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We consider the problem posed by the near equality of theft values for the nine 0~ 0+
(P = + or -) superallowed Fermi transitions. So long as one is oblivious to radiative effects,
this near equality of ft values may be (as, indeed, it has been) regarded as a triumph of the
CVC (conserved-vector-current) hypothesis. However, if one takes note of the fact that
CVC, which guarantees the equality of the "bare" ft values, is broken by electromagnetism
and that the charge of the decaying nuclei varies from Z = 1 (for x ) to Z = 27 (for Co54), the
relationship between CVC and the physical ft values becomes obscure; CVC can be upheld
only if one can establish that the renormalization effects are small. In a previous contribu-
tion we used a combination of general theorems and model-dependent arguments to show
that, in the limit of vanishing lepton momenta, Z-dependent renormalization effects arise
only in order Z e (3.9% for Co ). The present paper contains a fuller explanation of the
aforementioned theorems as well as amplified and improved proofs. Also, topics not treated
in our earlier work (corrections for finite lepton momenta, effects of real photon emission,
etc.) are discussed and the model-dependent part of the argument is reviewed.

I. INTRODUCTION

One of the better known conundrums in the theo-
ry of radiative corrections to nuclear P decay is
posed by the near equality of the ft values in the
nine superallowed Fermi transitions listed in
Table I. So long as one is oblivious to radiative
effects there is no difficulty in regarding this near
equality of ff values as a, triumph of the CVC (con-
served-vector-current) hypothesis. ' However, a
naive perturbation treatment of radiative correc-
tions, to the CVC value of the matrix element, re-
sults in a power series in the parameter Z'n;
since this parameter varies from -,37 for m' to
-5 for Co', one might in fact argue that CVC—
which guarantees the equality of the bare ff val-
ues -would lead to vastly different physical ft val-
ues for the transitions of Table I.

It is worth emphasizing that the roots of the
problem lie in the possibility of a coherent pile-up
of electromagnetic effects. Only when the nucleons
act coherently can their total charge Ze interact
with itself, or with a residual charge (Z+1)e fol-
lowing P

' emission, to produce a term of order
Z'n in the ft value.

Some progress towards a resolution of this prob-
lem was made in a previous note. ' We showed that
a considerable amount of apparent Z dependence
in the ft values could be exorcised by making full
use of the CVC hypothesis supplemented with the
postulate that the temporal components of the iso-
spin current generate a local SU(2) algebra. We
addressed ourselves to that part of the problem-
or, more precisely, to an idealized version of the
problem -whose resolution does not hinge on the
details of the nuclear dynamics. Our contribution
was spelled out in terms of two theorems:

Theo~em I. If CVC is broken only by electro-
magnetism, then (a,) to first order in u, (b) to
zeroth order in the lepton momenta, and (c) with
neglect of induced effects stemming from the axial-
vector current, the ft value is independent of Z.

This theorem means that subject to (a), (b), and
(c) all the radiative corrections of order Zn to the
decay half-life are just the Coulombic final-state-
interaction corrections; they cancel, therefore,
in the comparative half-life or the ft value.

Theorem II. The Z -dependent renormalization
effects, which do appear when one goes to higher
orders in the electric charge, are such that any
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TABLE I. ft values for 0 0 Fermi transitions. '

P Transition

"-vr0
$0C 10B

14P 44N

26Al ~ 26Mg

'4Cl-'4S

"Sc-4'Ca
46' 46T

"Mn-"Cr
54CO-54Fe

(3.0+ 0.2)x 103

2973+50

3056+ 12

3052+ 9

3096+ 19

3073+ 9

3083+ 8

3070+ 9

3072+ 18

(a) (bj

'See H. Blin-Stoyle, in Proceedings of the Topical Con-
ference on Weak Interactions, CERN, l969 (CEH,N, Gene-
va, 1969).

potential power of Z is matched or exceeded by a
power of a. That is to say, a renormalization in-
duced by n virtual photons is (formally) at most of
order (Zo.)", not (Z'o)", as a naive counting might
indicate.

