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have, except for the Pomeranchukon, an approxi-
mately common intercept n, = —,'. Separating the
Pomeranchukon term, we expect then

f(x)= f(0)+A ~x~' 0 (x-0), (36)

where A is a constant to be determined.
Up to now we have considered the bootstrap

equations as being a bootstrap for the entire pro-
cess. While there is not a priori any reason why
diffractive processes, if they survive at infinite
energies, should not bootstrap along with every-
thing else, we here shall investigate a different
possibility, namely, that the bootstrap we are de-
scribing is only for the nondiffractive part. " That
is, the fireball decay distribution is taken to be the
same as the nondiffractive part of the over-all
process. In a multiperipheral model this would

correspond to not including the Pomeranchuk tra-
jectory in the input of the multiperipheral calcula-
tion. Technically this means that, in Eq. (34), n,
is never taken to be o.~ =1. With o. , = —,', f(x) is ap-
proximately constant as x- +1. The results ob-
tained below for the behavior of f(x) near x =0 de-
pend on not including diffraction within the boot-.
strap.

With this limited bootstrap hypothesis, it should
be clear that, if diffraction does persist at infinite
energy, we must modify our definitions of f and f„
in Eqs. (1) and (21) by replacing o„, by the nondif-

fractive cross section. Furthermore, our results
below, which show that correlations in this model

are of short range, should also be understood as
being due to our lack of inclusion of diffractive
processes since, as is well known, "nonvanishing

diffractive processes lead to long-range correla-
tions.

The A, plane used to solve Eq. (11)by Mellin
transforms can be identified as an angular momen-
tum plane. A pole in f(A.) at A. =A., corresponds to a
behavior of f(x), near x=0, like ix~ 0. We have
seen in Eq. (35) that such a behavior corresponds
to a Regge pole with intercept Qp: Ap+1.

The leading singularities of g(X) are poles at A.

= 0 (which we have discussed previously) and at X

=n, —1= ——,'. A pole in f(A.) can arise either from
a pole in g(A) or from a zero in the denominator
when&(A. ) =1. h(A. ) is given by

(37)

The convergence of the above integral is deter-
mined by the behavior of g(x) as x- 1. Since g(x)
& f(x), using Eq. (34), we see that the integral de-
fining h(A) converges for ReA & -2+ 2o, Since k(x)
is positive, h(A) is monotonically decreasing for
ReA. &-2+2o, Furthermore, h(0) =1, so that
h(o. ,—1= ——,')&1 provided that -2+2o. , &n, —1.
This last inequality is satisfied if the trajectory
exchanged in the triple-Regge limit is an ordinary
trajectory, for then n, =n, =-,'. In this case, then,
the pole at A. =o., —1 in f(X) must come directly
from a pole in g(A. ) at A, = n, —1, so that we can
write

(38)

The coefficient of ~x~' "0 in Eq. (36) is then

B
A= 1-h(n, —1) ' (39)

a

(b)

(
b

0

The value of A of course depends on what is the
precise form of g. However, the sign of A does
not: Since g(x) is positive we have B &0; since
h(n, —1)&1 it follows that A &0. This means that

f (x) has an (at least local) maximum at x = 0.
The Mueller diagram of Fig. 1(b) also gives the

approach to scaling in the central region. In
terms of the parametrization used in Eq. (36) one
has

d'P,
d
—(P, =O, s)= f(0)+, „,, „„.(40)

FIG. 1. (a) Triple-Regge diagram for the process
a + b 1+ anything which determines the shape off (x)
as x + 1. (b) Pionization diagram for the process
a + b 1+ anything which determines the shape off (x)
as x 0.

Since A (0, the distribution is predicted by the
bootstrap model to approach the scaling limit from
below, in agreement with the recent ISR data. ' We
should remark that most other models, including
the multiperipheral model, "obtain an incorrect
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sign for A.
In general, it is possible for zeros in the denom-

inator in Eq. (16) to produce poles in f(A.) at com-
plex values of X, as well as at real values for Re~
& -2+2o, However, if g(x)/x is a monotonically
decreasing function of x, as is true in the examples
discussed in the next section, then this cannot hap-
pen for ReA & -2+2o. , since Imh(A) does not vanish
there.