These theorems together would imply that radia-
tive corrections to theft values arise only in order
Z'a'. However, before the theorems can be re-
garded as relevant, the following points must be
considered:

(i) Theorem II permits us to write the ft values
in the form

ft = Q a„„c)"(Zn)"
m, n =0

where the numbers a „are a priori unknown. One
does know, however, that the a „depend on the
details of the nuclear dynamics and may therefore
vary from nucleus to nucleus. How sharp is the Z
dependence implicit in the a „?

(ii) Theorem I is equivalent to the statement
that a„vanishes if l, the charged-lepton momen-
tum, and q, the total momentum transferred to the
leptons, are set equal to zero in the matrix ele-
ment. This raises questions such as: Is it not
possible that terms of the form Za(l/M) ln(l/M) or
Zo. l/M (M some unknown mass scale) could become
important for finite l'?

(iii) How does the production of real soft photons
which, due to imperfect energy resolution, nec-
essarily confound the interpretation of the experi-
mentally measured ft value, alter our result'P

(iv) Is it legitimate to neglect induced effects
stemming from the axial-vector current?

These difficulties were not discussed in Ref. 2.
Also, because of space limitations, the treatment
in Ref. 2 was rather abstracted and, in conse-

quence, somewhat imprecise and obscure.
The purpose of the present paper is (a) to pro-

vide full details of the proofs of Theorems I and
II and (b) to discuss the applicability of these theo-
rems to actual decays.

II. RADIA'FIVE CORRECTIONS IN ORDER N

A. Derivation of Theorem I

In the local Fermi theory the contribution of
virtual photons to the radiative corrections of
order n are depicted in Figs. 1. Because all of
the superallowed Fermi transitions (with the ex-
ception of w - w +e + v, }are positron emitters,
we will write our expressions for this case. Of
course, a completely analogous analysis can be
made for negatron emitters.

It is, by now, well known that the corrections of
Fig. 1(a) to the Fermi amplitude can be expressed
at zero momentum transfer in the Feynman gauge
as'

S(yG„d4A e
Mg —— s~ L), . ~ . V „(k), (2.1)

v"'(k) ~f d'xe "*(&Iv'(z"(x)v=((o))l&-),
(2.2)

where J" is the electromagnetic current, V~ =- P~~

—iV2~ is the appropriate AS =0 vector current,

L ~= u„y~(1 —i y, )v, —

(c)

FIG. 1. Diagrams contributing to the Fermi transition
Hl order
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is the lepton current, Gv =G&cos8 is the weak-vec-
tor coupling constant, andA and B stand for the
initial and final nuclear states. The contribution
of Fig. 1(b) to the Fermi amplitude is given by

B(p)

p-k

B(p)~ v Io)

p+k

(„) guGv d k
M2 =

2 ~ 2 . u„(1+iy,)y~4' V2 k +2@

2lp+y kyp
v, Vk'+2l k+ie

Using the relation

(2 3)

v (o)r

A (p)

(a} (b}

r&r&r, =S„~r, Z»r-x+ g~, r„+~», r"r, , (2 4)

Eq. (2.3) can be written as

FIG. 2. The pole terms.

( ) ieav d'k
p a pX

MQ 3 2 k 2 k2 2k I
. u „(1+ iy, )(2l&y~+ k~y&+ k&y„-g&~y ~ k + E &PP k y y, )U, V

4g v2 k +is k +2k ~ i+is (2.5)

Using the Ward identities for V", Eq. (2.5) finally reduces to

d k (2.6)

where we have neglected some terms that vanish
in the limit of zero momentum transfer to the lep-
tons.

As we are only interested here in the corrections
of order o. and there are explicit factors of u in
Eqs. (2.1) and (2.6) we can treat all the matrix
elements in these expressions to zeroth order in
n. In particular, the last term in Eq. (2.6) is the
zeroth-order matrix element multiplied by an ex-
plicit function of a. It is clear that it will give
rise to corrections of order e but not of order
ZA.

Next we turn our attention to the term propor-
tional to I„V" in Eq. (2.6). Because of the ex-
plicit factor l& it may appear at first glance that
this contribution vanishes in the limit of zero lep-
ton momentum. A closer examination shows, how-
ever, that the "pole terms" VP~ depicted in Fig.
2 give rise, after the k integration is performed,
to terms of order I/I. Therefore we write

-i(yGvL),
4w2v 2 (k2 '

)2
(2.9)

we have ignored form factors and terms of order
O(k) in the numerators as their contribution to Eq.
(2.6) vanishes as I-O. Using Eq. (2.8) and carry-
ing out the k integration one finds (as explained in
detail in Appendix A) that the contribution of the
term I& V~~ in Eq. (2.6) to the total transition prob-
ability is —~M'i~'[Znr/P+O(a)], where M'i is the
Eeroth-order amplitude and P is the electron ve-
locity in units of c. The first term in this result
is the familiar Coulombic correction of order Za
which is automatically included in the calculation
of the ft values, while the term O(n) is part of the
radiative corrections of order e and is clearly
independent of Z.

Next we consider the term involving k V "& in
Eq. (2.6), which we rewrite as I, +I„where

VPx. VPx VPk VPxP + P (2.7)
iGvL g d k g p
4w2/2 k'+ ie

Note that V""-VP is not singular as k- 0. It is
then easy to verify that the contribution of
l„(V" —Vg ) to Eq. (2.6) vanishes in the limit of
zero lepton momentum while that of l& VP" must
be retained. Keeping only terms that behave as
1/k as k- 0, we have

(2 8)

where P" is the nuclear four-momentum and Z is
the charge of the daughter nucleus. In Eq. (2.8)

(
1 1

X
k~+2l ~ k+ ic k~+ ie

(2.10)

Using the decomposition (2.7) in Eq. (2.10), one
finds that the contribution of V"

&
—VP „ to I, van-

ishes in the limit l-0. Thus only VP~& need be re-
tained in the evaluation of I,. Inserting the ex-
pression (2.8) into Eq. (2.10) and carrying out the
k integrations, which are now explicit, one verifies
(as is done explicitly in Appendix B) that all the I2

contributions of order Za to.the total transition
probability vanish as l 0.
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In order to evaluate this term all that is necessary
are the terms in V"„oforder 1/k as k-~. These,
in turn, are controlled by the operators of dimen-
sionality &3 in the short-distance operator -product
expansion of T(J"(x)V„(0)) By ab. straction from
the quark models we will assume that for short
distances x„-0:

T(J„( )V"(0))=

+less singular terms, (2.12)

where c, is an undetermined constant which may
be affected by the strong interactions. Note that
Eq. (2.12) also follows from Wilson's enumeration
of the fields of low dimensionality. Under the as-
sumption of Eq. (2.12) one can show that the had-
ronic part of Eq. (2.11) involves only the zeroth-
order matrix element (B

~
V ~A) and, therefore,

it cannot give rise to terms of order Zu.
An alternative procedure is to evaluate the terms

of order 1/k (as k- ~) in V"„by appealing to the
Bjorken-Johnson-Low limit. ' One finds that such
contributions are controlled by the equal-time
commutator [J„(x),V" (0)]. This commutator is
model-dependent. It has been evaluated in the past
in various models, e.g. , field algebra and in the
quark model with naive manipulation of operators,
and in the quark gluon model taking into account
the first nontrivial effects of the strong interac-
tions. ' Although the coefficients of this commuta-
tor differ in the three cases it is interesting to
point out that the operator structure of the commu-
tator is the same: namely, it is proportional to
V'(0). If, by abstraction, we assume that

[J„(x),V"(0)]= (const) V'(0) 5'(x), (2.13)

one can again show that the hadronic part of Eq.
(2.11) involves only the zeroth-order matrix ele-
ment (B~ V ~A) and that, therefore, it cannot give
rise to corrections of order Zn.

Finally, we consider the diagram of Fig. 1(d).
Clearly this diagram is of order a and has nothing

The contribution I, is best combined with M,
given in Eq. (2.1). If it were not for the fact that
these integrals are actually ultraviolet divergent,
the two contributions would canqel each other as
can be checked by performing a partial integration
in Eq. (2.1). In fact, a finite surface term survives
the cancellation. This is best treated by introduc-
ing a Feynman cutoff A'/(A' —k') in the integrand
of Eq. (2.1). One can then show that

SQ 2 8
M, + I, = lim, ~G~L ~A'

„4m v2 BA

to do with the electromagnetic properties of nuclei.
Theorem I is therefore established.