We have seen in the previous section that there
are no correlations between particles traveling in
opposite directions. The Mueller diagram shown
in Fig. 2 gives, by a now-standard analysis, "a
short-range correlation in the central region with
correlation length (=(1—n, ) '

T. hat such a be-
havior follows in the model can be seen directly
from Eq. (29). Expanding f and g according to
Eqs. (36) and (38) we have, as R-0,

'dx Ro 'dxf, (0)=f(0) I

—g(x) f(0)+PA' ' +BA ' —f(x)x' "
I

The two-particle correlation function in the central region is given by

&,"(0)-=f. (o) —(f(o)j '

(41)

'dx & -0'p
=R' "o g —g(x) +B —f(x)x' "0

0 g 1 X gp X
(R- 0). (42)

Since, for small 8, 8 =e'2 '&, we indeed have a
correlation length given by g = (1 —u, ) . Similar-
ly, it can be shown that the many-particle correla-
tion functions all disappear with a correlation
length ( as R- 0. The value of the coefficient of
R' "o in Eq. (42) depends explicitly on what g is;
however, it is not hard to show that the coefficient
itself is positive, for any choice of g."

IV. EXAMPLES

g(~) = I (X}=(I+~)-'. (43)

Then from Eq. (16) it follows that f(A.) =X ', which
implies f(x) =1. In fact it is easy to show that for
any n, f„(x„.. . , x„)= 1 whenever it is kinematical-
ly allowed to exist. This means that, in this ex-
ample, there are no correlations whatsoever.

a a 0

FIG. 2. Mueller diagram fora+5 1+2+ anything
which gives rise to a correlation of range ( = (1-a«) ~.

A very simple example can be obtained by choos-
ing g(x) =x. This example, of course, does not
obey the Regge constraints discussed in the previ-
ous section, but it is nevertheless amusing to con-
sider it. We should note that this example has also
been discussed in Ref. 4.

With this choice of g(x) one has that

For a more realistic example, we can impose
the Regge constraints of the previous section. For
simplicity we shall take n, =n, =-', . Then g(x)-x'"
as x- 0 and g(x)- constant as x- 1. The simplest
function compatible with these constraints is

g(x) = —,'x"', (44)

and we adopt this choice of g(x) for our second ex-
ample. In fact, it can be argued that this form for
g is not totally unrealistic. In proton-proton scat-
tering most of the produced particles are pions,
except near x=+1, but in a large fraction of the
events the two protons are the leading particles.
Except for small x, what we are calling the lead-
ing-particle spectrum should be rather similar to
the actual spectrum of leading particles, the pro-
tons in PP collisions.

In Fig. 3 we display the function g(x) = —,'x'", to-
gether with points representing the proton spec-
trum integrated over P at P„„=19.2 GeV/c, which
perhaps is sufficiently close to the sca..'.ng limit.
The data are from Ref. 19, and the errors arise
mostly from our uncertainty in integrating over p~.
Our choice of g(x) does seem to qualitatively fit the
data, although we must reiterate that there is no
reason to suppose that near x= 0 g(x) has anything
to do with the proton spectrum.

We have displayed in Fig. 4 the function f (x),
along with g(x), obtained by numerically solving
Eq. (11) with g(x) given by Eq. (44). This function
is supposed to represent, in the scaling limit, the
combined inclusive distribution of all produced
particles. Its value at x=0 is 1.63, which implies
(n(s)) =1.631ns. This number is slightly larger
than would be expected from the Echo Lake data, "
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FIG. 3. The function g(x) = 2x ~ together with ex-
perimental points for the process p +p ~p + anything
from Ref. 19, plotted against x.

FIG. 5. The two-particle correlation function in the
central region C2 (0) plotted against R

but more recent ISR data' indicate that this number
should be higher. The value of A obtained, Eq.
(39}, is A = —0.87, which on taking (m~& = 0.4 GeV
predicts

(45)

with s measured in GeV'. If Eq. (40) were valid
down to conventional accelerator energies, which
is not at all certain, then a comparison of data at
these energies" with ISR data would indicate that
the value of A should be perhaps 2.5 times as large
as the value given here.

The sharp rise in f(x) near x =1 occurs because
of the assumed behavior of g(x) -x"', which im-
plies that near x= 1 the integral in Eq. (11)behaves
as (1 —x)"'. In general any behavior of g(x) near
x=0 as Bx' o will yield a contribution to f(x) near
x=1 of the form (1 —x}' o from the integral. It
might be amusing to interpret this behavior of f(x}
as being due to K* exchange with o.zq(0) = —,. How-

(C,) =Clns (s-~),
with

"'dR
C =2 —

CR (0).2

(46)

(47)

In our example, we find C =0.9f(0}. This provides
a measure of the deviation of the exclusive n-par-
ticle cross-section distributions from a Poisson
distribution, since

ever, in general the inhomogeneous term in Eq.
(11}could contain terms that cancel this behavior.

Having obtained the single-particle distribution,
in this example, we have also calculated the two-
particle correlation function in the central region.
The result is displayed in Fig. 5. As can be seen
the correlation is not large; the maximum value of
C,"(0) is about 10%%uq of [f(0)]', which easily satis-
fies the bound of Eq. (32). The value of the coeffi-
cient of 8"' in Eq. (42) is 0.475.