It is convenient at this stage to summarize the
assumptions used in the derivation of this theorem.
On the one hand, as we have already emphasized,
a crucial role is played by the Ward identities as-
sociated with the time-time algebra. (The time-
space algebra used in the derivation follows from
the time-time algebra by virtue of Lorentz invari-
ance. ) On this basis we have been able to discuss
in the limit of zero lepton momenta all the contri-
butions arising from the vector current in a model-
independent manner, with the exception of the sur-
face term of Eq. (2.11). Curiously enough, this
model-dependent surface term is governed by the
very-high-frequency photon contributions. In order
to discuss the Z dependence of this surface contri-
bution in a manner independent of the details of
nuclear structure, we have added another assump-
tion, abstracted from models of current algebra,
about the operator structure of the short-distance
expansion of Eq. (2.12) or, equivalently, about the
operator structure of the equal-time commutator
[J„(x),V (0)]. This assumption is the simplest
possible one and is embodied in Eqs. (2.12) or
(2.13).

B. Emission of Real Photons

The radiatively corrected decay rate, in order
n, contains contributions not only from virtual
photons but also from real photons which are too
soft to be detected experimentally. In the present
context, the only real photons of interest are those
emitted by the hadrons since they can give rise to
contributions of order Ze in the amplitude. In the
limit of zero momentum transfer to the leptons,
however, the amplitude for infrared photon emis-
sion from the hadrons is proportional to

P'E P'E' P'6
Ze —(Z —1) e' -e

pk k pk
where P is the nuclear momentum, and 0 and e are
the photon momentum and polarization vector, re-
spectively. The amplitude is, therefore, of order
e rather than Ze.

C. Corrections for Finite Lepton Momenta

The following question naturally arises: What is
the order of magnitude of the terms of order Zo.l,
Zo.q which escape the domain of validity of our
previous results?

These terms are model-dependent and we will
limit ourselves to the following observations.

(i) The greatest apparent danger is that, because
we are dealing with nuclei rather than more ele-
mentary hadrons, very small energy denominators
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may arise. For example, in discussing the first
term in Eq. (2.6) we neglected contributions from
l„(V&~—Vz""). Although we showed that these van-
ish as l- 0, the possibility exists that for finite l
they are actually of order Znl/~ where ~ is the
difference in energy between two nearby nuclear
states. If ~-O(l) these terms would appear to be
of order Zu. Note, however, that schematically
such a contribution is of the form

Z af (B IJ"(0) I I)(I I
V-'(o)

I &)
iPg —P

where I is the appropriate intermediate state. If~ is very small, the momentum transfer between
I and the initial and final states is also very small.
As J" and V are conserved currents (to zeroth
order in e), the matrix elements (B

~

Z"
~
I) and

(I~ V [2) are forbidden in such circumstances
and, therefore, they are actually very small.
Thus, although such small energy denominators
may arise, their effect is greatly inhibited by the
forbidden nature of the relevant matrix elements.

(ii) Model-dependent calculations of the terms of
order Zal have been carried out by Dicus and
Norton' who have found them to be of order ZelR
where R is essentially a nuclear charge radius.
We note that these contributions are of second
order in small quantities (both Zn and l R are
small) and may perhaps be of order of magnitude
similar to other neglected effects, such as terms
of order (Za)'.

D. Effects Stemming from the
Axial-Vector Current

Unfortunately, effects stemming from the axial-
vector current can only be discussed qualitatively.
With reference to Fig. 3 we note that since the
transitions A. —I and I'- B are induced by the
axial-vector current, neither I nor I' can have the
same parity and angular momentum as A or B.
The electromagnetic transitions I-B and A. - I'
therefore vanish in the soft-photon limit.

Now the possibility of a coherent pile-up of elec-
tromagnetic effects arises by virtue of the fact
that the virtual photon can be soft enough to see
the total nuclear charge; however, the photons in
Fig. 3 see not the total charge but much more
complicated dynamical entities, viz. , the transition
moments. Thus while there is no a Priori expec-
tation that one is dealing with an amplitude of
order Zu, one can make no statement about orders
of magnitude without going into specific models.