In the absence of any long-range correlations,
the integrated two-particle correlation behaves, at
large energy, as

1.5

1.0

C

f (0}
(s- ~). (48)

0.5 V. CONCLUDING REMARKS

0.0 0.5 I.O

FIG. 4. The function g(x) = 2x~~ and the resultant
function f (x), obtained by solving Kq. (11), plotted
against x.

We have discussed a bootstrap model of inclusive
reactions in a world of one type of particle. The
model is solvable for all n-particle inclusive dis-
tribution functions once the input leading-particle
distribution is given. It presents various attrac-
tive features: For example, it automatically sat-
isfies energy-momentum constraints, it predicts
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factorization among particles which travel in op-
posite directions, and is amenable to the inclusion
of Regge constraints. The main difficulty of the
model, at this stage, is including (or excluding)
diffractive processes in a natural way.

It is clear that the model can be improved in at
least two ways. The first is by improving our
guess for g(x} so as to obtain, perhaps, more real-
istic results. For example, increasing the value
of B in Eq. (38) would tend to increase the value of
f(0). The second and more necessary step would

be to introduce quantum numbers into the model.
This would lead naturally to systems of coupled in-
tegral equations for distributions f' with various
unknown leading-particle distributions, g'. An at-
tractive idea would be to use experimental data to
obtain the various f ', solve the integral equations

to obtain the g', and then use these in conjunction
with the input f to obtain the two-particle distribu-
tion functions predicted by the model and compare
these distributions with experiment.

We have, in this paper, concentrated on the boot-
strap equations integrated over transverse momen-
ta and evaluated in the scaling limit. However,
these equations might also be used to discuss a
bootstrap of the P~ dependence, and/or to study the
approach to scaling.

Finally, we should remark on a purely theoreti-
cal virtue of the model. It contains, in a very
simple but hopefully clear fashion, many features
of the multiperipheral model, of the statistical
picture, and of Mueller's approach to inclusive re-
actions.

APPENDIX

» this appendix we shall show how to solve Eq. (22) by use of Mellin transforms, and prove that the solu
tion exhibits the factorization property Eq. (24) and thaf; it. obeys the energy-momentum sum rules.

Suppose, for definitiveness, that x, & 0 (i & k), x; &0 (i & k). Then we shall write

x; =L; x, (L, = 1; i &0),
(A1)

f&&(xl»' ' ' x«& x«+]»' ' ' xn) f (nL]]x'»' ' L«x]&+«+]xn& ~ ~ ~
&
B xn)n

I

=f«,'n-«(x]& xn) &

with the convention

(A2)

f, '"„(x„x„)= f„(x„),

In terms of this notation we can write Eq. (22) as

(A S)

where, for 04 k4n,

n

«, n-«(x]& n) +8(L/ ])f«-],n-«1 iL i & xn @P 8(+]Xn)f«,n-«- ] x]&1 —IL iXl I i+ni=1
i =0+1

In the first (second) sum in Eq. (A4) f does not depend on L, (R,).
Consider first 04k+n. We define the two-dimensional transform

(A4)

0 l

1 0

It is easy to see that Eq. (AS) has the solution

(A5)

(A6)

If 0=0, then Eq. (AS} simplifies to
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f.[ .x)-.".( x)+ J
''d(—&lf". (&" &).0

with
n

G„(x„)=Q g(R,x„)f„,
i=l f+n

(A7)

(A8)

I 2 k+ I k+2 n

where in the sum f does not depend on R;. In this
case it is sufficient to define the one-dimensional
transform I 2 k+ I k+2 n

1

f"„(X„)= dx„x„" 'f"„(x-„),
0

and Eq. (A7) has the transform solution

Gs(A.„)f"(')=1-"a(" )
'

(A 9)

(A10)

FIG. 6, Mueller diagram for the contribution to the
process a+ b 1+ 2+ ~ ~ ~ +n + anything of poles in

f p, 'n-p (~g~~ni at Ag = O'I 1~ An = &~ —1.

The case k =.n is treated similarly to the case @=0.
We shall now prove that the transform solution (A6) possesses factorization properties, namely,

f»:". «(~i ~.) = f«(~|)f'.-«(~.) (A11)

This equation is trivially satisfied if k=0 or k=n if we define f, = l. Equation (24) follows directly from
Eq. (A11). What Eq. (All) means in terms of a Regge picture is illustrated by the Mueller diagram of
Fig. 6: Poles in (A.„A.„)at (A,'„Ao) correspond to trajectories with intercepts (ni=AD|+1, n~= X„'+1).