In an independent-particle model of the nucleus,
the nucleon which undergoes the Gamow- Teller
transition must also be the nucleon which under-
goes the electromagnetic transition; otherwise
momentum will not be conserved. In this model, '
therefore, the amplitude for the process depicted
in Fig. 3 is of order n rather than Za. .

III. MULTIPHOTON EFFECTS

A. Derivation of Theorem II

Theorem II (see Ref. 9) states that general re-
normalization effects, in the ft values, of order
Z"n are such that m~ n. In obtaining this result
we assume that it is physically meaningful to char-
acterize the order of magnitude of nuclear matrix
elements involving several currents by the prod-
uct of the coupling strengths of the individual cur-
rents. Following the usual practice of quantum
field theory, we further identify such coupling
strengths with the zero-momentum-transfer ma-
trix elements of the associated currents. The
meaning of this assumption is discussed in Sec.
II B.

We will study the derivation of this theorem for
the class of diagrams depicted in Fig. 4, that is,
those diagrams in which an arbitrary number of
virtual photons are attached to the hadronic line.
It will be immediately clear that the same result
holds for those diagrams in which some or all
photons are exchanged between the hadronic and
leptonic lines and those diagrams involving real
as well as virtual photons.

B(p) B (p)

x g~(o)

I p-k I' p+ j

'A (o)

A (p)

I

A (p)

(o) (b)

FIG. 3. Graphs involving the axial-vector current. FIG. 4. Higher-order radiative correction.
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The matrix element of Fig. 4 can be written as follows:

/2 p2 2 2

&B I V+„(0)IA& = — lim
2

d'y "*-""&oIT(4( )y.'(y) V'„(0))I 0&,
(3.1)

where the P s are the interpolating fields for the initial and final nuclei, the caret indicates operators
which evolve in time according to the exact Hamiltonian,

H =H@„+H„+H,j
and

I 0& is the vacuum state of H.
It will be sufficient for our purpose to study the perturbation expansion of the improper vertex function

of the vector current:

&0I T(j,(x)p~(y)V'(0»I &

=Z
n, m

)
n+ m

d'x dx dy gtggI

x&0
I T(ya(x)p„(y) V2 (0)Jp'(x, )A„(x,) ~ ~ ~ Jv" (x„)A„(x„)Js' (yx)A a, (y, )~ ~ ~ J2" (y, )A8„(y,)) I 0& ~

(3.2)

In the right-hand side of Eq. (2.2), Jv and J2 represent the isovector and isoscalar parts of the electro-
magnetic current, all operators evolve in time according to Ha„+H, t and I0& is the corresponding vacuum
state. In particular V& is conserved.

As explained at the beginning of this section, we characterize the coupling strength of each vertex by the
zero-momentum-transfer matrix element of the associated current. Thus to the 8 vertices we associate
a coupling strength proportional to the isoscalar charge of the system (=-2eA-Ze, for all the heavier nu-
clei) while to the V vertices we associate a, coupling strength e (I I, I

& 1 for all the nuclei under considera-
tion). This point is important for our discussion. In fact, the theorem on the multiphoton effects must be
understood in the context of this characterization.

The general term in the double summation of Eq. (3.2) is potentially of order (Ze)"e"= (Zo.') "+"~ 2Z+

Therefore only the terms with n& m are potentially dangerous. To study these terms we fix m and consider
all the terms with n - n2. Next we eliminate all the A by pairwise contraction (with the Aa. or with other0] 5

A„.) in all possible ways, but we do not contract the A8 among themselves. To be specific, suppose we
contract allA . with the Aa,. in all possible ways. We get n(n —1) . (n —n2+1) such terms so that this par-

5

ticular contribution gives

~ ~ ~
1

(-2e) (-f)

&&0I T(pa(x)p~(y)v'„(0) Jp'(x, ) .Jv (x„)J2'(y, ) J2"(y„)x'(y„.,)".x'(y. ))10&

(3.3)

where K =eJ „A" is the "isoscalar" Hamiltonian density and the D's stand for photon propagators. Sum-
ming over n this expression becomes

J
2m

dx, . ~ ~ dx d y, ~ ~ d y D~8 x, —y, ~ ~ ~ D„s x —y

X«l T(e.(x)e'( )Vy;(0) J,"'(x,) J,"(x.)"J~"(y )."J"(y.)e '~" "'" ')I0& .
(3.4)

At this stage we perform a canonical transformation so that all the operators become Heisenberg opera-
tors with respect to Hn +H„+H2, where H2 JK d'x Denotin——g the.se operators by tildes; we obtain

2m

g xg —yg
' ' 'Dot g xn5 —ym

x&0I T(ya(x)y~(y)V'„(0) Jv'(xi) "Jv"(x )J2'(y, ) "Js"(y ))I0&

(3.5)
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We emphasize that all the operators in this ex-
pression evolve in time according to H„„+II„
+II~. Note that V'„(0), Jv(0), J~(0) are still con-
served as H~ is invariant under isospin transfor-
mations. In particular, the Ward identities ensure
that the zero-momentum-transfer matrix ele-
ments of these currents are still equal to the val-
ues in the absence of H~. It is then clear that in
Eq. (3.5) the power of Z is exactly matched by the
power of n, as the J~

's appear exactly m times
in the expression.

Equations (3.3) et seq. have been obtained by con-
tracting the A„ in Eq. (3.2) with the As,. in all pos-
sible ways. Had we contracted a subset of A„,.
among themselves while contracting the remainder
with the Az. in all possible ways, an identical
argument shows that the corresponding contribu-
tion is one in which the power of n exceeds the
power of Z.

We conclude that in the corrections to the im-
proper vertex function no power of Z exceeds the
power of z. All the terms which in the original
expansion potentially violated this result have been
absorbed in the field operators and state vectors
of the tilde representation, effectively becoming
part of the strong interactions.

To complete the proof it is necessary to show
that the same results hold for the isovector cor-
rections to the masses and renormalization con-
stants of the initial and final nuclei, as these ap-
pear in the reduction formula of Eq. (3.1). To
show this, it is sufficient to study by an identical
method the corrections to the propagators of these
particles.

B. Remarks on Counting Powers of Z

Consider for example, Eq. (3.5). If this expres-
sion involved only the zero-momentum-transfer
matrix elements of all the relevant currents, it is
clear that our estimate of the order of magnitude
of the matrix elements would be essentially exact.
For example, the zero-momentum-transfer ma-
trix element of J~' involves only the isovector
charge of the nuclei which is O(l) in the case of
all the superallowed Fermi transitions. In such a
case, the Z dependence of the matrix element
would be carried completely by the matrix ele-
ments of the isoscalar currents J~' and we would
conclude, as we did, that (3.5) is indeed of order
of magnitude (Ze')". Equation (3.5) is, however,
a very complicated correlation function involving
arbitrary ranges of momentum transfers. As
such matrix elements seem impossible to calcu-
late, it is clear that our characterization of their
order of magnitude cannot be established with cer-
tainty. Rather, such characterization is based on

the following intuitive argument: One expects that
the leading dependences on Z should arise from
matrix elements in which all the constituent nucle-
ons act coherently. One naturally expects that
such coherent effects will manifest themselves
with greatest strength when all the relevant ma-
trix elements are taken at zero momentum trans-
fer. Hence, our estimate of the order of magni-
tude of Eq. (3.5).

We stress, however, that it is only to the extent
that orders of magnitude are governed by the val-
ues of the matrix elements at zero momentum
transfer (and can, therefore, be estimated in
terms of a single nuclear property, viz. , the total
charge) that we can meaningfully talk of the Z de-
pendence of the ft values for very different nuclear
transitions.

IV. CONCLUSION

Our discussion of radiative corrections to super-
allowed Fermi transitions goes as far as one can
go without getting involved in complex, unreliable,
and unenlightening model-dependent dynamical
calculations. We recognize that a complete reso-
lution of the problem will have to wait until one
has at hand a reliable calculus for handling the
photon-hadron system; however, our discussion
appears to have uncovered most of the interesting
physics in the problem. We have shown that the
near constancy of the ft values, despite the pos-
sibility of sizable radiative corrections to the
CVC prediction, is a consequence of the CVC hy-
pothesis itself supplemented with the innocuous
assumption of a local commutation relation be-
tween the temporal components of the isospin cur-
rent. The absence of any Z o. (or, more generally,
Z o. " with m &n) corrections in the ft value has
been traced to the fact that terms of this order in
the perturbation expansion arise only when the