For n=1 Eq. (A11) is certainly true. Let us assume it for some n —1, and prove it for n Unde. r this in-
ductive assumption, we can write

G '„,(x„x„)=G„(x,)f"„(x„)+f (x,) G„(x„) (A12)

G«;".-«(~| ~.) = G«(~g)f".-«(~.) +f«(~i)G'. -«(~.)

From Eq. (A10) it follows that we can rewrite Eq. (A13) as

(A13)

» G»'„" «(A„A.„)= « ~'. "
~(

" (I —«[h(A.,)+h(A„)]j,
»

(A14)

and, using Eqs. (A6), (A10), and (A14), Eq. (A11) follows for arbitrary n,.
Finally, we shall prove that the distributions f„satisfy the energy-momentum sum rules. '0 Consider the

case in which all x, ) 0; we shall prove that in this case
fl n-1

dx„f„(x„.. . , x„)= & —Qx) f„,(x„.. . , x„,). (A15)

With the convention f0= 1, Eq. (A15) has already been proven, for the case n =1, in Eq. (13}.
Now let us assume that Eq. (A15} is true for some n —1, and prove that it is true for n. Define

1

f„(x,». . . x„,) = dx„f„(x„.. ., x„) . (A16)

Substituting in (A16) the expression for f„in Eq. (22), we find

n-1 n-l
Xl 1 +i+1 +nf.(x).». xn-1) = 1 — xj g(x() f&&»

Xf Xf X$ Xj

I pl d
1 —x„

(A17)
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where to get the first term on the right-hand side we have applied the inductive hypothesis to f„,. Consider
Eq. (Al'7) as an integral equation for f„; it can be solved by taking a Mellin transform [compare the devel-
opment that led to Eq. (A10)], and hence has a unique solution. But Eq. (A17) is solved by

n-1
f„(»„.. . , .„,) =

)

) -p «,) f„,(»„.. . , »„,), (A18)

as can be seen by substituting Eq. (A18) into Eq. (A17) and making use of the integral equation [Eq. (22) or,
equivalently, Eq. (A7)] satisfied by f„,. Equation (A18) is thus a correct expression for f„; this completes
the proof of Eq. (A15) for arbitrary n

We can now use Eq. (A15}, together with the factorization property [Eq. (24)] to prove the energy and mo-
mentum sum rules. Let x, &0 (i ~k} and x, &0 (k&i &n —1), and consider

dx„ f„(x„.. . , x„)

1
= f«(xi, ", x«) dx. f. «(x"„,x.)

0

n-1
Xj n j X1y ~ ~ ~

y Xn 1 ~

i =k+1
(A19)

Using the analog of Eq. (A15}appropriate to the case in which all the x, are negative, we have also, when

x, & 0 (i & k) and x,. & 0 (k& i & n —1),
0

Ii = dx„ f„(x„.. . , x„)
1

0

dx« f«+l(xl) ~ ~ ~ t x«s xn)f n- «-z(x«+z) ' ' ' ) xn-))
1

= )-Q I«;l)f. ,(«„",«. ,l.~ ~ ~ ~

j= 1

(A20)

The energy-conservation sum rule is

dx„f„(x„.. . , x„)=Is+II.

2-Q l»i)) f. ,(»„,«. ,),~ ~ ~

«

(A21)

and the longitudinal-momentum sum rule is

~ ~ ~

1

dx„, "i f„(x„.. . , x„)=I, -I,
IXn

1

i n-1 +1) ' ' ' y +n-1
i=1

(A22)
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In this paper we perform a calculation of the cu-Q mixing problem, using the spectral-function
sum rules of Weinberg, which is more comprehensive than previous similar calculations. In
conjunction with the first sum rule we assume asymptotic nonet symmetry. We use the second
sum rule modified by corrections estimated using the Gell-Mann, Oakes, and Renner model of
the SU(3) (3SU(3)-breaking strong interactions. The predictions of the model are in good agree-
ment with experiment where accurate experimental data are available. We indicate how it is
possible to reconcile previous competing theories within the more comprehensive framework
of our model.

I. INTRODUCTION

Various authors' have used the spectral-function
sum rules of Weinberg' to investigate the problem
of u- P mixing. As data accumulate from electron-
positron storage-ring experiments' and photopro-
duction of neutral vector mesons, these theories
will be put to a more severe test.

In this paper, we extend the earlier work of Das,
Mathur, and Qkubo' and of Oakes and Sakurai' by
systematically exploiting the first steinberg sum
rule and the modhfied' second Weinberg sum rule.

We find that the sum rules alone specify the ~-g
mixing angle and, in addition, make several pre-
dictions which seem to be in reasonable accord
with experiment.

II. FIRST SUM RULE

Ne take the first sum rule to be of the form

' dm'[m 'p 'i(m')+ pi i(m')]=SO
4

(o', l3 = 0, , 8), (1)