purely isoscalar part of the electromagnetic in-
teraction comes into play; since this interaction
respects CVC, such corrections cancel in the ft
value. Furthermore, the Zn term, which can be-
come sizable for the higher Z nuclei, has been
shown to be suppressed by a combination of argu-
ments —a model-independent current-algebra
argument for transitions induced by the vector
current and a model-dependent argument for the
contribution of the axial-vector current to the
Fermi transition. It would be interesting to see
whether the axial-vector -current effects exhibit
any perceptible change in going from one nuclear
model to another.

Nothing in our consideration precludes the exis-
tence of radiative corrections of order Z'o. (=4%
for '~Co). , In the presence of model-dependent
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corrections of this order of magnitude, it is clear
that the precise and unambiguous determination of
the ft values is very difficult for the large-Z nu-
clei. Therefore, in the determination of Gv/G„

= cosa (which is relevant to the analysis of the
universality of the weak interactions) the consider-
ation of the ft values for low-Z Fermi transitions
is much to be preferred.

APPENDIX A

In this appendix we discuss the evaluation of the contribution of 2/„V~ to Eq. (2.6) and show in a simple
manner how the usual Coulomb corrections of order a arise from the corresponding integral.

Inserting Eq. (2.8) into Eq. (2.6), we see that the contribution of 2l„Vz" to M(0") is given by

I,= I", )+I('), (Al)

I ( I)
(p, I)M( 0)

I( ) (p. I)M(o)
7T'

where

d4k 1 1 1
k —X~1 +ie k +2l ~ k+ie k -2p ~ k+ie k +2P ~ k+i6

d'k 1 1
k' —X~ +is k +2l ~ k+ie k +2p k+ie

(A2)

(A3)

M"'= "L~(III V'(0))a) (A4)

is the zeroth-order matrix element and we have introduced an infinitesimal photon mass A . Note that
I3 is explicitly of order a. It is, in fact, part of the usual radiative cor re ctions of order n and wi ll not
be discussed here. The integral in «,' has been evaluated exactly, "but the details are rather lengthy and
cumbersome. For our purposes it is more illuminating to introduce the following approximation: In the
terms within the large parentheses of Eq. (A2) we neglect k relative to 2p k. Thus in Eq. (A2) we replace

(
], 1 1

+ + . = -2iv6(2p k)k' —2p k+ie k +2p k+ie -2p k+ie 2p k+ie

= -i(v/M)6(k0) (A5)

where the last equality holds in the rest system of the nucleus (M is the nuclear mass). The rationale be-
hind this approximation is simple enough: The terms of order I/I in the integration of Eq. (A2} arise from
the "small k" region and therefore we can neglect k' in front of 2P k. In fact, one can check that the error
introduced by this approximation in the evaluation of I(') is of order O(Zn'l/M}. " Using the approximation
indicated in Eq. (A5) and specializing to the nuclear rest frame, we obtain

«( x) l
d'k

)( ' [(k)'+)(. '] [(k)'+21 f.—'
] (A6)

Calling K=
~ k~, L =

~ l~, introducing pola, r coordinates, and carrying out the angula, r integration, we obtain

(~) 2Zn (0)
" K dK 1 K +2LK

m K +X . 2LK K' —2IK -se (A7)

In Eq. (A7) as well as in the following expressions the very small errors of order O(Zof/M) are not indi-
cated explicitly. The integral in Eq. (A7} contains a real as well as an imaginary part. Because I(') is
proportional to M, to order n only the real part of the integral can contribute to the transition probabil-
ity. Evaluating the integral, we obtain

K'd K 1 K'+2l K 1
K'+A, ' 2LK K —2LK —ic 2L

2~ dK K+2L 1 " dK K+2I

4L (A8)
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In Eq. (A8) we have set X =0, as the real part of the integral is infrared convergent. Thus,

&» 2Zn &» m iv 2L Zo, v &» Zn. Mi'~ 2L
(A9)

where P= L/—I, is the positron velocity in units of c and, for completeness, we have included the contribu-
tion from the imaginary part of the integral in Eq. (A7). The interference of Eq. (A9) with the zeroth-order
matrix elementM@~ gives a contribution -~M~'~~'(Zov/p) to the transition probability. This is, in fact, the
usual Coulomb correction of order n corresponding to a positron emitter.

APPENDIX B

In this appendix we discuss the evaluation of the quantity

4w'W2 k'+is " 2'+2l. k+ic 2'+44) (Bl)

which is the contribution of (V~) „ to I, [Eq. (2.10)]. Our aim is to show that in the limit I-0, q-0, X,p
does not give rise to contributions of order Zn to the total transition probability.

Inserting Eq. (2.8) into Eq. (Bl), we obtain

I2+ = I2~+I2I(x) (2)

d k ~ 1 1 1
+

k '+ ie k ' —2P k+ ie k '+ 2p k+ ie k'+ 2l ~ k+ic
d'k k' 1 1

2'+ik k'+kk. 2+le k'+2l 2+le 2'+s'4)

(B2)

(B3)

(B4)

In the above expressions we have taken into account the fact that the integral obtained by setting k =0 in Eq.
(B3) is identically zero, because of the oddness of the corresponding integrand.

Defining

Si
(2 )'

Si
2 (2 )2

we have

d4k kx

k'+is k' —2p k+ie k —2l ~ k+ie

d'k k' 1
k'+i& k'+2p k+if k. 2) ~ k+iQ

(B5)

(B6)

(B7)

Performing the integrals one verifies"

Re(J, +j, ) = O(I"/M'), (B8)

iim(j,' j,"+)= ilmI,' =
' v p~~ I~j
ML M

The contribution of Re(J, +j, ) to Eq. (B7) is explicitly of order O(l /M') and vanishes in the limit l - 0.
On the other hand Im(J, +J, ) is of zeroth order in l (although not independent of l). Therefore, the contri-
bution of Eq. (B9) must be treated explicitly. Inserting Eq. (B9) into Eq. (B7) one finds that in the limitl- 0, q- 0, the interference of I,I, with the zeroth-order matrix element M vanishes after the summa-
tion over the spin states of the final positron is performed. This completes our proof that I,'~ does not
contribute terms of order Za to the total transition probability in the limit l, q- 0.

Regarding I,~ we note that it involves an explicit factor a. Therefore, one can treat the hadronic part
of the matrix element to zeroth order in a. It is then easy to verify that in the limit q 0, I,~ does not
contribute terms of order Za.
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We study a model in which multiparticle processes are envisaged as ocurring via the form-
ation of a fireball and a leading particle. We impose a bootstrap condition on the fireball de-
cay distribution by demanding that it be the same, in its rest system, as the over-all distri-
bution in the c.m. system. This leads us to a. set of integral equations for both single-parti-
cle and multiparticle inclusive distributions. We examine these equations in the scaling lim-
it, we show that the multiplicity of produced particles grows logarithmically with energy and
that the multiparticle distributions factorize for particles traveling in opposite directions,
and we obtain a bound on the size of the two-particle distribution function. If Regge con-
straints are imposed, we show that the model predicts that the scaling limit for the single-
particle distribution function, in the central region, is approached from below. Furthermore,
many of the features of a Mueller analysis are clearly exhibited by the model. We illustrate
various properties of the model by means of two examples, one of which is in qualitative
agreement with experiment.

I. INTRODUCTION

Particle production is the dominant feature of
high-energy collision processes, accounting for
roughly 80%%up of all events, and a variety of models
have been proposed to describe these processes. '
Several of these models' consider high-energy pro-
cesses occurring through the formation of one or
several clusters of particles, often called fire-
balls, which then decay into the observed particles.
A general assumption made in most of these mod-
els is that the decay of the fireball is isotropic in

its own rest system;. other details of the decay
mechanism are part of the theoretical input which

distinguishes among various versions of these
models. In this paper we shall also envisage par-
ticle production processes as occurring via the

formation of a fireball, but shall consider the al-
ternative assumption that the fireball decay distri-
bution, rather thanbeing isotropic, is essentially
the same as the distribution of particles in the en-
tire event. This constitutes in effect a bootstrap
hypothesis.

We shall imagine, for simplicity, a world of only


